/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card. * * Copyright (C) 1999, 2000, 2001, 2003 Ralf Baechle * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc. * * References: * o IOC3 ASIC specification 4.51, 1996-04-18 * o IEEE 802.3 specification, 2000 edition * o DP38840A Specification, National Semiconductor, March 1997 * * To do: * * o Handle allocation failures in ioc3_alloc_skb() more gracefully. * o Handle allocation failures in ioc3_init_rings(). * o Use prefetching for large packets. What is a good lower limit for * prefetching? * o We're probably allocating a bit too much memory. * o Use hardware checksums. * o Convert to using a IOC3 meta driver. * o Which PHYs might possibly be attached to the IOC3 in real live, * which workarounds are required for them? Do we ever have Lucent's? * o For the 2.5 branch kill the mii-tool ioctls. */ #define IOC3_NAME "ioc3-eth" #define IOC3_VERSION "2.6.3-3" #include <linux/config.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/dma-mapping.h> #ifdef CONFIG_SERIAL_8250 #include <linux/serial_core.h> #include <linux/serial_8250.h> #endif #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <net/ip.h> #include <asm/byteorder.h> #include <asm/checksum.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/uaccess.h> #include <asm/sn/types.h> #include <asm/sn/sn0/addrs.h> #include <asm/sn/sn0/hubni.h> #include <asm/sn/sn0/hubio.h> #include <asm/sn/klconfig.h> #include <asm/sn/ioc3.h> #include <asm/sn/sn0/ip27.h> #include <asm/pci/bridge.h> /* * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The * value must be a power of two. */ #define RX_BUFFS 64 #define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21) #define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21) /* Private per NIC data of the driver. */ struct ioc3_private { struct ioc3 *regs; unsigned long *rxr; /* pointer to receiver ring */ struct ioc3_etxd *txr; struct sk_buff *rx_skbs[512]; struct sk_buff *tx_skbs[128]; struct net_device_stats stats; int rx_ci; /* RX consumer index */ int rx_pi; /* RX producer index */ int tx_ci; /* TX consumer index */ int tx_pi; /* TX producer index */ int txqlen; u32 emcr, ehar_h, ehar_l; spinlock_t ioc3_lock; struct mii_if_info mii; struct pci_dev *pdev; /* Members used by autonegotiation */ struct timer_list ioc3_timer; }; static inline struct net_device *priv_netdev(struct ioc3_private *dev) { return (void *)dev - ((sizeof(struct net_device) + 31) & ~31); } static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static void ioc3_set_multicast_list(struct net_device *dev); static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev); static void ioc3_timeout(struct net_device *dev); static inline unsigned int ioc3_hash(const unsigned char *addr); static inline void ioc3_stop(struct ioc3_private *ip); static void ioc3_init(struct net_device *dev); static const char ioc3_str[] = "IOC3 Ethernet"; static struct ethtool_ops ioc3_ethtool_ops; /* We use this to acquire receive skb's that we can DMA directly into. */ #define IOC3_CACHELINE 128UL static inline unsigned long aligned_rx_skb_addr(unsigned long addr) { return (~addr + 1) & (IOC3_CACHELINE - 1UL); } static inline struct sk_buff * ioc3_alloc_skb(unsigned long length, unsigned int gfp_mask) { struct sk_buff *skb; skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask); if (likely(skb)) { int offset = aligned_rx_skb_addr((unsigned long) skb->data); if (offset) skb_reserve(skb, offset); } return skb; } static inline unsigned long ioc3_map(void *ptr, unsigned long vdev) { #ifdef CONFIG_SGI_IP27 vdev <<= 58; /* Shift to PCI64_ATTR_VIRTUAL */ return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF | ((unsigned long)ptr & TO_PHYS_MASK); #else return virt_to_bus(ptr); #endif } /* BEWARE: The IOC3 documentation documents the size of rx buffers as 1644 while it's actually 1664. This one was nasty to track down ... */ #define RX_OFFSET 10 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE) /* DMA barrier to separate cached and uncached accesses. */ #define BARRIER() \ __asm__("sync" ::: "memory") #define IOC3_SIZE 0x100000 /* * IOC3 is a big endian device * * Unorthodox but makes the users of these macros more readable - the pointer * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3 * in the environment. */ #define ioc3_r_mcr() be32_to_cpu(ioc3->mcr) #define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0) #define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0) #define ioc3_r_emcr() be32_to_cpu(ioc3->emcr) #define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0) #define ioc3_r_eisr() be32_to_cpu(ioc3->eisr) #define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0) #define ioc3_r_eier() be32_to_cpu(ioc3->eier) #define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0) #define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr) #define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0) #define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h) #define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0) #define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l) #define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0) #define ioc3_r_erbar() be32_to_cpu(ioc3->erbar) #define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0) #define ioc3_r_ercir() be32_to_cpu(ioc3->ercir) #define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0) #define ioc3_r_erpir() be32_to_cpu(ioc3->erpir) #define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0) #define ioc3_r_ertr() be32_to_cpu(ioc3->ertr) #define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0) #define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr) #define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0) #define ioc3_r_ersr() be32_to_cpu(ioc3->ersr) #define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0) #define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc) #define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0) #define ioc3_r_ebir() be32_to_cpu(ioc3->ebir) #define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0) #define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h) #define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0) #define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l) #define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0) #define ioc3_r_etcir() be32_to_cpu(ioc3->etcir) #define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0) #define ioc3_r_etpir() be32_to_cpu(ioc3->etpir) #define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0) #define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h) #define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0) #define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l) #define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0) #define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h) #define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0) #define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l) #define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0) #define ioc3_r_micr() be32_to_cpu(ioc3->micr) #define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0) #define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r) #define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0) #define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w) #define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0) static inline u32 mcr_pack(u32 pulse, u32 sample) { return (pulse << 10) | (sample << 2); } static int nic_wait(struct ioc3 *ioc3) { u32 mcr; do { mcr = ioc3_r_mcr(); } while (!(mcr & 2)); return mcr & 1; } static int nic_reset(struct ioc3 *ioc3) { int presence; ioc3_w_mcr(mcr_pack(500, 65)); presence = nic_wait(ioc3); ioc3_w_mcr(mcr_pack(0, 500)); nic_wait(ioc3); return presence; } static inline int nic_read_bit(struct ioc3 *ioc3) { int result; ioc3_w_mcr(mcr_pack(6, 13)); result = nic_wait(ioc3); ioc3_w_mcr(mcr_pack(0, 100)); nic_wait(ioc3); return result; } static inline void nic_write_bit(struct ioc3 *ioc3, int bit) { if (bit) ioc3_w_mcr(mcr_pack(6, 110)); else ioc3_w_mcr(mcr_pack(80, 30)); nic_wait(ioc3); } /* * Read a byte from an iButton device */ static u32 nic_read_byte(struct ioc3 *ioc3) { u32 result = 0; int i; for (i = 0; i < 8; i++) result = (result >> 1) | (nic_read_bit(ioc3) << 7); return result; } /* * Write a byte to an iButton device */ static void nic_write_byte(struct ioc3 *ioc3, int byte) { int i, bit; for (i = 8; i; i--) { bit = byte & 1; byte >>= 1; nic_write_bit(ioc3, bit); } } static u64 nic_find(struct ioc3 *ioc3, int *last) { int a, b, index, disc; u64 address = 0; nic_reset(ioc3); /* Search ROM. */ nic_write_byte(ioc3, 0xf0); /* Algorithm from ``Book of iButton Standards''. */ for (index = 0, disc = 0; index < 64; index++) { a = nic_read_bit(ioc3); b = nic_read_bit(ioc3); if (a && b) { printk("NIC search failed (not fatal).\n"); *last = 0; return 0; } if (!a && !b) { if (index == *last) { address |= 1UL << index; } else if (index > *last) { address &= ~(1UL << index); disc = index; } else if ((address & (1UL << index)) == 0) disc = index; nic_write_bit(ioc3, address & (1UL << index)); continue; } else { if (a) address |= 1UL << index; else address &= ~(1UL << index); nic_write_bit(ioc3, a); continue; } } *last = disc; return address; } static int nic_init(struct ioc3 *ioc3) { const char *type; u8 crc; u8 serial[6]; int save = 0, i; type = "unknown"; while (1) { u64 reg; reg = nic_find(ioc3, &save); switch (reg & 0xff) { case 0x91: type = "DS1981U"; break; default: if (save == 0) { /* Let the caller try again. */ return -1; } continue; } nic_reset(ioc3); /* Match ROM. */ nic_write_byte(ioc3, 0x55); for (i = 0; i < 8; i++) nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff); reg >>= 8; /* Shift out type. */ for (i = 0; i < 6; i++) { serial[i] = reg & 0xff; reg >>= 8; } crc = reg & 0xff; break; } printk("Found %s NIC", type); if (type != "unknown") { printk (" registration number %02x:%02x:%02x:%02x:%02x:%02x," " CRC %02x", serial[0], serial[1], serial[2], serial[3], serial[4], serial[5], crc); } printk(".\n"); return 0; } /* * Read the NIC (Number-In-a-Can) device used to store the MAC address on * SN0 / SN00 nodeboards and PCI cards. */ static void ioc3_get_eaddr_nic(struct ioc3_private *ip) { struct ioc3 *ioc3 = ip->regs; u8 nic[14]; int tries = 2; /* There may be some problem with the battery? */ int i; ioc3_w_gpcr_s(1 << 21); while (tries--) { if (!nic_init(ioc3)) break; udelay(500); } if (tries < 0) { printk("Failed to read MAC address\n"); return; } /* Read Memory. */ nic_write_byte(ioc3, 0xf0); nic_write_byte(ioc3, 0x00); nic_write_byte(ioc3, 0x00); for (i = 13; i >= 0; i--) nic[i] = nic_read_byte(ioc3); for (i = 2; i < 8; i++) priv_netdev(ip)->dev_addr[i - 2] = nic[i]; } /* * Ok, this is hosed by design. It's necessary to know what machine the * NIC is in in order to know how to read the NIC address. We also have * to know if it's a PCI card or a NIC in on the node board ... */ static void ioc3_get_eaddr(struct ioc3_private *ip) { int i; ioc3_get_eaddr_nic(ip); printk("Ethernet address is "); for (i = 0; i < 6; i++) { printk("%02x", priv_netdev(ip)->dev_addr[i]); if (i < 5) printk(":"); } printk(".\n"); } static void __ioc3_set_mac_address(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]); ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) | (dev->dev_addr[1] << 8) | dev->dev_addr[0]); } static int ioc3_set_mac_address(struct net_device *dev, void *addr) { struct ioc3_private *ip = netdev_priv(dev); struct sockaddr *sa = addr; memcpy(dev->dev_addr, sa->sa_data, dev->addr_len); spin_lock_irq(&ip->ioc3_lock); __ioc3_set_mac_address(dev); spin_unlock_irq(&ip->ioc3_lock); return 0; } /* * Caller must hold the ioc3_lock ever for MII readers. This is also * used to protect the transmitter side but it's low contention. */ static int ioc3_mdio_read(struct net_device *dev, int phy, int reg) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; while (ioc3_r_micr() & MICR_BUSY); ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG); while (ioc3_r_micr() & MICR_BUSY); return ioc3_r_midr_r() & MIDR_DATA_MASK; } static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; while (ioc3_r_micr() & MICR_BUSY); ioc3_w_midr_w(data); ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg); while (ioc3_r_micr() & MICR_BUSY); } static int ioc3_mii_init(struct ioc3_private *ip); static struct net_device_stats *ioc3_get_stats(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; ip->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK); return &ip->stats; } #ifdef CONFIG_SGI_IOC3_ETH_HW_RX_CSUM static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len) { struct ethhdr *eh = eth_hdr(skb); uint32_t csum, ehsum; unsigned int proto; struct iphdr *ih; uint16_t *ew; unsigned char *cp; /* * Did hardware handle the checksum at all? The cases we can handle * are: * * - TCP and UDP checksums of IPv4 only. * - IPv6 would be doable but we keep that for later ... * - Only unfragmented packets. Did somebody already tell you * fragmentation is evil? * - don't care about packet size. Worst case when processing a * malformed packet we'll try to access the packet at ip header + * 64 bytes which is still inside the skb. Even in the unlikely * case where the checksum is right the higher layers will still * drop the packet as appropriate. */ if (eh->h_proto != ntohs(ETH_P_IP)) return; ih = (struct iphdr *) ((char *)eh + ETH_HLEN); if (ih->frag_off & htons(IP_MF | IP_OFFSET)) return; proto = ih->protocol; if (proto != IPPROTO_TCP && proto != IPPROTO_UDP) return; /* Same as tx - compute csum of pseudo header */ csum = hwsum + (ih->tot_len - (ih->ihl << 2)) + htons((uint16_t)ih->protocol) + (ih->saddr >> 16) + (ih->saddr & 0xffff) + (ih->daddr >> 16) + (ih->daddr & 0xffff); /* Sum up ethernet dest addr, src addr and protocol */ ew = (uint16_t *) eh; ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6]; ehsum = (ehsum & 0xffff) + (ehsum >> 16); ehsum = (ehsum & 0xffff) + (ehsum >> 16); csum += 0xffff ^ ehsum; /* In the next step we also subtract the 1's complement checksum of the trailing ethernet CRC. */ cp = (char *)eh + len; /* points at trailing CRC */ if (len & 1) { csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]); csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]); } else { csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]); csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]); } csum = (csum & 0xffff) + (csum >> 16); csum = (csum & 0xffff) + (csum >> 16); if (csum == 0xffff) skb->ip_summed = CHECKSUM_UNNECESSARY; } #endif /* CONFIG_SGI_IOC3_ETH_HW_RX_CSUM */ static inline void ioc3_rx(struct ioc3_private *ip) { struct sk_buff *skb, *new_skb; struct ioc3 *ioc3 = ip->regs; int rx_entry, n_entry, len; struct ioc3_erxbuf *rxb; unsigned long *rxr; u32 w0, err; rxr = (unsigned long *) ip->rxr; /* Ring base */ rx_entry = ip->rx_ci; /* RX consume index */ n_entry = ip->rx_pi; skb = ip->rx_skbs[rx_entry]; rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET); w0 = be32_to_cpu(rxb->w0); while (w0 & ERXBUF_V) { err = be32_to_cpu(rxb->err); /* It's valid ... */ if (err & ERXBUF_GOODPKT) { len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4; skb_trim(skb, len); skb->protocol = eth_type_trans(skb, priv_netdev(ip)); new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (!new_skb) { /* Ouch, drop packet and just recycle packet to keep the ring filled. */ ip->stats.rx_dropped++; new_skb = skb; goto next; } #ifdef CONFIG_SGI_IOC3_ETH_HW_RX_CSUM ioc3_tcpudp_checksum(skb, w0 & ERXBUF_IPCKSUM_MASK,len); #endif netif_rx(skb); ip->rx_skbs[rx_entry] = NULL; /* Poison */ new_skb->dev = priv_netdev(ip); /* Because we reserve afterwards. */ skb_put(new_skb, (1664 + RX_OFFSET)); rxb = (struct ioc3_erxbuf *) new_skb->data; skb_reserve(new_skb, RX_OFFSET); priv_netdev(ip)->last_rx = jiffies; ip->stats.rx_packets++; /* Statistics */ ip->stats.rx_bytes += len; } else { /* The frame is invalid and the skb never reached the network layer so we can just recycle it. */ new_skb = skb; ip->stats.rx_errors++; } if (err & ERXBUF_CRCERR) /* Statistics */ ip->stats.rx_crc_errors++; if (err & ERXBUF_FRAMERR) ip->stats.rx_frame_errors++; next: ip->rx_skbs[n_entry] = new_skb; rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1)); rxb->w0 = 0; /* Clear valid flag */ n_entry = (n_entry + 1) & 511; /* Update erpir */ /* Now go on to the next ring entry. */ rx_entry = (rx_entry + 1) & 511; skb = ip->rx_skbs[rx_entry]; rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET); w0 = be32_to_cpu(rxb->w0); } ioc3_w_erpir((n_entry << 3) | ERPIR_ARM); ip->rx_pi = n_entry; ip->rx_ci = rx_entry; } static inline void ioc3_tx(struct ioc3_private *ip) { unsigned long packets, bytes; struct ioc3 *ioc3 = ip->regs; int tx_entry, o_entry; struct sk_buff *skb; u32 etcir; spin_lock(&ip->ioc3_lock); etcir = ioc3_r_etcir(); tx_entry = (etcir >> 7) & 127; o_entry = ip->tx_ci; packets = 0; bytes = 0; while (o_entry != tx_entry) { packets++; skb = ip->tx_skbs[o_entry]; bytes += skb->len; dev_kfree_skb_irq(skb); ip->tx_skbs[o_entry] = NULL; o_entry = (o_entry + 1) & 127; /* Next */ etcir = ioc3_r_etcir(); /* More pkts sent? */ tx_entry = (etcir >> 7) & 127; } ip->stats.tx_packets += packets; ip->stats.tx_bytes += bytes; ip->txqlen -= packets; if (ip->txqlen < 128) netif_wake_queue(priv_netdev(ip)); ip->tx_ci = o_entry; spin_unlock(&ip->ioc3_lock); } /* * Deal with fatal IOC3 errors. This condition might be caused by a hard or * software problems, so we should try to recover * more gracefully if this ever happens. In theory we might be flooded * with such error interrupts if something really goes wrong, so we might * also consider to take the interface down. */ static void ioc3_error(struct ioc3_private *ip, u32 eisr) { struct net_device *dev = priv_netdev(ip); unsigned char *iface = dev->name; spin_lock(&ip->ioc3_lock); if (eisr & EISR_RXOFLO) printk(KERN_ERR "%s: RX overflow.\n", iface); if (eisr & EISR_RXBUFOFLO) printk(KERN_ERR "%s: RX buffer overflow.\n", iface); if (eisr & EISR_RXMEMERR) printk(KERN_ERR "%s: RX PCI error.\n", iface); if (eisr & EISR_RXPARERR) printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface); if (eisr & EISR_TXBUFUFLO) printk(KERN_ERR "%s: TX buffer underflow.\n", iface); if (eisr & EISR_TXMEMERR) printk(KERN_ERR "%s: TX PCI error.\n", iface); ioc3_stop(ip); ioc3_init(dev); ioc3_mii_init(ip); netif_wake_queue(dev); spin_unlock(&ip->ioc3_lock); } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static irqreturn_t ioc3_interrupt(int irq, void *_dev, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)_dev; struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXEXPLICIT | EISR_TXMEMERR; u32 eisr; eisr = ioc3_r_eisr() & enabled; ioc3_w_eisr(eisr); (void) ioc3_r_eisr(); /* Flush */ if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR)) ioc3_error(ip, eisr); if (eisr & EISR_RXTIMERINT) ioc3_rx(ip); if (eisr & EISR_TXEXPLICIT) ioc3_tx(ip); return IRQ_HANDLED; } static inline void ioc3_setup_duplex(struct ioc3_private *ip) { struct ioc3 *ioc3 = ip->regs; if (ip->mii.full_duplex) { ioc3_w_etcsr(ETCSR_FD); ip->emcr |= EMCR_DUPLEX; } else { ioc3_w_etcsr(ETCSR_HD); ip->emcr &= ~EMCR_DUPLEX; } ioc3_w_emcr(ip->emcr); } static void ioc3_timer(unsigned long data) { struct ioc3_private *ip = (struct ioc3_private *) data; /* Print the link status if it has changed */ mii_check_media(&ip->mii, 1, 0); ioc3_setup_duplex(ip); ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */ add_timer(&ip->ioc3_timer); } /* * Try to find a PHY. There is no apparent relation between the MII addresses * in the SGI documentation and what we find in reality, so we simply probe * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my * onboard IOC3s has the special oddity that probing doesn't seem to find it * yet the interface seems to work fine, so if probing fails we for now will * simply default to PHY 31 instead of bailing out. */ static int ioc3_mii_init(struct ioc3_private *ip) { struct net_device *dev = priv_netdev(ip); int i, found = 0, res = 0; int ioc3_phy_workaround = 1; u16 word; for (i = 0; i < 32; i++) { word = ioc3_mdio_read(dev, i, MII_PHYSID1); if (word != 0xffff && word != 0x0000) { found = 1; break; /* Found a PHY */ } } if (!found) { if (ioc3_phy_workaround) i = 31; else { ip->mii.phy_id = -1; res = -ENODEV; goto out; } } ip->mii.phy_id = i; ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ ip->ioc3_timer.data = (unsigned long) ip; ip->ioc3_timer.function = &ioc3_timer; add_timer(&ip->ioc3_timer); out: return res; } static inline void ioc3_clean_rx_ring(struct ioc3_private *ip) { struct sk_buff *skb; int i; for (i = ip->rx_ci; i & 15; i++) { ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci]; ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++]; } ip->rx_pi &= 511; ip->rx_ci &= 511; for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) { struct ioc3_erxbuf *rxb; skb = ip->rx_skbs[i]; rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET); rxb->w0 = 0; } } static inline void ioc3_clean_tx_ring(struct ioc3_private *ip) { struct sk_buff *skb; int i; for (i=0; i < 128; i++) { skb = ip->tx_skbs[i]; if (skb) { ip->tx_skbs[i] = NULL; dev_kfree_skb_any(skb); } ip->txr[i].cmd = 0; } ip->tx_pi = 0; ip->tx_ci = 0; } static void ioc3_free_rings(struct ioc3_private *ip) { struct sk_buff *skb; int rx_entry, n_entry; if (ip->txr) { ioc3_clean_tx_ring(ip); free_pages((unsigned long)ip->txr, 2); ip->txr = NULL; } if (ip->rxr) { n_entry = ip->rx_ci; rx_entry = ip->rx_pi; while (n_entry != rx_entry) { skb = ip->rx_skbs[n_entry]; if (skb) dev_kfree_skb_any(skb); n_entry = (n_entry + 1) & 511; } free_page((unsigned long)ip->rxr); ip->rxr = NULL; } } static void ioc3_alloc_rings(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_erxbuf *rxb; unsigned long *rxr; int i; if (ip->rxr == NULL) { /* Allocate and initialize rx ring. 4kb = 512 entries */ ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC); rxr = (unsigned long *) ip->rxr; if (!rxr) printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n"); /* Now the rx buffers. The RX ring may be larger but we only allocate 16 buffers for now. Need to tune this for performance and memory later. */ for (i = 0; i < RX_BUFFS; i++) { struct sk_buff *skb; skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (!skb) { show_free_areas(); continue; } ip->rx_skbs[i] = skb; skb->dev = dev; /* Because we reserve afterwards. */ skb_put(skb, (1664 + RX_OFFSET)); rxb = (struct ioc3_erxbuf *) skb->data; rxr[i] = cpu_to_be64(ioc3_map(rxb, 1)); skb_reserve(skb, RX_OFFSET); } ip->rx_ci = 0; ip->rx_pi = RX_BUFFS; } if (ip->txr == NULL) { /* Allocate and initialize tx rings. 16kb = 128 bufs. */ ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2); if (!ip->txr) printk("ioc3_alloc_rings(): __get_free_pages() failed!\n"); ip->tx_pi = 0; ip->tx_ci = 0; } } static void ioc3_init_rings(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; unsigned long ring; ioc3_free_rings(ip); ioc3_alloc_rings(dev); ioc3_clean_rx_ring(ip); ioc3_clean_tx_ring(ip); /* Now the rx ring base, consume & produce registers. */ ring = ioc3_map(ip->rxr, 0); ioc3_w_erbr_h(ring >> 32); ioc3_w_erbr_l(ring & 0xffffffff); ioc3_w_ercir(ip->rx_ci << 3); ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM); ring = ioc3_map(ip->txr, 0); ip->txqlen = 0; /* nothing queued */ /* Now the tx ring base, consume & produce registers. */ ioc3_w_etbr_h(ring >> 32); ioc3_w_etbr_l(ring & 0xffffffff); ioc3_w_etpir(ip->tx_pi << 7); ioc3_w_etcir(ip->tx_ci << 7); (void) ioc3_r_etcir(); /* Flush */ } static inline void ioc3_ssram_disc(struct ioc3_private *ip) { struct ioc3 *ioc3 = ip->regs; volatile u32 *ssram0 = &ioc3->ssram[0x0000]; volatile u32 *ssram1 = &ioc3->ssram[0x4000]; unsigned int pattern = 0x5555; /* Assume the larger size SSRAM and enable parity checking */ ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR)); *ssram0 = pattern; *ssram1 = ~pattern & IOC3_SSRAM_DM; if ((*ssram0 & IOC3_SSRAM_DM) != pattern || (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) { /* set ssram size to 64 KB */ ip->emcr = EMCR_RAMPAR; ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ); } else ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR; } static void ioc3_init(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; del_timer(&ip->ioc3_timer); /* Kill if running */ ioc3_w_emcr(EMCR_RST); /* Reset */ (void) ioc3_r_emcr(); /* Flush WB */ udelay(4); /* Give it time ... */ ioc3_w_emcr(0); (void) ioc3_r_emcr(); /* Misc registers */ #ifdef CONFIG_SGI_IP27 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */ #else ioc3_w_erbar(0); /* Let PCI API get it right */ #endif (void) ioc3_r_etcdc(); /* Clear on read */ ioc3_w_ercsr(15); /* RX low watermark */ ioc3_w_ertr(0); /* Interrupt immediately */ __ioc3_set_mac_address(dev); ioc3_w_ehar_h(ip->ehar_h); ioc3_w_ehar_l(ip->ehar_l); ioc3_w_ersr(42); /* XXX should be random */ ioc3_init_rings(dev); ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN | EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN; ioc3_w_emcr(ip->emcr); ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXEXPLICIT | EISR_TXMEMERR); (void) ioc3_r_eier(); } static inline void ioc3_stop(struct ioc3_private *ip) { struct ioc3 *ioc3 = ip->regs; ioc3_w_emcr(0); /* Shutup */ ioc3_w_eier(0); /* Disable interrupts */ (void) ioc3_r_eier(); /* Flush */ } static int ioc3_open(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); if (request_irq(dev->irq, ioc3_interrupt, SA_SHIRQ, ioc3_str, dev)) { printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq); return -EAGAIN; } ip->ehar_h = 0; ip->ehar_l = 0; ioc3_init(dev); netif_start_queue(dev); return 0; } static int ioc3_close(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); del_timer(&ip->ioc3_timer); netif_stop_queue(dev); ioc3_stop(ip); free_irq(dev->irq, dev); ioc3_free_rings(ip); return 0; } /* * MENET cards have four IOC3 chips, which are attached to two sets of * PCI slot resources each: the primary connections are on slots * 0..3 and the secondaries are on 4..7 * * All four ethernets are brought out to connectors; six serial ports * (a pair from each of the first three IOC3s) are brought out to * MiniDINs; all other subdevices are left swinging in the wind, leave * them disabled. */ static inline int ioc3_is_menet(struct pci_dev *pdev) { struct pci_dev *dev; return pdev->bus->parent == NULL && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(0, 0))) && dev->vendor == PCI_VENDOR_ID_SGI && dev->device == PCI_DEVICE_ID_SGI_IOC3 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(1, 0))) && dev->vendor == PCI_VENDOR_ID_SGI && dev->device == PCI_DEVICE_ID_SGI_IOC3 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(2, 0))) && dev->vendor == PCI_VENDOR_ID_SGI && dev->device == PCI_DEVICE_ID_SGI_IOC3; } #ifdef CONFIG_SERIAL_8250 /* * Note about serial ports and consoles: * For console output, everyone uses the IOC3 UARTA (offset 0x178) * connected to the master node (look in ip27_setup_console() and * ip27prom_console_write()). * * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port * addresses on a partitioned machine. Since we currently use the ioc3 * serial ports, we use dynamic serial port discovery that the serial.c * driver uses for pci/pnp ports (there is an entry for the SGI ioc3 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater * than UARTB's, although UARTA on o200s has traditionally been known as * port 0. So, we just use one serial port from each ioc3 (since the * serial driver adds addresses to get to higher ports). * * The first one to do a register_console becomes the preferred console * (if there is no kernel command line console= directive). /dev/console * (ie 5, 1) is then "aliased" into the device number returned by the * "device" routine referred to in this console structure * (ip27prom_console_dev). * * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working * around ioc3 oddities in this respect. * * The IOC3 serials use a 22MHz clock rate with an additional divider by 3. */ static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3) { struct uart_port port; /* * We need to recognice and treat the fourth MENET serial as it * does not have an SuperIO chip attached to it, therefore attempting * to access it will result in bus errors. We call something an * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3 * in it. This is paranoid but we want to avoid blowing up on a * showhorn PCI box that happens to have 4 IOC3 cards in it so it's * not paranoid enough ... */ if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3) return; /* * Register to interrupt zero because we share the interrupt with * the serial driver which we don't properly support yet. * * Can't use UPF_IOREMAP as the whole of IOC3 resources have already * been registered. */ memset(&port, 0, sizeof(port)); port.irq = 0; port.flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF; port.iotype = UPIO_MEM; port.regshift = 0; port.uartclk = 22000000 / 3; port.membase = (unsigned char *) &ioc3->sregs.uarta; serial8250_register_port(&port); port.membase = (unsigned char *) &ioc3->sregs.uartb; serial8250_register_port(&port); } #endif static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { unsigned int sw_physid1, sw_physid2; struct net_device *dev = NULL; struct ioc3_private *ip; struct ioc3 *ioc3; unsigned long ioc3_base, ioc3_size; u32 vendor, model, rev; int err, pci_using_dac; /* Configure DMA attributes. */ err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); if (!err) { pci_using_dac = 1; err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); if (err < 0) { printk(KERN_ERR "%s: Unable to obtain 64 bit DMA " "for consistent allocations\n", pci_name(pdev)); goto out; } } else { err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (err) { printk(KERN_ERR "%s: No usable DMA configuration, " "aborting.\n", pci_name(pdev)); goto out; } pci_using_dac = 0; } if (pci_enable_device(pdev)) return -ENODEV; dev = alloc_etherdev(sizeof(struct ioc3_private)); if (!dev) { err = -ENOMEM; goto out_disable; } if (pci_using_dac) dev->features |= NETIF_F_HIGHDMA; err = pci_request_regions(pdev, "ioc3"); if (err) goto out_free; SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); ip = netdev_priv(dev); dev->irq = pdev->irq; ioc3_base = pci_resource_start(pdev, 0); ioc3_size = pci_resource_len(pdev, 0); ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size); if (!ioc3) { printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n", pci_name(pdev)); err = -ENOMEM; goto out_res; } ip->regs = ioc3; #ifdef CONFIG_SERIAL_8250 ioc3_serial_probe(pdev, ioc3); #endif spin_lock_init(&ip->ioc3_lock); init_timer(&ip->ioc3_timer); ioc3_stop(ip); ioc3_init(dev); ip->pdev = pdev; ip->mii.phy_id_mask = 0x1f; ip->mii.reg_num_mask = 0x1f; ip->mii.dev = dev; ip->mii.mdio_read = ioc3_mdio_read; ip->mii.mdio_write = ioc3_mdio_write; ioc3_mii_init(ip); if (ip->mii.phy_id == -1) { printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n", pci_name(pdev)); err = -ENODEV; goto out_stop; } ioc3_ssram_disc(ip); ioc3_get_eaddr(ip); /* The IOC3-specific entries in the device structure. */ dev->open = ioc3_open; dev->hard_start_xmit = ioc3_start_xmit; dev->tx_timeout = ioc3_timeout; dev->watchdog_timeo = 5 * HZ; dev->stop = ioc3_close; dev->get_stats = ioc3_get_stats; dev->do_ioctl = ioc3_ioctl; dev->set_multicast_list = ioc3_set_multicast_list; dev->set_mac_address = ioc3_set_mac_address; dev->ethtool_ops = &ioc3_ethtool_ops; #ifdef CONFIG_SGI_IOC3_ETH_HW_TX_CSUM dev->features = NETIF_F_IP_CSUM; #endif sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1); sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2); err = register_netdev(dev); if (err) goto out_stop; mii_check_media(&ip->mii, 1, 1); ioc3_setup_duplex(ip); vendor = (sw_physid1 << 12) | (sw_physid2 >> 4); model = (sw_physid2 >> 4) & 0x3f; rev = sw_physid2 & 0xf; printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, " "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev); printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name, ip->emcr & EMCR_BUFSIZ ? 128 : 64); return 0; out_stop: ioc3_stop(ip); ioc3_free_rings(ip); out_res: pci_release_regions(pdev); out_free: free_netdev(dev); out_disable: /* * We should call pci_disable_device(pdev); here if the IOC3 wasn't * such a weird device ... */ out: return err; } static void __devexit ioc3_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; unregister_netdev(dev); iounmap(ioc3); pci_release_regions(pdev); free_netdev(dev); /* * We should call pci_disable_device(pdev); here if the IOC3 wasn't * such a weird device ... */ } static struct pci_device_id ioc3_pci_tbl[] = { { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID }, { 0 } }; MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl); static struct pci_driver ioc3_driver = { .name = "ioc3-eth", .id_table = ioc3_pci_tbl, .probe = ioc3_probe, .remove = __devexit_p(ioc3_remove_one), }; static int __init ioc3_init_module(void) { return pci_register_driver(&ioc3_driver); } static void __exit ioc3_cleanup_module(void) { pci_unregister_driver(&ioc3_driver); } static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned long data; struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; unsigned int len; struct ioc3_etxd *desc; uint32_t w0 = 0; int produce; #ifdef CONFIG_SGI_IOC3_ETH_HW_TX_CSUM /* * IOC3 has a fairly simple minded checksumming hardware which simply * adds up the 1's complement checksum for the entire packet and * inserts it at an offset which can be specified in the descriptor * into the transmit packet. This means we have to compensate for the * MAC header which should not be summed and the TCP/UDP pseudo headers * manually. */ if (skb->ip_summed == CHECKSUM_HW) { int proto = ntohs(skb->nh.iph->protocol); unsigned int csoff; struct iphdr *ih = skb->nh.iph; uint32_t csum, ehsum; uint16_t *eh; /* The MAC header. skb->mac seem the logic approach to find the MAC header - except it's a NULL pointer ... */ eh = (uint16_t *) skb->data; /* Sum up dest addr, src addr and protocol */ ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6]; /* Fold ehsum. can't use csum_fold which negates also ... */ ehsum = (ehsum & 0xffff) + (ehsum >> 16); ehsum = (ehsum & 0xffff) + (ehsum >> 16); /* Skip IP header; it's sum is always zero and was already filled in by ip_output.c */ csum = csum_tcpudp_nofold(ih->saddr, ih->daddr, ih->tot_len - (ih->ihl << 2), proto, 0xffff ^ ehsum); csum = (csum & 0xffff) + (csum >> 16); /* Fold again */ csum = (csum & 0xffff) + (csum >> 16); csoff = ETH_HLEN + (ih->ihl << 2); if (proto == IPPROTO_UDP) { csoff += offsetof(struct udphdr, check); skb->h.uh->check = csum; } if (proto == IPPROTO_TCP) { csoff += offsetof(struct tcphdr, check); skb->h.th->check = csum; } w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT); } #endif /* CONFIG_SGI_IOC3_ETH_HW_TX_CSUM */ spin_lock_irq(&ip->ioc3_lock); data = (unsigned long) skb->data; len = skb->len; produce = ip->tx_pi; desc = &ip->txr[produce]; if (len <= 104) { /* Short packet, let's copy it directly into the ring. */ memcpy(desc->data, skb->data, skb->len); if (len < ETH_ZLEN) { /* Very short packet, pad with zeros at the end. */ memset(desc->data + len, 0, ETH_ZLEN - len); len = ETH_ZLEN; } desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0); desc->bufcnt = cpu_to_be32(len); } else if ((data ^ (data + len - 1)) & 0x4000) { unsigned long b2 = (data | 0x3fffUL) + 1UL; unsigned long s1 = b2 - data; unsigned long s2 = data + len - b2; desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | ETXD_B2V | w0); desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) | (s2 << ETXD_B2CNT_SHIFT)); desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1)); desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1)); } else { /* Normal sized packet that doesn't cross a page boundary. */ desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0); desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT); desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1)); } BARRIER(); dev->trans_start = jiffies; ip->tx_skbs[produce] = skb; /* Remember skb */ produce = (produce + 1) & 127; ip->tx_pi = produce; ioc3_w_etpir(produce << 7); /* Fire ... */ ip->txqlen++; if (ip->txqlen >= 127) netif_stop_queue(dev); spin_unlock_irq(&ip->ioc3_lock); return 0; } static void ioc3_timeout(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); spin_lock_irq(&ip->ioc3_lock); ioc3_stop(ip); ioc3_init(dev); ioc3_mii_init(ip); spin_unlock_irq(&ip->ioc3_lock); netif_wake_queue(dev); } /* * Given a multicast ethernet address, this routine calculates the * address's bit index in the logical address filter mask */ static inline unsigned int ioc3_hash(const unsigned char *addr) { unsigned int temp = 0; u32 crc; int bits; crc = ether_crc_le(ETH_ALEN, addr); crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */ for (bits = 6; --bits >= 0; ) { temp <<= 1; temp |= (crc & 0x1); crc >>= 1; } return temp; } static void ioc3_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) { struct ioc3_private *ip = netdev_priv(dev); strcpy (info->driver, IOC3_NAME); strcpy (info->version, IOC3_VERSION); strcpy (info->bus_info, pci_name(ip->pdev)); } static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_ethtool_gset(&ip->mii, cmd); spin_unlock_irq(&ip->ioc3_lock); return rc; } static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_ethtool_sset(&ip->mii, cmd); spin_unlock_irq(&ip->ioc3_lock); return rc; } static int ioc3_nway_reset(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_nway_restart(&ip->mii); spin_unlock_irq(&ip->ioc3_lock); return rc; } static u32 ioc3_get_link(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_link_ok(&ip->mii); spin_unlock_irq(&ip->ioc3_lock); return rc; } static struct ethtool_ops ioc3_ethtool_ops = { .get_drvinfo = ioc3_get_drvinfo, .get_settings = ioc3_get_settings, .set_settings = ioc3_set_settings, .nway_reset = ioc3_nway_reset, .get_link = ioc3_get_link, }; static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL); spin_unlock_irq(&ip->ioc3_lock); return rc; } static void ioc3_set_multicast_list(struct net_device *dev) { struct dev_mc_list *dmi = dev->mc_list; struct ioc3_private *ip = netdev_priv(dev); struct ioc3 *ioc3 = ip->regs; u64 ehar = 0; int i; netif_stop_queue(dev); /* Lock out others. */ if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ /* Unconditionally log net taps. */ printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); ip->emcr |= EMCR_PROMISC; ioc3_w_emcr(ip->emcr); (void) ioc3_r_emcr(); } else { ip->emcr &= ~EMCR_PROMISC; ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */ (void) ioc3_r_emcr(); if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { /* Too many for hashing to make sense or we want all multicast packets anyway, so skip computing all the hashes and just accept all packets. */ ip->ehar_h = 0xffffffff; ip->ehar_l = 0xffffffff; } else { for (i = 0; i < dev->mc_count; i++) { char *addr = dmi->dmi_addr; dmi = dmi->next; if (!(*addr & 1)) continue; ehar |= (1UL << ioc3_hash(addr)); } ip->ehar_h = ehar >> 32; ip->ehar_l = ehar & 0xffffffff; } ioc3_w_ehar_h(ip->ehar_h); ioc3_w_ehar_l(ip->ehar_l); } netif_wake_queue(dev); /* Let us get going again. */ } MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>"); MODULE_DESCRIPTION("SGI IOC3 Ethernet driver"); MODULE_LICENSE("GPL"); module_init(ioc3_init_module); module_exit(ioc3_cleanup_module);