// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mdio-i2c.h" #include "sfp.h" #include "swphy.h" enum { GPIO_MODDEF0, GPIO_LOS, GPIO_TX_FAULT, GPIO_TX_DISABLE, GPIO_RATE_SELECT, GPIO_MAX, SFP_F_PRESENT = BIT(GPIO_MODDEF0), SFP_F_LOS = BIT(GPIO_LOS), SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), SFP_E_INSERT = 0, SFP_E_REMOVE, SFP_E_DEV_ATTACH, SFP_E_DEV_DETACH, SFP_E_DEV_DOWN, SFP_E_DEV_UP, SFP_E_TX_FAULT, SFP_E_TX_CLEAR, SFP_E_LOS_HIGH, SFP_E_LOS_LOW, SFP_E_TIMEOUT, SFP_MOD_EMPTY = 0, SFP_MOD_ERROR, SFP_MOD_PROBE, SFP_MOD_WAITDEV, SFP_MOD_HPOWER, SFP_MOD_WAITPWR, SFP_MOD_PRESENT, SFP_DEV_DETACHED = 0, SFP_DEV_DOWN, SFP_DEV_UP, SFP_S_DOWN = 0, SFP_S_FAIL, SFP_S_WAIT, SFP_S_INIT, SFP_S_INIT_PHY, SFP_S_INIT_TX_FAULT, SFP_S_WAIT_LOS, SFP_S_LINK_UP, SFP_S_TX_FAULT, SFP_S_REINIT, SFP_S_TX_DISABLE, }; static const char * const mod_state_strings[] = { [SFP_MOD_EMPTY] = "empty", [SFP_MOD_ERROR] = "error", [SFP_MOD_PROBE] = "probe", [SFP_MOD_WAITDEV] = "waitdev", [SFP_MOD_HPOWER] = "hpower", [SFP_MOD_WAITPWR] = "waitpwr", [SFP_MOD_PRESENT] = "present", }; static const char *mod_state_to_str(unsigned short mod_state) { if (mod_state >= ARRAY_SIZE(mod_state_strings)) return "Unknown module state"; return mod_state_strings[mod_state]; } static const char * const dev_state_strings[] = { [SFP_DEV_DETACHED] = "detached", [SFP_DEV_DOWN] = "down", [SFP_DEV_UP] = "up", }; static const char *dev_state_to_str(unsigned short dev_state) { if (dev_state >= ARRAY_SIZE(dev_state_strings)) return "Unknown device state"; return dev_state_strings[dev_state]; } static const char * const event_strings[] = { [SFP_E_INSERT] = "insert", [SFP_E_REMOVE] = "remove", [SFP_E_DEV_ATTACH] = "dev_attach", [SFP_E_DEV_DETACH] = "dev_detach", [SFP_E_DEV_DOWN] = "dev_down", [SFP_E_DEV_UP] = "dev_up", [SFP_E_TX_FAULT] = "tx_fault", [SFP_E_TX_CLEAR] = "tx_clear", [SFP_E_LOS_HIGH] = "los_high", [SFP_E_LOS_LOW] = "los_low", [SFP_E_TIMEOUT] = "timeout", }; static const char *event_to_str(unsigned short event) { if (event >= ARRAY_SIZE(event_strings)) return "Unknown event"; return event_strings[event]; } static const char * const sm_state_strings[] = { [SFP_S_DOWN] = "down", [SFP_S_FAIL] = "fail", [SFP_S_WAIT] = "wait", [SFP_S_INIT] = "init", [SFP_S_INIT_PHY] = "init_phy", [SFP_S_INIT_TX_FAULT] = "init_tx_fault", [SFP_S_WAIT_LOS] = "wait_los", [SFP_S_LINK_UP] = "link_up", [SFP_S_TX_FAULT] = "tx_fault", [SFP_S_REINIT] = "reinit", [SFP_S_TX_DISABLE] = "rx_disable", }; static const char *sm_state_to_str(unsigned short sm_state) { if (sm_state >= ARRAY_SIZE(sm_state_strings)) return "Unknown state"; return sm_state_strings[sm_state]; } static const char *gpio_of_names[] = { "mod-def0", "los", "tx-fault", "tx-disable", "rate-select0", }; static const enum gpiod_flags gpio_flags[] = { GPIOD_IN, GPIOD_IN, GPIOD_IN, GPIOD_ASIS, GPIOD_ASIS, }; /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a * non-cooled module to initialise its laser safety circuitry. We wait * an initial T_WAIT period before we check the tx fault to give any PHY * on board (for a copper SFP) time to initialise. */ #define T_WAIT msecs_to_jiffies(50) #define T_START_UP msecs_to_jiffies(300) #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) /* t_reset is the time required to assert the TX_DISABLE signal to reset * an indicated TX_FAULT. */ #define T_RESET_US 10 #define T_FAULT_RECOVER msecs_to_jiffies(1000) /* N_FAULT_INIT is the number of recovery attempts at module initialisation * time. If the TX_FAULT signal is not deasserted after this number of * attempts at clearing it, we decide that the module is faulty. * N_FAULT is the same but after the module has initialised. */ #define N_FAULT_INIT 5 #define N_FAULT 5 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. * R_PHY_RETRY is the number of attempts. */ #define T_PHY_RETRY msecs_to_jiffies(50) #define R_PHY_RETRY 12 /* SFP module presence detection is poor: the three MOD DEF signals are * the same length on the PCB, which means it's possible for MOD DEF 0 to * connect before the I2C bus on MOD DEF 1/2. * * The SFF-8472 specifies t_serial ("Time from power on until module is * ready for data transmission over the two wire serial bus.") as 300ms. */ #define T_SERIAL msecs_to_jiffies(300) #define T_HPOWER_LEVEL msecs_to_jiffies(300) #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) #define R_PROBE_RETRY_INIT 10 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) #define R_PROBE_RETRY_SLOW 12 /* SFP modules appear to always have their PHY configured for bus address * 0x56 (which with mdio-i2c, translates to a PHY address of 22). */ #define SFP_PHY_ADDR 22 struct sff_data { unsigned int gpios; bool (*module_supported)(const struct sfp_eeprom_id *id); }; struct sfp { struct device *dev; struct i2c_adapter *i2c; struct mii_bus *i2c_mii; struct sfp_bus *sfp_bus; struct phy_device *mod_phy; const struct sff_data *type; u32 max_power_mW; unsigned int (*get_state)(struct sfp *); void (*set_state)(struct sfp *, unsigned int); int (*read)(struct sfp *, bool, u8, void *, size_t); int (*write)(struct sfp *, bool, u8, void *, size_t); struct gpio_desc *gpio[GPIO_MAX]; int gpio_irq[GPIO_MAX]; bool need_poll; struct mutex st_mutex; /* Protects state */ unsigned int state_soft_mask; unsigned int state; struct delayed_work poll; struct delayed_work timeout; struct mutex sm_mutex; /* Protects state machine */ unsigned char sm_mod_state; unsigned char sm_mod_tries_init; unsigned char sm_mod_tries; unsigned char sm_dev_state; unsigned short sm_state; unsigned char sm_fault_retries; unsigned char sm_phy_retries; struct sfp_eeprom_id id; unsigned int module_power_mW; unsigned int module_t_start_up; #if IS_ENABLED(CONFIG_HWMON) struct sfp_diag diag; struct delayed_work hwmon_probe; unsigned int hwmon_tries; struct device *hwmon_dev; char *hwmon_name; #endif }; static bool sff_module_supported(const struct sfp_eeprom_id *id) { return id->base.phys_id == SFF8024_ID_SFF_8472 && id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; } static const struct sff_data sff_data = { .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, .module_supported = sff_module_supported, }; static bool sfp_module_supported(const struct sfp_eeprom_id *id) { return id->base.phys_id == SFF8024_ID_SFP && id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; } static const struct sff_data sfp_data = { .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, .module_supported = sfp_module_supported, }; static const struct of_device_id sfp_of_match[] = { { .compatible = "sff,sff", .data = &sff_data, }, { .compatible = "sff,sfp", .data = &sfp_data, }, { }, }; MODULE_DEVICE_TABLE(of, sfp_of_match); static unsigned long poll_jiffies; static unsigned int sfp_gpio_get_state(struct sfp *sfp) { unsigned int i, state, v; for (i = state = 0; i < GPIO_MAX; i++) { if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) continue; v = gpiod_get_value_cansleep(sfp->gpio[i]); if (v) state |= BIT(i); } return state; } static unsigned int sff_gpio_get_state(struct sfp *sfp) { return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; } static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) { if (state & SFP_F_PRESENT) { /* If the module is present, drive the signals */ if (sfp->gpio[GPIO_TX_DISABLE]) gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], state & SFP_F_TX_DISABLE); if (state & SFP_F_RATE_SELECT) gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], state & SFP_F_RATE_SELECT); } else { /* Otherwise, let them float to the pull-ups */ if (sfp->gpio[GPIO_TX_DISABLE]) gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); if (state & SFP_F_RATE_SELECT) gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); } } static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len) { struct i2c_msg msgs[2]; u8 bus_addr = a2 ? 0x51 : 0x50; size_t this_len; int ret; msgs[0].addr = bus_addr; msgs[0].flags = 0; msgs[0].len = 1; msgs[0].buf = &dev_addr; msgs[1].addr = bus_addr; msgs[1].flags = I2C_M_RD; msgs[1].len = len; msgs[1].buf = buf; while (len) { this_len = len; if (this_len > 16) this_len = 16; msgs[1].len = this_len; ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); if (ret < 0) return ret; if (ret != ARRAY_SIZE(msgs)) break; msgs[1].buf += this_len; dev_addr += this_len; len -= this_len; } return msgs[1].buf - (u8 *)buf; } static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len) { struct i2c_msg msgs[1]; u8 bus_addr = a2 ? 0x51 : 0x50; int ret; msgs[0].addr = bus_addr; msgs[0].flags = 0; msgs[0].len = 1 + len; msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); if (!msgs[0].buf) return -ENOMEM; msgs[0].buf[0] = dev_addr; memcpy(&msgs[0].buf[1], buf, len); ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); kfree(msgs[0].buf); if (ret < 0) return ret; return ret == ARRAY_SIZE(msgs) ? len : 0; } static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) { struct mii_bus *i2c_mii; int ret; if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) return -EINVAL; sfp->i2c = i2c; sfp->read = sfp_i2c_read; sfp->write = sfp_i2c_write; i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); if (IS_ERR(i2c_mii)) return PTR_ERR(i2c_mii); i2c_mii->name = "SFP I2C Bus"; i2c_mii->phy_mask = ~0; ret = mdiobus_register(i2c_mii); if (ret < 0) { mdiobus_free(i2c_mii); return ret; } sfp->i2c_mii = i2c_mii; return 0; } /* Interface */ static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) { return sfp->read(sfp, a2, addr, buf, len); } static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) { return sfp->write(sfp, a2, addr, buf, len); } static unsigned int sfp_soft_get_state(struct sfp *sfp) { unsigned int state = 0; u8 status; int ret; ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); if (ret == sizeof(status)) { if (status & SFP_STATUS_RX_LOS) state |= SFP_F_LOS; if (status & SFP_STATUS_TX_FAULT) state |= SFP_F_TX_FAULT; } else { dev_err_ratelimited(sfp->dev, "failed to read SFP soft status: %d\n", ret); /* Preserve the current state */ state = sfp->state; } return state & sfp->state_soft_mask; } static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) { u8 status; if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == sizeof(status)) { if (state & SFP_F_TX_DISABLE) status |= SFP_STATUS_TX_DISABLE_FORCE; else status &= ~SFP_STATUS_TX_DISABLE_FORCE; sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); } } static void sfp_soft_start_poll(struct sfp *sfp) { const struct sfp_eeprom_id *id = &sfp->id; sfp->state_soft_mask = 0; if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE && !sfp->gpio[GPIO_TX_DISABLE]) sfp->state_soft_mask |= SFP_F_TX_DISABLE; if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT && !sfp->gpio[GPIO_TX_FAULT]) sfp->state_soft_mask |= SFP_F_TX_FAULT; if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS && !sfp->gpio[GPIO_LOS]) sfp->state_soft_mask |= SFP_F_LOS; if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && !sfp->need_poll) mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); } static void sfp_soft_stop_poll(struct sfp *sfp) { sfp->state_soft_mask = 0; } static unsigned int sfp_get_state(struct sfp *sfp) { unsigned int state = sfp->get_state(sfp); if (state & SFP_F_PRESENT && sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT)) state |= sfp_soft_get_state(sfp); return state; } static void sfp_set_state(struct sfp *sfp, unsigned int state) { sfp->set_state(sfp, state); if (state & SFP_F_PRESENT && sfp->state_soft_mask & SFP_F_TX_DISABLE) sfp_soft_set_state(sfp, state); } static unsigned int sfp_check(void *buf, size_t len) { u8 *p, check; for (p = buf, check = 0; len; p++, len--) check += *p; return check; } /* hwmon */ #if IS_ENABLED(CONFIG_HWMON) static umode_t sfp_hwmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct sfp *sfp = data; switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_min_alarm: case hwmon_temp_max_alarm: case hwmon_temp_lcrit_alarm: case hwmon_temp_crit_alarm: case hwmon_temp_min: case hwmon_temp_max: case hwmon_temp_lcrit: case hwmon_temp_crit: if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) return 0; /* fall through */ case hwmon_temp_input: case hwmon_temp_label: return 0444; default: return 0; } case hwmon_in: switch (attr) { case hwmon_in_min_alarm: case hwmon_in_max_alarm: case hwmon_in_lcrit_alarm: case hwmon_in_crit_alarm: case hwmon_in_min: case hwmon_in_max: case hwmon_in_lcrit: case hwmon_in_crit: if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) return 0; /* fall through */ case hwmon_in_input: case hwmon_in_label: return 0444; default: return 0; } case hwmon_curr: switch (attr) { case hwmon_curr_min_alarm: case hwmon_curr_max_alarm: case hwmon_curr_lcrit_alarm: case hwmon_curr_crit_alarm: case hwmon_curr_min: case hwmon_curr_max: case hwmon_curr_lcrit: case hwmon_curr_crit: if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) return 0; /* fall through */ case hwmon_curr_input: case hwmon_curr_label: return 0444; default: return 0; } case hwmon_power: /* External calibration of receive power requires * floating point arithmetic. Doing that in the kernel * is not easy, so just skip it. If the module does * not require external calibration, we can however * show receiver power, since FP is then not needed. */ if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && channel == 1) return 0; switch (attr) { case hwmon_power_min_alarm: case hwmon_power_max_alarm: case hwmon_power_lcrit_alarm: case hwmon_power_crit_alarm: case hwmon_power_min: case hwmon_power_max: case hwmon_power_lcrit: case hwmon_power_crit: if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) return 0; /* fall through */ case hwmon_power_input: case hwmon_power_label: return 0444; default: return 0; } default: return 0; } } static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) { __be16 val; int err; err = sfp_read(sfp, true, reg, &val, sizeof(val)); if (err < 0) return err; *value = be16_to_cpu(val); return 0; } static void sfp_hwmon_to_rx_power(long *value) { *value = DIV_ROUND_CLOSEST(*value, 10); } static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, long *value) { if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; } static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) { sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), be16_to_cpu(sfp->diag.cal_t_offset), value); if (*value >= 0x8000) *value -= 0x10000; *value = DIV_ROUND_CLOSEST(*value * 1000, 256); } static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) { sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), be16_to_cpu(sfp->diag.cal_v_offset), value); *value = DIV_ROUND_CLOSEST(*value, 10); } static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) { sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), be16_to_cpu(sfp->diag.cal_txi_offset), value); *value = DIV_ROUND_CLOSEST(*value, 500); } static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) { sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), be16_to_cpu(sfp->diag.cal_txpwr_offset), value); *value = DIV_ROUND_CLOSEST(*value, 10); } static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_calibrate_temp(sfp, value); return 0; } static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_calibrate_vcc(sfp, value); return 0; } static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_calibrate_bias(sfp, value); return 0; } static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_calibrate_tx_power(sfp, value); return 0; } static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_to_rx_power(value); return 0; } static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_temp_input: return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); case hwmon_temp_lcrit: *value = be16_to_cpu(sfp->diag.temp_low_alarm); sfp_hwmon_calibrate_temp(sfp, value); return 0; case hwmon_temp_min: *value = be16_to_cpu(sfp->diag.temp_low_warn); sfp_hwmon_calibrate_temp(sfp, value); return 0; case hwmon_temp_max: *value = be16_to_cpu(sfp->diag.temp_high_warn); sfp_hwmon_calibrate_temp(sfp, value); return 0; case hwmon_temp_crit: *value = be16_to_cpu(sfp->diag.temp_high_alarm); sfp_hwmon_calibrate_temp(sfp, value); return 0; case hwmon_temp_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TEMP_LOW); return 0; case hwmon_temp_min_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TEMP_LOW); return 0; case hwmon_temp_max_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TEMP_HIGH); return 0; case hwmon_temp_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TEMP_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_in_input: return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); case hwmon_in_lcrit: *value = be16_to_cpu(sfp->diag.volt_low_alarm); sfp_hwmon_calibrate_vcc(sfp, value); return 0; case hwmon_in_min: *value = be16_to_cpu(sfp->diag.volt_low_warn); sfp_hwmon_calibrate_vcc(sfp, value); return 0; case hwmon_in_max: *value = be16_to_cpu(sfp->diag.volt_high_warn); sfp_hwmon_calibrate_vcc(sfp, value); return 0; case hwmon_in_crit: *value = be16_to_cpu(sfp->diag.volt_high_alarm); sfp_hwmon_calibrate_vcc(sfp, value); return 0; case hwmon_in_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_VCC_LOW); return 0; case hwmon_in_min_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_VCC_LOW); return 0; case hwmon_in_max_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_VCC_HIGH); return 0; case hwmon_in_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_VCC_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_curr_input: return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); case hwmon_curr_lcrit: *value = be16_to_cpu(sfp->diag.bias_low_alarm); sfp_hwmon_calibrate_bias(sfp, value); return 0; case hwmon_curr_min: *value = be16_to_cpu(sfp->diag.bias_low_warn); sfp_hwmon_calibrate_bias(sfp, value); return 0; case hwmon_curr_max: *value = be16_to_cpu(sfp->diag.bias_high_warn); sfp_hwmon_calibrate_bias(sfp, value); return 0; case hwmon_curr_crit: *value = be16_to_cpu(sfp->diag.bias_high_alarm); sfp_hwmon_calibrate_bias(sfp, value); return 0; case hwmon_curr_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); return 0; case hwmon_curr_min_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TX_BIAS_LOW); return 0; case hwmon_curr_max_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); return 0; case hwmon_curr_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_power_input: return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); case hwmon_power_lcrit: *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); sfp_hwmon_calibrate_tx_power(sfp, value); return 0; case hwmon_power_min: *value = be16_to_cpu(sfp->diag.txpwr_low_warn); sfp_hwmon_calibrate_tx_power(sfp, value); return 0; case hwmon_power_max: *value = be16_to_cpu(sfp->diag.txpwr_high_warn); sfp_hwmon_calibrate_tx_power(sfp, value); return 0; case hwmon_power_crit: *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); sfp_hwmon_calibrate_tx_power(sfp, value); return 0; case hwmon_power_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TXPWR_LOW); return 0; case hwmon_power_min_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TXPWR_LOW); return 0; case hwmon_power_max_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TXPWR_HIGH); return 0; case hwmon_power_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TXPWR_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_power_input: return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); case hwmon_power_lcrit: *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); sfp_hwmon_to_rx_power(value); return 0; case hwmon_power_min: *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); sfp_hwmon_to_rx_power(value); return 0; case hwmon_power_max: *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); sfp_hwmon_to_rx_power(value); return 0; case hwmon_power_crit: *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); sfp_hwmon_to_rx_power(value); return 0; case hwmon_power_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM1_RXPWR_LOW); return 0; case hwmon_power_min_alarm: err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN1_RXPWR_LOW); return 0; case hwmon_power_max_alarm: err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN1_RXPWR_HIGH); return 0; case hwmon_power_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM1_RXPWR_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *value) { struct sfp *sfp = dev_get_drvdata(dev); switch (type) { case hwmon_temp: return sfp_hwmon_temp(sfp, attr, value); case hwmon_in: return sfp_hwmon_vcc(sfp, attr, value); case hwmon_curr: return sfp_hwmon_bias(sfp, attr, value); case hwmon_power: switch (channel) { case 0: return sfp_hwmon_tx_power(sfp, attr, value); case 1: return sfp_hwmon_rx_power(sfp, attr, value); default: return -EOPNOTSUPP; } default: return -EOPNOTSUPP; } } static const char *const sfp_hwmon_power_labels[] = { "TX_power", "RX_power", }; static int sfp_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { switch (type) { case hwmon_curr: switch (attr) { case hwmon_curr_label: *str = "bias"; return 0; default: return -EOPNOTSUPP; } break; case hwmon_temp: switch (attr) { case hwmon_temp_label: *str = "temperature"; return 0; default: return -EOPNOTSUPP; } break; case hwmon_in: switch (attr) { case hwmon_in_label: *str = "VCC"; return 0; default: return -EOPNOTSUPP; } break; case hwmon_power: switch (attr) { case hwmon_power_label: *str = sfp_hwmon_power_labels[channel]; return 0; default: return -EOPNOTSUPP; } break; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static const struct hwmon_ops sfp_hwmon_ops = { .is_visible = sfp_hwmon_is_visible, .read = sfp_hwmon_read, .read_string = sfp_hwmon_read_string, }; static u32 sfp_hwmon_chip_config[] = { HWMON_C_REGISTER_TZ, 0, }; static const struct hwmon_channel_info sfp_hwmon_chip = { .type = hwmon_chip, .config = sfp_hwmon_chip_config, }; static u32 sfp_hwmon_temp_config[] = { HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | HWMON_T_CRIT | HWMON_T_LCRIT | HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | HWMON_T_LABEL, 0, }; static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { .type = hwmon_temp, .config = sfp_hwmon_temp_config, }; static u32 sfp_hwmon_vcc_config[] = { HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | HWMON_I_CRIT | HWMON_I_LCRIT | HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | HWMON_I_LABEL, 0, }; static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { .type = hwmon_in, .config = sfp_hwmon_vcc_config, }; static u32 sfp_hwmon_bias_config[] = { HWMON_C_INPUT | HWMON_C_MAX | HWMON_C_MIN | HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | HWMON_C_CRIT | HWMON_C_LCRIT | HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | HWMON_C_LABEL, 0, }; static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { .type = hwmon_curr, .config = sfp_hwmon_bias_config, }; static u32 sfp_hwmon_power_config[] = { /* Transmit power */ HWMON_P_INPUT | HWMON_P_MAX | HWMON_P_MIN | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | HWMON_P_CRIT | HWMON_P_LCRIT | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | HWMON_P_LABEL, /* Receive power */ HWMON_P_INPUT | HWMON_P_MAX | HWMON_P_MIN | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | HWMON_P_CRIT | HWMON_P_LCRIT | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | HWMON_P_LABEL, 0, }; static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { .type = hwmon_power, .config = sfp_hwmon_power_config, }; static const struct hwmon_channel_info *sfp_hwmon_info[] = { &sfp_hwmon_chip, &sfp_hwmon_vcc_channel_info, &sfp_hwmon_temp_channel_info, &sfp_hwmon_bias_channel_info, &sfp_hwmon_power_channel_info, NULL, }; static const struct hwmon_chip_info sfp_hwmon_chip_info = { .ops = &sfp_hwmon_ops, .info = sfp_hwmon_info, }; static void sfp_hwmon_probe(struct work_struct *work) { struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); int err, i; err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); if (err < 0) { if (sfp->hwmon_tries--) { mod_delayed_work(system_wq, &sfp->hwmon_probe, T_PROBE_RETRY_SLOW); } else { dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); } return; } sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); if (!sfp->hwmon_name) { dev_err(sfp->dev, "out of memory for hwmon name\n"); return; } for (i = 0; sfp->hwmon_name[i]; i++) if (hwmon_is_bad_char(sfp->hwmon_name[i])) sfp->hwmon_name[i] = '_'; sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, sfp->hwmon_name, sfp, &sfp_hwmon_chip_info, NULL); if (IS_ERR(sfp->hwmon_dev)) dev_err(sfp->dev, "failed to register hwmon device: %ld\n", PTR_ERR(sfp->hwmon_dev)); } static int sfp_hwmon_insert(struct sfp *sfp) { if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) return 0; if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) return 0; if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) /* This driver in general does not support address * change. */ return 0; mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); sfp->hwmon_tries = R_PROBE_RETRY_SLOW; return 0; } static void sfp_hwmon_remove(struct sfp *sfp) { cancel_delayed_work_sync(&sfp->hwmon_probe); if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { hwmon_device_unregister(sfp->hwmon_dev); sfp->hwmon_dev = NULL; kfree(sfp->hwmon_name); } } static int sfp_hwmon_init(struct sfp *sfp) { INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); return 0; } static void sfp_hwmon_exit(struct sfp *sfp) { cancel_delayed_work_sync(&sfp->hwmon_probe); } #else static int sfp_hwmon_insert(struct sfp *sfp) { return 0; } static void sfp_hwmon_remove(struct sfp *sfp) { } static int sfp_hwmon_init(struct sfp *sfp) { return 0; } static void sfp_hwmon_exit(struct sfp *sfp) { } #endif /* Helpers */ static void sfp_module_tx_disable(struct sfp *sfp) { dev_dbg(sfp->dev, "tx disable %u -> %u\n", sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); sfp->state |= SFP_F_TX_DISABLE; sfp_set_state(sfp, sfp->state); } static void sfp_module_tx_enable(struct sfp *sfp) { dev_dbg(sfp->dev, "tx disable %u -> %u\n", sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); sfp->state &= ~SFP_F_TX_DISABLE; sfp_set_state(sfp, sfp->state); } static void sfp_module_tx_fault_reset(struct sfp *sfp) { unsigned int state = sfp->state; if (state & SFP_F_TX_DISABLE) return; sfp_set_state(sfp, state | SFP_F_TX_DISABLE); udelay(T_RESET_US); sfp_set_state(sfp, state); } /* SFP state machine */ static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) { if (timeout) mod_delayed_work(system_power_efficient_wq, &sfp->timeout, timeout); else cancel_delayed_work(&sfp->timeout); } static void sfp_sm_next(struct sfp *sfp, unsigned int state, unsigned int timeout) { sfp->sm_state = state; sfp_sm_set_timer(sfp, timeout); } static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, unsigned int timeout) { sfp->sm_mod_state = state; sfp_sm_set_timer(sfp, timeout); } static void sfp_sm_phy_detach(struct sfp *sfp) { sfp_remove_phy(sfp->sfp_bus); phy_device_remove(sfp->mod_phy); phy_device_free(sfp->mod_phy); sfp->mod_phy = NULL; } static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) { struct phy_device *phy; int err; phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); if (phy == ERR_PTR(-ENODEV)) return PTR_ERR(phy); if (IS_ERR(phy)) { dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); return PTR_ERR(phy); } err = phy_device_register(phy); if (err) { phy_device_free(phy); dev_err(sfp->dev, "phy_device_register failed: %d\n", err); return err; } err = sfp_add_phy(sfp->sfp_bus, phy); if (err) { phy_device_remove(phy); phy_device_free(phy); dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); return err; } sfp->mod_phy = phy; return 0; } static void sfp_sm_link_up(struct sfp *sfp) { sfp_link_up(sfp->sfp_bus); sfp_sm_next(sfp, SFP_S_LINK_UP, 0); } static void sfp_sm_link_down(struct sfp *sfp) { sfp_link_down(sfp->sfp_bus); } static void sfp_sm_link_check_los(struct sfp *sfp) { unsigned int los = sfp->state & SFP_F_LOS; /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL * are set, we assume that no LOS signal is available. */ if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED)) los ^= SFP_F_LOS; else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL))) los = 0; if (los) sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); else sfp_sm_link_up(sfp); } static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) { return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && event == SFP_E_LOS_LOW) || (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && event == SFP_E_LOS_HIGH); } static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) { return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && event == SFP_E_LOS_HIGH) || (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && event == SFP_E_LOS_LOW); } static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) { if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { dev_err(sfp->dev, "module persistently indicates fault, disabling\n"); sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); } else { if (warn) dev_err(sfp->dev, "module transmit fault indicated\n"); sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); } } /* Probe a SFP for a PHY device if the module supports copper - the PHY * normally sits at I2C bus address 0x56, and may either be a clause 22 * or clause 45 PHY. * * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with * negotiation enabled, but some may be in 1000base-X - which is for the * PHY driver to determine. * * Clause 45 copper SFP+ modules (10G) appear to switch their interface * mode according to the negotiated line speed. */ static int sfp_sm_probe_for_phy(struct sfp *sfp) { int err = 0; switch (sfp->id.base.extended_cc) { case SFF8024_ECC_10GBASE_T_SFI: case SFF8024_ECC_10GBASE_T_SR: case SFF8024_ECC_5GBASE_T: case SFF8024_ECC_2_5GBASE_T: err = sfp_sm_probe_phy(sfp, true); break; default: if (sfp->id.base.e1000_base_t) err = sfp_sm_probe_phy(sfp, false); break; } return err; } static int sfp_module_parse_power(struct sfp *sfp) { u32 power_mW = 1000; if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) power_mW = 1500; if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) power_mW = 2000; if (power_mW > sfp->max_power_mW) { /* Module power specification exceeds the allowed maximum. */ if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE && !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) { /* The module appears not to implement bus address * 0xa2, so assume that the module powers up in the * indicated mode. */ dev_err(sfp->dev, "Host does not support %u.%uW modules\n", power_mW / 1000, (power_mW / 100) % 10); return -EINVAL; } else { dev_warn(sfp->dev, "Host does not support %u.%uW modules, module left in power mode 1\n", power_mW / 1000, (power_mW / 100) % 10); return 0; } } /* If the module requires a higher power mode, but also requires * an address change sequence, warn the user that the module may * not be functional. */ if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) { dev_warn(sfp->dev, "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", power_mW / 1000, (power_mW / 100) % 10); return 0; } sfp->module_power_mW = power_mW; return 0; } static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) { u8 val; int err; err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); if (err != sizeof(val)) { dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); return -EAGAIN; } /* DM7052 reports as a high power module, responds to reads (with * all bytes 0xff) at 0x51 but does not accept writes. In any case, * if the bit is already set, we're already in high power mode. */ if (!!(val & BIT(0)) == enable) return 0; if (enable) val |= BIT(0); else val &= ~BIT(0); err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); if (err != sizeof(val)) { dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); return -EAGAIN; } if (enable) dev_info(sfp->dev, "Module switched to %u.%uW power level\n", sfp->module_power_mW / 1000, (sfp->module_power_mW / 100) % 10); return 0; } static int sfp_sm_mod_probe(struct sfp *sfp, bool report) { /* SFP module inserted - read I2C data */ struct sfp_eeprom_id id; bool cotsworks; u8 check; int ret; ret = sfp_read(sfp, false, 0, &id, sizeof(id)); if (ret < 0) { if (report) dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); return -EAGAIN; } if (ret != sizeof(id)) { dev_err(sfp->dev, "EEPROM short read: %d\n", ret); return -EAGAIN; } /* Cotsworks do not seem to update the checksums when they * do the final programming with the final module part number, * serial number and date code. */ cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); /* Validate the checksum over the base structure */ check = sfp_check(&id.base, sizeof(id.base) - 1); if (check != id.base.cc_base) { if (cotsworks) { dev_warn(sfp->dev, "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", check, id.base.cc_base); } else { dev_err(sfp->dev, "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", check, id.base.cc_base); print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 16, 1, &id, sizeof(id), true); return -EINVAL; } } check = sfp_check(&id.ext, sizeof(id.ext) - 1); if (check != id.ext.cc_ext) { if (cotsworks) { dev_warn(sfp->dev, "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", check, id.ext.cc_ext); } else { dev_err(sfp->dev, "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", check, id.ext.cc_ext); print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 16, 1, &id, sizeof(id), true); memset(&id.ext, 0, sizeof(id.ext)); } } sfp->id = id; dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", (int)sizeof(id.base.vendor_name), id.base.vendor_name, (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, (int)sizeof(id.ext.datecode), id.ext.datecode); /* Check whether we support this module */ if (!sfp->type->module_supported(&id)) { dev_err(sfp->dev, "module is not supported - phys id 0x%02x 0x%02x\n", sfp->id.base.phys_id, sfp->id.base.phys_ext_id); return -EINVAL; } /* If the module requires address swap mode, warn about it */ if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) dev_warn(sfp->dev, "module address swap to access page 0xA2 is not supported.\n"); /* Parse the module power requirement */ ret = sfp_module_parse_power(sfp); if (ret < 0) return ret; if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) && !memcmp(id.base.vendor_pn, "3FE46541AA ", 16)) sfp->module_t_start_up = T_START_UP_BAD_GPON; else sfp->module_t_start_up = T_START_UP; return 0; } static void sfp_sm_mod_remove(struct sfp *sfp) { if (sfp->sm_mod_state > SFP_MOD_WAITDEV) sfp_module_remove(sfp->sfp_bus); sfp_hwmon_remove(sfp); memset(&sfp->id, 0, sizeof(sfp->id)); sfp->module_power_mW = 0; dev_info(sfp->dev, "module removed\n"); } /* This state machine tracks the upstream's state */ static void sfp_sm_device(struct sfp *sfp, unsigned int event) { switch (sfp->sm_dev_state) { default: if (event == SFP_E_DEV_ATTACH) sfp->sm_dev_state = SFP_DEV_DOWN; break; case SFP_DEV_DOWN: if (event == SFP_E_DEV_DETACH) sfp->sm_dev_state = SFP_DEV_DETACHED; else if (event == SFP_E_DEV_UP) sfp->sm_dev_state = SFP_DEV_UP; break; case SFP_DEV_UP: if (event == SFP_E_DEV_DETACH) sfp->sm_dev_state = SFP_DEV_DETACHED; else if (event == SFP_E_DEV_DOWN) sfp->sm_dev_state = SFP_DEV_DOWN; break; } } /* This state machine tracks the insert/remove state of the module, probes * the on-board EEPROM, and sets up the power level. */ static void sfp_sm_module(struct sfp *sfp, unsigned int event) { int err; /* Handle remove event globally, it resets this state machine */ if (event == SFP_E_REMOVE) { if (sfp->sm_mod_state > SFP_MOD_PROBE) sfp_sm_mod_remove(sfp); sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); return; } /* Handle device detach globally */ if (sfp->sm_dev_state < SFP_DEV_DOWN && sfp->sm_mod_state > SFP_MOD_WAITDEV) { if (sfp->module_power_mW > 1000 && sfp->sm_mod_state > SFP_MOD_HPOWER) sfp_sm_mod_hpower(sfp, false); sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); return; } switch (sfp->sm_mod_state) { default: if (event == SFP_E_INSERT) { sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; } break; case SFP_MOD_PROBE: /* Wait for T_PROBE_INIT to time out */ if (event != SFP_E_TIMEOUT) break; err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); if (err == -EAGAIN) { if (sfp->sm_mod_tries_init && --sfp->sm_mod_tries_init) { sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); break; } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) dev_warn(sfp->dev, "please wait, module slow to respond\n"); sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); break; } } if (err < 0) { sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); break; } err = sfp_hwmon_insert(sfp); if (err) dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); /* fall through */ case SFP_MOD_WAITDEV: /* Ensure that the device is attached before proceeding */ if (sfp->sm_dev_state < SFP_DEV_DOWN) break; /* Report the module insertion to the upstream device */ err = sfp_module_insert(sfp->sfp_bus, &sfp->id); if (err < 0) { sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); break; } /* If this is a power level 1 module, we are done */ if (sfp->module_power_mW <= 1000) goto insert; sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); /* fall through */ case SFP_MOD_HPOWER: /* Enable high power mode */ err = sfp_sm_mod_hpower(sfp, true); if (err < 0) { if (err != -EAGAIN) { sfp_module_remove(sfp->sfp_bus); sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); } else { sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); } break; } sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); break; case SFP_MOD_WAITPWR: /* Wait for T_HPOWER_LEVEL to time out */ if (event != SFP_E_TIMEOUT) break; insert: sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); break; case SFP_MOD_PRESENT: case SFP_MOD_ERROR: break; } } static void sfp_sm_main(struct sfp *sfp, unsigned int event) { unsigned long timeout; int ret; /* Some events are global */ if (sfp->sm_state != SFP_S_DOWN && (sfp->sm_mod_state != SFP_MOD_PRESENT || sfp->sm_dev_state != SFP_DEV_UP)) { if (sfp->sm_state == SFP_S_LINK_UP && sfp->sm_dev_state == SFP_DEV_UP) sfp_sm_link_down(sfp); if (sfp->sm_state > SFP_S_INIT) sfp_module_stop(sfp->sfp_bus); if (sfp->mod_phy) sfp_sm_phy_detach(sfp); sfp_module_tx_disable(sfp); sfp_soft_stop_poll(sfp); sfp_sm_next(sfp, SFP_S_DOWN, 0); return; } /* The main state machine */ switch (sfp->sm_state) { case SFP_S_DOWN: if (sfp->sm_mod_state != SFP_MOD_PRESENT || sfp->sm_dev_state != SFP_DEV_UP) break; if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) sfp_soft_start_poll(sfp); sfp_module_tx_enable(sfp); /* Initialise the fault clearance retries */ sfp->sm_fault_retries = N_FAULT_INIT; /* We need to check the TX_FAULT state, which is not defined * while TX_DISABLE is asserted. The earliest we want to do * anything (such as probe for a PHY) is 50ms. */ sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); break; case SFP_S_WAIT: if (event != SFP_E_TIMEOUT) break; if (sfp->state & SFP_F_TX_FAULT) { /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) * from the TX_DISABLE deassertion for the module to * initialise, which is indicated by TX_FAULT * deasserting. */ timeout = sfp->module_t_start_up; if (timeout > T_WAIT) timeout -= T_WAIT; else timeout = 1; sfp_sm_next(sfp, SFP_S_INIT, timeout); } else { /* TX_FAULT is not asserted, assume the module has * finished initialising. */ goto init_done; } break; case SFP_S_INIT: if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { /* TX_FAULT is still asserted after t_init or * or t_start_up, so assume there is a fault. */ sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, sfp->sm_fault_retries == N_FAULT_INIT); } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { init_done: sfp->sm_phy_retries = R_PHY_RETRY; goto phy_probe; } break; case SFP_S_INIT_PHY: if (event != SFP_E_TIMEOUT) break; phy_probe: /* TX_FAULT deasserted or we timed out with TX_FAULT * clear. Probe for the PHY and check the LOS state. */ ret = sfp_sm_probe_for_phy(sfp); if (ret == -ENODEV) { if (--sfp->sm_phy_retries) { sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); break; } else { dev_info(sfp->dev, "no PHY detected\n"); } } else if (ret) { sfp_sm_next(sfp, SFP_S_FAIL, 0); break; } if (sfp_module_start(sfp->sfp_bus)) { sfp_sm_next(sfp, SFP_S_FAIL, 0); break; } sfp_sm_link_check_los(sfp); /* Reset the fault retry count */ sfp->sm_fault_retries = N_FAULT; break; case SFP_S_INIT_TX_FAULT: if (event == SFP_E_TIMEOUT) { sfp_module_tx_fault_reset(sfp); sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); } break; case SFP_S_WAIT_LOS: if (event == SFP_E_TX_FAULT) sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); else if (sfp_los_event_inactive(sfp, event)) sfp_sm_link_up(sfp); break; case SFP_S_LINK_UP: if (event == SFP_E_TX_FAULT) { sfp_sm_link_down(sfp); sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); } else if (sfp_los_event_active(sfp, event)) { sfp_sm_link_down(sfp); sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); } break; case SFP_S_TX_FAULT: if (event == SFP_E_TIMEOUT) { sfp_module_tx_fault_reset(sfp); sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); } break; case SFP_S_REINIT: if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { dev_info(sfp->dev, "module transmit fault recovered\n"); sfp_sm_link_check_los(sfp); } break; case SFP_S_TX_DISABLE: break; } } static void sfp_sm_event(struct sfp *sfp, unsigned int event) { mutex_lock(&sfp->sm_mutex); dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", mod_state_to_str(sfp->sm_mod_state), dev_state_to_str(sfp->sm_dev_state), sm_state_to_str(sfp->sm_state), event_to_str(event)); sfp_sm_device(sfp, event); sfp_sm_module(sfp, event); sfp_sm_main(sfp, event); dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", mod_state_to_str(sfp->sm_mod_state), dev_state_to_str(sfp->sm_dev_state), sm_state_to_str(sfp->sm_state)); mutex_unlock(&sfp->sm_mutex); } static void sfp_attach(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_ATTACH); } static void sfp_detach(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_DETACH); } static void sfp_start(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_UP); } static void sfp_stop(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_DOWN); } static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) { /* locking... and check module is present */ if (sfp->id.ext.sff8472_compliance && !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { modinfo->type = ETH_MODULE_SFF_8472; modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; } else { modinfo->type = ETH_MODULE_SFF_8079; modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; } return 0; } static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, u8 *data) { unsigned int first, last, len; int ret; if (ee->len == 0) return -EINVAL; first = ee->offset; last = ee->offset + ee->len; if (first < ETH_MODULE_SFF_8079_LEN) { len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); len -= first; ret = sfp_read(sfp, false, first, data, len); if (ret < 0) return ret; first += len; data += len; } if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); len -= first; first -= ETH_MODULE_SFF_8079_LEN; ret = sfp_read(sfp, true, first, data, len); if (ret < 0) return ret; } return 0; } static const struct sfp_socket_ops sfp_module_ops = { .attach = sfp_attach, .detach = sfp_detach, .start = sfp_start, .stop = sfp_stop, .module_info = sfp_module_info, .module_eeprom = sfp_module_eeprom, }; static void sfp_timeout(struct work_struct *work) { struct sfp *sfp = container_of(work, struct sfp, timeout.work); rtnl_lock(); sfp_sm_event(sfp, SFP_E_TIMEOUT); rtnl_unlock(); } static void sfp_check_state(struct sfp *sfp) { unsigned int state, i, changed; mutex_lock(&sfp->st_mutex); state = sfp_get_state(sfp); changed = state ^ sfp->state; changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; for (i = 0; i < GPIO_MAX; i++) if (changed & BIT(i)) dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], !!(sfp->state & BIT(i)), !!(state & BIT(i))); state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); sfp->state = state; rtnl_lock(); if (changed & SFP_F_PRESENT) sfp_sm_event(sfp, state & SFP_F_PRESENT ? SFP_E_INSERT : SFP_E_REMOVE); if (changed & SFP_F_TX_FAULT) sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? SFP_E_TX_FAULT : SFP_E_TX_CLEAR); if (changed & SFP_F_LOS) sfp_sm_event(sfp, state & SFP_F_LOS ? SFP_E_LOS_HIGH : SFP_E_LOS_LOW); rtnl_unlock(); mutex_unlock(&sfp->st_mutex); } static irqreturn_t sfp_irq(int irq, void *data) { struct sfp *sfp = data; sfp_check_state(sfp); return IRQ_HANDLED; } static void sfp_poll(struct work_struct *work) { struct sfp *sfp = container_of(work, struct sfp, poll.work); sfp_check_state(sfp); if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || sfp->need_poll) mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); } static struct sfp *sfp_alloc(struct device *dev) { struct sfp *sfp; sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); if (!sfp) return ERR_PTR(-ENOMEM); sfp->dev = dev; mutex_init(&sfp->sm_mutex); mutex_init(&sfp->st_mutex); INIT_DELAYED_WORK(&sfp->poll, sfp_poll); INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); sfp_hwmon_init(sfp); return sfp; } static void sfp_cleanup(void *data) { struct sfp *sfp = data; sfp_hwmon_exit(sfp); cancel_delayed_work_sync(&sfp->poll); cancel_delayed_work_sync(&sfp->timeout); if (sfp->i2c_mii) { mdiobus_unregister(sfp->i2c_mii); mdiobus_free(sfp->i2c_mii); } if (sfp->i2c) i2c_put_adapter(sfp->i2c); kfree(sfp); } static int sfp_probe(struct platform_device *pdev) { const struct sff_data *sff; struct i2c_adapter *i2c; char *sfp_irq_name; struct sfp *sfp; int err, i; sfp = sfp_alloc(&pdev->dev); if (IS_ERR(sfp)) return PTR_ERR(sfp); platform_set_drvdata(pdev, sfp); err = devm_add_action(sfp->dev, sfp_cleanup, sfp); if (err < 0) return err; sff = sfp->type = &sfp_data; if (pdev->dev.of_node) { struct device_node *node = pdev->dev.of_node; const struct of_device_id *id; struct device_node *np; id = of_match_node(sfp_of_match, node); if (WARN_ON(!id)) return -EINVAL; sff = sfp->type = id->data; np = of_parse_phandle(node, "i2c-bus", 0); if (!np) { dev_err(sfp->dev, "missing 'i2c-bus' property\n"); return -ENODEV; } i2c = of_find_i2c_adapter_by_node(np); of_node_put(np); } else if (has_acpi_companion(&pdev->dev)) { struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); struct fwnode_handle *fw = acpi_fwnode_handle(adev); struct fwnode_reference_args args; struct acpi_handle *acpi_handle; int ret; ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); if (ret || !is_acpi_device_node(args.fwnode)) { dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); return -ENODEV; } acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); } else { return -EINVAL; } if (!i2c) return -EPROBE_DEFER; err = sfp_i2c_configure(sfp, i2c); if (err < 0) { i2c_put_adapter(i2c); return err; } for (i = 0; i < GPIO_MAX; i++) if (sff->gpios & BIT(i)) { sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, gpio_of_names[i], gpio_flags[i]); if (IS_ERR(sfp->gpio[i])) return PTR_ERR(sfp->gpio[i]); } sfp->get_state = sfp_gpio_get_state; sfp->set_state = sfp_gpio_set_state; /* Modules that have no detect signal are always present */ if (!(sfp->gpio[GPIO_MODDEF0])) sfp->get_state = sff_gpio_get_state; device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", &sfp->max_power_mW); if (!sfp->max_power_mW) sfp->max_power_mW = 1000; dev_info(sfp->dev, "Host maximum power %u.%uW\n", sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); /* Get the initial state, and always signal TX disable, * since the network interface will not be up. */ sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; if (sfp->gpio[GPIO_RATE_SELECT] && gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) sfp->state |= SFP_F_RATE_SELECT; sfp_set_state(sfp, sfp->state); sfp_module_tx_disable(sfp); if (sfp->state & SFP_F_PRESENT) { rtnl_lock(); sfp_sm_event(sfp, SFP_E_INSERT); rtnl_unlock(); } for (i = 0; i < GPIO_MAX; i++) { if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) continue; sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); if (!sfp->gpio_irq[i]) { sfp->need_poll = true; continue; } sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, "%s-%s", dev_name(sfp->dev), gpio_of_names[i]); if (!sfp_irq_name) return -ENOMEM; err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], NULL, sfp_irq, IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, sfp_irq_name, sfp); if (err) { sfp->gpio_irq[i] = 0; sfp->need_poll = true; } } if (sfp->need_poll) mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); /* We could have an issue in cases no Tx disable pin is available or * wired as modules using a laser as their light source will continue to * be active when the fiber is removed. This could be a safety issue and * we should at least warn the user about that. */ if (!sfp->gpio[GPIO_TX_DISABLE]) dev_warn(sfp->dev, "No tx_disable pin: SFP modules will always be emitting.\n"); sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); if (!sfp->sfp_bus) return -ENOMEM; return 0; } static int sfp_remove(struct platform_device *pdev) { struct sfp *sfp = platform_get_drvdata(pdev); sfp_unregister_socket(sfp->sfp_bus); rtnl_lock(); sfp_sm_event(sfp, SFP_E_REMOVE); rtnl_unlock(); return 0; } static void sfp_shutdown(struct platform_device *pdev) { struct sfp *sfp = platform_get_drvdata(pdev); int i; for (i = 0; i < GPIO_MAX; i++) { if (!sfp->gpio_irq[i]) continue; devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); } cancel_delayed_work_sync(&sfp->poll); cancel_delayed_work_sync(&sfp->timeout); } static struct platform_driver sfp_driver = { .probe = sfp_probe, .remove = sfp_remove, .shutdown = sfp_shutdown, .driver = { .name = "sfp", .of_match_table = sfp_of_match, }, }; static int sfp_init(void) { poll_jiffies = msecs_to_jiffies(100); return platform_driver_register(&sfp_driver); } module_init(sfp_init); static void sfp_exit(void) { platform_driver_unregister(&sfp_driver); } module_exit(sfp_exit); MODULE_ALIAS("platform:sfp"); MODULE_AUTHOR("Russell King"); MODULE_LICENSE("GPL v2");