// SPDX-License-Identifier: GPL-2.0-only /* * r8169.c: RealTek 8169/8168/8101 ethernet driver. * * Copyright (c) 2002 ShuChen * Copyright (c) 2003 - 2007 Francois Romieu * Copyright (c) a lot of people too. Please respect their work. * * See MAINTAINERS file for support contact information. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "r8169.h" #include "r8169_firmware.h" #define MODULENAME "r8169" #define FIRMWARE_8168D_1 "rtl_nic/rtl8168d-1.fw" #define FIRMWARE_8168D_2 "rtl_nic/rtl8168d-2.fw" #define FIRMWARE_8168E_1 "rtl_nic/rtl8168e-1.fw" #define FIRMWARE_8168E_2 "rtl_nic/rtl8168e-2.fw" #define FIRMWARE_8168E_3 "rtl_nic/rtl8168e-3.fw" #define FIRMWARE_8168F_1 "rtl_nic/rtl8168f-1.fw" #define FIRMWARE_8168F_2 "rtl_nic/rtl8168f-2.fw" #define FIRMWARE_8105E_1 "rtl_nic/rtl8105e-1.fw" #define FIRMWARE_8402_1 "rtl_nic/rtl8402-1.fw" #define FIRMWARE_8411_1 "rtl_nic/rtl8411-1.fw" #define FIRMWARE_8411_2 "rtl_nic/rtl8411-2.fw" #define FIRMWARE_8106E_1 "rtl_nic/rtl8106e-1.fw" #define FIRMWARE_8106E_2 "rtl_nic/rtl8106e-2.fw" #define FIRMWARE_8168G_2 "rtl_nic/rtl8168g-2.fw" #define FIRMWARE_8168G_3 "rtl_nic/rtl8168g-3.fw" #define FIRMWARE_8168H_1 "rtl_nic/rtl8168h-1.fw" #define FIRMWARE_8168H_2 "rtl_nic/rtl8168h-2.fw" #define FIRMWARE_8168FP_3 "rtl_nic/rtl8168fp-3.fw" #define FIRMWARE_8107E_1 "rtl_nic/rtl8107e-1.fw" #define FIRMWARE_8107E_2 "rtl_nic/rtl8107e-2.fw" #define FIRMWARE_8125A_3 "rtl_nic/rtl8125a-3.fw" #define R8169_MSG_DEFAULT \ (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN) /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ #define MC_FILTER_LIMIT 32 #define TX_DMA_BURST 7 /* Maximum PCI burst, '7' is unlimited */ #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */ #define R8169_REGS_SIZE 256 #define R8169_RX_BUF_SIZE (SZ_16K - 1) #define NUM_TX_DESC 64 /* Number of Tx descriptor registers */ #define NUM_RX_DESC 256U /* Number of Rx descriptor registers */ #define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc)) #define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc)) #define RTL_CFG_NO_GBIT 1 /* write/read MMIO register */ #define RTL_W8(tp, reg, val8) writeb((val8), tp->mmio_addr + (reg)) #define RTL_W16(tp, reg, val16) writew((val16), tp->mmio_addr + (reg)) #define RTL_W32(tp, reg, val32) writel((val32), tp->mmio_addr + (reg)) #define RTL_R8(tp, reg) readb(tp->mmio_addr + (reg)) #define RTL_R16(tp, reg) readw(tp->mmio_addr + (reg)) #define RTL_R32(tp, reg) readl(tp->mmio_addr + (reg)) #define JUMBO_4K (4*1024 - ETH_HLEN - 2) #define JUMBO_6K (6*1024 - ETH_HLEN - 2) #define JUMBO_7K (7*1024 - ETH_HLEN - 2) #define JUMBO_9K (9*1024 - ETH_HLEN - 2) static const struct { const char *name; const char *fw_name; } rtl_chip_infos[] = { /* PCI devices. */ [RTL_GIGA_MAC_VER_02] = {"RTL8169s" }, [RTL_GIGA_MAC_VER_03] = {"RTL8110s" }, [RTL_GIGA_MAC_VER_04] = {"RTL8169sb/8110sb" }, [RTL_GIGA_MAC_VER_05] = {"RTL8169sc/8110sc" }, [RTL_GIGA_MAC_VER_06] = {"RTL8169sc/8110sc" }, /* PCI-E devices. */ [RTL_GIGA_MAC_VER_07] = {"RTL8102e" }, [RTL_GIGA_MAC_VER_08] = {"RTL8102e" }, [RTL_GIGA_MAC_VER_09] = {"RTL8102e/RTL8103e" }, [RTL_GIGA_MAC_VER_10] = {"RTL8101e" }, [RTL_GIGA_MAC_VER_11] = {"RTL8168b/8111b" }, [RTL_GIGA_MAC_VER_12] = {"RTL8168b/8111b" }, [RTL_GIGA_MAC_VER_13] = {"RTL8101e" }, [RTL_GIGA_MAC_VER_14] = {"RTL8100e" }, [RTL_GIGA_MAC_VER_15] = {"RTL8100e" }, [RTL_GIGA_MAC_VER_16] = {"RTL8101e" }, [RTL_GIGA_MAC_VER_17] = {"RTL8168b/8111b" }, [RTL_GIGA_MAC_VER_18] = {"RTL8168cp/8111cp" }, [RTL_GIGA_MAC_VER_19] = {"RTL8168c/8111c" }, [RTL_GIGA_MAC_VER_20] = {"RTL8168c/8111c" }, [RTL_GIGA_MAC_VER_21] = {"RTL8168c/8111c" }, [RTL_GIGA_MAC_VER_22] = {"RTL8168c/8111c" }, [RTL_GIGA_MAC_VER_23] = {"RTL8168cp/8111cp" }, [RTL_GIGA_MAC_VER_24] = {"RTL8168cp/8111cp" }, [RTL_GIGA_MAC_VER_25] = {"RTL8168d/8111d", FIRMWARE_8168D_1}, [RTL_GIGA_MAC_VER_26] = {"RTL8168d/8111d", FIRMWARE_8168D_2}, [RTL_GIGA_MAC_VER_27] = {"RTL8168dp/8111dp" }, [RTL_GIGA_MAC_VER_28] = {"RTL8168dp/8111dp" }, [RTL_GIGA_MAC_VER_29] = {"RTL8105e", FIRMWARE_8105E_1}, [RTL_GIGA_MAC_VER_30] = {"RTL8105e", FIRMWARE_8105E_1}, [RTL_GIGA_MAC_VER_31] = {"RTL8168dp/8111dp" }, [RTL_GIGA_MAC_VER_32] = {"RTL8168e/8111e", FIRMWARE_8168E_1}, [RTL_GIGA_MAC_VER_33] = {"RTL8168e/8111e", FIRMWARE_8168E_2}, [RTL_GIGA_MAC_VER_34] = {"RTL8168evl/8111evl", FIRMWARE_8168E_3}, [RTL_GIGA_MAC_VER_35] = {"RTL8168f/8111f", FIRMWARE_8168F_1}, [RTL_GIGA_MAC_VER_36] = {"RTL8168f/8111f", FIRMWARE_8168F_2}, [RTL_GIGA_MAC_VER_37] = {"RTL8402", FIRMWARE_8402_1 }, [RTL_GIGA_MAC_VER_38] = {"RTL8411", FIRMWARE_8411_1 }, [RTL_GIGA_MAC_VER_39] = {"RTL8106e", FIRMWARE_8106E_1}, [RTL_GIGA_MAC_VER_40] = {"RTL8168g/8111g", FIRMWARE_8168G_2}, [RTL_GIGA_MAC_VER_41] = {"RTL8168g/8111g" }, [RTL_GIGA_MAC_VER_42] = {"RTL8168gu/8111gu", FIRMWARE_8168G_3}, [RTL_GIGA_MAC_VER_43] = {"RTL8106eus", FIRMWARE_8106E_2}, [RTL_GIGA_MAC_VER_44] = {"RTL8411b", FIRMWARE_8411_2 }, [RTL_GIGA_MAC_VER_45] = {"RTL8168h/8111h", FIRMWARE_8168H_1}, [RTL_GIGA_MAC_VER_46] = {"RTL8168h/8111h", FIRMWARE_8168H_2}, [RTL_GIGA_MAC_VER_47] = {"RTL8107e", FIRMWARE_8107E_1}, [RTL_GIGA_MAC_VER_48] = {"RTL8107e", FIRMWARE_8107E_2}, [RTL_GIGA_MAC_VER_49] = {"RTL8168ep/8111ep" }, [RTL_GIGA_MAC_VER_50] = {"RTL8168ep/8111ep" }, [RTL_GIGA_MAC_VER_51] = {"RTL8168ep/8111ep" }, [RTL_GIGA_MAC_VER_52] = {"RTL8168fp/RTL8117", FIRMWARE_8168FP_3}, [RTL_GIGA_MAC_VER_60] = {"RTL8125" }, [RTL_GIGA_MAC_VER_61] = {"RTL8125", FIRMWARE_8125A_3}, }; static const struct pci_device_id rtl8169_pci_tbl[] = { { PCI_VDEVICE(REALTEK, 0x2502) }, { PCI_VDEVICE(REALTEK, 0x2600) }, { PCI_VDEVICE(REALTEK, 0x8129) }, { PCI_VDEVICE(REALTEK, 0x8136), RTL_CFG_NO_GBIT }, { PCI_VDEVICE(REALTEK, 0x8161) }, { PCI_VDEVICE(REALTEK, 0x8167) }, { PCI_VDEVICE(REALTEK, 0x8168) }, { PCI_VDEVICE(NCUBE, 0x8168) }, { PCI_VDEVICE(REALTEK, 0x8169) }, { PCI_VENDOR_ID_DLINK, 0x4300, PCI_VENDOR_ID_DLINK, 0x4b10, 0, 0 }, { PCI_VDEVICE(DLINK, 0x4300) }, { PCI_VDEVICE(DLINK, 0x4302) }, { PCI_VDEVICE(AT, 0xc107) }, { PCI_VDEVICE(USR, 0x0116) }, { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024 }, { 0x0001, 0x8168, PCI_ANY_ID, 0x2410 }, { PCI_VDEVICE(REALTEK, 0x8125) }, { PCI_VDEVICE(REALTEK, 0x3000) }, {} }; MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl); static struct { u32 msg_enable; } debug = { -1 }; enum rtl_registers { MAC0 = 0, /* Ethernet hardware address. */ MAC4 = 4, MAR0 = 8, /* Multicast filter. */ CounterAddrLow = 0x10, CounterAddrHigh = 0x14, TxDescStartAddrLow = 0x20, TxDescStartAddrHigh = 0x24, TxHDescStartAddrLow = 0x28, TxHDescStartAddrHigh = 0x2c, FLASH = 0x30, ERSR = 0x36, ChipCmd = 0x37, TxPoll = 0x38, IntrMask = 0x3c, IntrStatus = 0x3e, TxConfig = 0x40, #define TXCFG_AUTO_FIFO (1 << 7) /* 8111e-vl */ #define TXCFG_EMPTY (1 << 11) /* 8111e-vl */ RxConfig = 0x44, #define RX128_INT_EN (1 << 15) /* 8111c and later */ #define RX_MULTI_EN (1 << 14) /* 8111c only */ #define RXCFG_FIFO_SHIFT 13 /* No threshold before first PCI xfer */ #define RX_FIFO_THRESH (7 << RXCFG_FIFO_SHIFT) #define RX_EARLY_OFF (1 << 11) #define RXCFG_DMA_SHIFT 8 /* Unlimited maximum PCI burst. */ #define RX_DMA_BURST (7 << RXCFG_DMA_SHIFT) RxMissed = 0x4c, Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, Config2 = 0x53, #define PME_SIGNAL (1 << 5) /* 8168c and later */ Config3 = 0x54, Config4 = 0x55, Config5 = 0x56, PHYAR = 0x60, PHYstatus = 0x6c, RxMaxSize = 0xda, CPlusCmd = 0xe0, IntrMitigate = 0xe2, #define RTL_COALESCE_MASK 0x0f #define RTL_COALESCE_SHIFT 4 #define RTL_COALESCE_T_MAX (RTL_COALESCE_MASK) #define RTL_COALESCE_FRAME_MAX (RTL_COALESCE_MASK << 2) RxDescAddrLow = 0xe4, RxDescAddrHigh = 0xe8, EarlyTxThres = 0xec, /* 8169. Unit of 32 bytes. */ #define NoEarlyTx 0x3f /* Max value : no early transmit. */ MaxTxPacketSize = 0xec, /* 8101/8168. Unit of 128 bytes. */ #define TxPacketMax (8064 >> 7) #define EarlySize 0x27 FuncEvent = 0xf0, FuncEventMask = 0xf4, FuncPresetState = 0xf8, IBCR0 = 0xf8, IBCR2 = 0xf9, IBIMR0 = 0xfa, IBISR0 = 0xfb, FuncForceEvent = 0xfc, }; enum rtl8168_8101_registers { CSIDR = 0x64, CSIAR = 0x68, #define CSIAR_FLAG 0x80000000 #define CSIAR_WRITE_CMD 0x80000000 #define CSIAR_BYTE_ENABLE 0x0000f000 #define CSIAR_ADDR_MASK 0x00000fff PMCH = 0x6f, EPHYAR = 0x80, #define EPHYAR_FLAG 0x80000000 #define EPHYAR_WRITE_CMD 0x80000000 #define EPHYAR_REG_MASK 0x1f #define EPHYAR_REG_SHIFT 16 #define EPHYAR_DATA_MASK 0xffff DLLPR = 0xd0, #define PFM_EN (1 << 6) #define TX_10M_PS_EN (1 << 7) DBG_REG = 0xd1, #define FIX_NAK_1 (1 << 4) #define FIX_NAK_2 (1 << 3) TWSI = 0xd2, MCU = 0xd3, #define NOW_IS_OOB (1 << 7) #define TX_EMPTY (1 << 5) #define RX_EMPTY (1 << 4) #define RXTX_EMPTY (TX_EMPTY | RX_EMPTY) #define EN_NDP (1 << 3) #define EN_OOB_RESET (1 << 2) #define LINK_LIST_RDY (1 << 1) EFUSEAR = 0xdc, #define EFUSEAR_FLAG 0x80000000 #define EFUSEAR_WRITE_CMD 0x80000000 #define EFUSEAR_READ_CMD 0x00000000 #define EFUSEAR_REG_MASK 0x03ff #define EFUSEAR_REG_SHIFT 8 #define EFUSEAR_DATA_MASK 0xff MISC_1 = 0xf2, #define PFM_D3COLD_EN (1 << 6) }; enum rtl8168_registers { LED_FREQ = 0x1a, EEE_LED = 0x1b, ERIDR = 0x70, ERIAR = 0x74, #define ERIAR_FLAG 0x80000000 #define ERIAR_WRITE_CMD 0x80000000 #define ERIAR_READ_CMD 0x00000000 #define ERIAR_ADDR_BYTE_ALIGN 4 #define ERIAR_TYPE_SHIFT 16 #define ERIAR_EXGMAC (0x00 << ERIAR_TYPE_SHIFT) #define ERIAR_MSIX (0x01 << ERIAR_TYPE_SHIFT) #define ERIAR_ASF (0x02 << ERIAR_TYPE_SHIFT) #define ERIAR_OOB (0x02 << ERIAR_TYPE_SHIFT) #define ERIAR_MASK_SHIFT 12 #define ERIAR_MASK_0001 (0x1 << ERIAR_MASK_SHIFT) #define ERIAR_MASK_0011 (0x3 << ERIAR_MASK_SHIFT) #define ERIAR_MASK_0100 (0x4 << ERIAR_MASK_SHIFT) #define ERIAR_MASK_0101 (0x5 << ERIAR_MASK_SHIFT) #define ERIAR_MASK_1111 (0xf << ERIAR_MASK_SHIFT) EPHY_RXER_NUM = 0x7c, OCPDR = 0xb0, /* OCP GPHY access */ #define OCPDR_WRITE_CMD 0x80000000 #define OCPDR_READ_CMD 0x00000000 #define OCPDR_REG_MASK 0x7f #define OCPDR_GPHY_REG_SHIFT 16 #define OCPDR_DATA_MASK 0xffff OCPAR = 0xb4, #define OCPAR_FLAG 0x80000000 #define OCPAR_GPHY_WRITE_CMD 0x8000f060 #define OCPAR_GPHY_READ_CMD 0x0000f060 GPHY_OCP = 0xb8, RDSAR1 = 0xd0, /* 8168c only. Undocumented on 8168dp */ MISC = 0xf0, /* 8168e only. */ #define TXPLA_RST (1 << 29) #define DISABLE_LAN_EN (1 << 23) /* Enable GPIO pin */ #define PWM_EN (1 << 22) #define RXDV_GATED_EN (1 << 19) #define EARLY_TALLY_EN (1 << 16) }; enum rtl8125_registers { IntrMask_8125 = 0x38, IntrStatus_8125 = 0x3c, TxPoll_8125 = 0x90, MAC0_BKP = 0x19e0, }; #define RX_VLAN_INNER_8125 BIT(22) #define RX_VLAN_OUTER_8125 BIT(23) #define RX_VLAN_8125 (RX_VLAN_INNER_8125 | RX_VLAN_OUTER_8125) #define RX_FETCH_DFLT_8125 (8 << 27) enum rtl_register_content { /* InterruptStatusBits */ SYSErr = 0x8000, PCSTimeout = 0x4000, SWInt = 0x0100, TxDescUnavail = 0x0080, RxFIFOOver = 0x0040, LinkChg = 0x0020, RxOverflow = 0x0010, TxErr = 0x0008, TxOK = 0x0004, RxErr = 0x0002, RxOK = 0x0001, /* RxStatusDesc */ RxRWT = (1 << 22), RxRES = (1 << 21), RxRUNT = (1 << 20), RxCRC = (1 << 19), /* ChipCmdBits */ StopReq = 0x80, CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, /* TXPoll register p.5 */ HPQ = 0x80, /* Poll cmd on the high prio queue */ NPQ = 0x40, /* Poll cmd on the low prio queue */ FSWInt = 0x01, /* Forced software interrupt */ /* Cfg9346Bits */ Cfg9346_Lock = 0x00, Cfg9346_Unlock = 0xc0, /* rx_mode_bits */ AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, #define RX_CONFIG_ACCEPT_MASK 0x3f /* TxConfigBits */ TxInterFrameGapShift = 24, TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ /* Config1 register p.24 */ LEDS1 = (1 << 7), LEDS0 = (1 << 6), Speed_down = (1 << 4), MEMMAP = (1 << 3), IOMAP = (1 << 2), VPD = (1 << 1), PMEnable = (1 << 0), /* Power Management Enable */ /* Config2 register p. 25 */ ClkReqEn = (1 << 7), /* Clock Request Enable */ MSIEnable = (1 << 5), /* 8169 only. Reserved in the 8168. */ PCI_Clock_66MHz = 0x01, PCI_Clock_33MHz = 0x00, /* Config3 register p.25 */ MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */ LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */ Jumbo_En0 = (1 << 2), /* 8168 only. Reserved in the 8168b */ Rdy_to_L23 = (1 << 1), /* L23 Enable */ Beacon_en = (1 << 0), /* 8168 only. Reserved in the 8168b */ /* Config4 register */ Jumbo_En1 = (1 << 1), /* 8168 only. Reserved in the 8168b */ /* Config5 register p.27 */ BWF = (1 << 6), /* Accept Broadcast wakeup frame */ MWF = (1 << 5), /* Accept Multicast wakeup frame */ UWF = (1 << 4), /* Accept Unicast wakeup frame */ Spi_en = (1 << 3), LanWake = (1 << 1), /* LanWake enable/disable */ PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */ ASPM_en = (1 << 0), /* ASPM enable */ /* CPlusCmd p.31 */ EnableBist = (1 << 15), // 8168 8101 Mac_dbgo_oe = (1 << 14), // 8168 8101 EnAnaPLL = (1 << 14), // 8169 Normal_mode = (1 << 13), // unused Force_half_dup = (1 << 12), // 8168 8101 Force_rxflow_en = (1 << 11), // 8168 8101 Force_txflow_en = (1 << 10), // 8168 8101 Cxpl_dbg_sel = (1 << 9), // 8168 8101 ASF = (1 << 8), // 8168 8101 PktCntrDisable = (1 << 7), // 8168 8101 Mac_dbgo_sel = 0x001c, // 8168 RxVlan = (1 << 6), RxChkSum = (1 << 5), PCIDAC = (1 << 4), PCIMulRW = (1 << 3), #define INTT_MASK GENMASK(1, 0) #define CPCMD_MASK (Normal_mode | RxVlan | RxChkSum | INTT_MASK) /* rtl8169_PHYstatus */ TBI_Enable = 0x80, TxFlowCtrl = 0x40, RxFlowCtrl = 0x20, _1000bpsF = 0x10, _100bps = 0x08, _10bps = 0x04, LinkStatus = 0x02, FullDup = 0x01, /* ResetCounterCommand */ CounterReset = 0x1, /* DumpCounterCommand */ CounterDump = 0x8, /* magic enable v2 */ MagicPacket_v2 = (1 << 16), /* Wake up when receives a Magic Packet */ }; enum rtl_desc_bit { /* First doubleword. */ DescOwn = (1 << 31), /* Descriptor is owned by NIC */ RingEnd = (1 << 30), /* End of descriptor ring */ FirstFrag = (1 << 29), /* First segment of a packet */ LastFrag = (1 << 28), /* Final segment of a packet */ }; /* Generic case. */ enum rtl_tx_desc_bit { /* First doubleword. */ TD_LSO = (1 << 27), /* Large Send Offload */ #define TD_MSS_MAX 0x07ffu /* MSS value */ /* Second doubleword. */ TxVlanTag = (1 << 17), /* Add VLAN tag */ }; /* 8169, 8168b and 810x except 8102e. */ enum rtl_tx_desc_bit_0 { /* First doubleword. */ #define TD0_MSS_SHIFT 16 /* MSS position (11 bits) */ TD0_TCP_CS = (1 << 16), /* Calculate TCP/IP checksum */ TD0_UDP_CS = (1 << 17), /* Calculate UDP/IP checksum */ TD0_IP_CS = (1 << 18), /* Calculate IP checksum */ }; /* 8102e, 8168c and beyond. */ enum rtl_tx_desc_bit_1 { /* First doubleword. */ TD1_GTSENV4 = (1 << 26), /* Giant Send for IPv4 */ TD1_GTSENV6 = (1 << 25), /* Giant Send for IPv6 */ #define GTTCPHO_SHIFT 18 #define GTTCPHO_MAX 0x7f /* Second doubleword. */ #define TCPHO_SHIFT 18 #define TCPHO_MAX 0x3ff #define TD1_MSS_SHIFT 18 /* MSS position (11 bits) */ TD1_IPv6_CS = (1 << 28), /* Calculate IPv6 checksum */ TD1_IPv4_CS = (1 << 29), /* Calculate IPv4 checksum */ TD1_TCP_CS = (1 << 30), /* Calculate TCP/IP checksum */ TD1_UDP_CS = (1 << 31), /* Calculate UDP/IP checksum */ }; enum rtl_rx_desc_bit { /* Rx private */ PID1 = (1 << 18), /* Protocol ID bit 1/2 */ PID0 = (1 << 17), /* Protocol ID bit 0/2 */ #define RxProtoUDP (PID1) #define RxProtoTCP (PID0) #define RxProtoIP (PID1 | PID0) #define RxProtoMask RxProtoIP IPFail = (1 << 16), /* IP checksum failed */ UDPFail = (1 << 15), /* UDP/IP checksum failed */ TCPFail = (1 << 14), /* TCP/IP checksum failed */ RxVlanTag = (1 << 16), /* VLAN tag available */ }; #define RsvdMask 0x3fffc000 #define RTL_GSO_MAX_SIZE_V1 32000 #define RTL_GSO_MAX_SEGS_V1 24 #define RTL_GSO_MAX_SIZE_V2 64000 #define RTL_GSO_MAX_SEGS_V2 64 struct TxDesc { __le32 opts1; __le32 opts2; __le64 addr; }; struct RxDesc { __le32 opts1; __le32 opts2; __le64 addr; }; struct ring_info { struct sk_buff *skb; u32 len; }; struct rtl8169_counters { __le64 tx_packets; __le64 rx_packets; __le64 tx_errors; __le32 rx_errors; __le16 rx_missed; __le16 align_errors; __le32 tx_one_collision; __le32 tx_multi_collision; __le64 rx_unicast; __le64 rx_broadcast; __le32 rx_multicast; __le16 tx_aborted; __le16 tx_underun; }; struct rtl8169_tc_offsets { bool inited; __le64 tx_errors; __le32 tx_multi_collision; __le16 tx_aborted; }; enum rtl_flag { RTL_FLAG_TASK_ENABLED = 0, RTL_FLAG_TASK_RESET_PENDING, RTL_FLAG_MAX }; struct rtl8169_stats { u64 packets; u64 bytes; struct u64_stats_sync syncp; }; struct rtl8169_private { void __iomem *mmio_addr; /* memory map physical address */ struct pci_dev *pci_dev; struct net_device *dev; struct phy_device *phydev; struct napi_struct napi; u32 msg_enable; enum mac_version mac_version; u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */ u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */ u32 dirty_tx; struct rtl8169_stats rx_stats; struct rtl8169_stats tx_stats; struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */ struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */ dma_addr_t TxPhyAddr; dma_addr_t RxPhyAddr; struct page *Rx_databuff[NUM_RX_DESC]; /* Rx data buffers */ struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */ u16 cp_cmd; u32 irq_mask; struct clk *clk; struct { DECLARE_BITMAP(flags, RTL_FLAG_MAX); struct mutex mutex; struct work_struct work; } wk; unsigned irq_enabled:1; unsigned supports_gmii:1; unsigned aspm_manageable:1; dma_addr_t counters_phys_addr; struct rtl8169_counters *counters; struct rtl8169_tc_offsets tc_offset; u32 saved_wolopts; int eee_adv; const char *fw_name; struct rtl_fw *rtl_fw; u32 ocp_base; }; typedef void (*rtl_generic_fct)(struct rtl8169_private *tp); MODULE_AUTHOR("Realtek and the Linux r8169 crew "); MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver"); module_param_named(debug, debug.msg_enable, int, 0); MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)"); MODULE_SOFTDEP("pre: realtek"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(FIRMWARE_8168D_1); MODULE_FIRMWARE(FIRMWARE_8168D_2); MODULE_FIRMWARE(FIRMWARE_8168E_1); MODULE_FIRMWARE(FIRMWARE_8168E_2); MODULE_FIRMWARE(FIRMWARE_8168E_3); MODULE_FIRMWARE(FIRMWARE_8105E_1); MODULE_FIRMWARE(FIRMWARE_8168F_1); MODULE_FIRMWARE(FIRMWARE_8168F_2); MODULE_FIRMWARE(FIRMWARE_8402_1); MODULE_FIRMWARE(FIRMWARE_8411_1); MODULE_FIRMWARE(FIRMWARE_8411_2); MODULE_FIRMWARE(FIRMWARE_8106E_1); MODULE_FIRMWARE(FIRMWARE_8106E_2); MODULE_FIRMWARE(FIRMWARE_8168G_2); MODULE_FIRMWARE(FIRMWARE_8168G_3); MODULE_FIRMWARE(FIRMWARE_8168H_1); MODULE_FIRMWARE(FIRMWARE_8168H_2); MODULE_FIRMWARE(FIRMWARE_8168FP_3); MODULE_FIRMWARE(FIRMWARE_8107E_1); MODULE_FIRMWARE(FIRMWARE_8107E_2); MODULE_FIRMWARE(FIRMWARE_8125A_3); static inline struct device *tp_to_dev(struct rtl8169_private *tp) { return &tp->pci_dev->dev; } static void rtl_lock_work(struct rtl8169_private *tp) { mutex_lock(&tp->wk.mutex); } static void rtl_unlock_work(struct rtl8169_private *tp) { mutex_unlock(&tp->wk.mutex); } static void rtl_lock_config_regs(struct rtl8169_private *tp) { RTL_W8(tp, Cfg9346, Cfg9346_Lock); } static void rtl_unlock_config_regs(struct rtl8169_private *tp) { RTL_W8(tp, Cfg9346, Cfg9346_Unlock); } static void rtl_pci_commit(struct rtl8169_private *tp) { /* Read an arbitrary register to commit a preceding PCI write */ RTL_R8(tp, ChipCmd); } static bool rtl_is_8125(struct rtl8169_private *tp) { return tp->mac_version >= RTL_GIGA_MAC_VER_60; } static bool rtl_is_8168evl_up(struct rtl8169_private *tp) { return tp->mac_version >= RTL_GIGA_MAC_VER_34 && tp->mac_version != RTL_GIGA_MAC_VER_39 && tp->mac_version <= RTL_GIGA_MAC_VER_52; } static bool rtl_supports_eee(struct rtl8169_private *tp) { return tp->mac_version >= RTL_GIGA_MAC_VER_34 && tp->mac_version != RTL_GIGA_MAC_VER_37 && tp->mac_version != RTL_GIGA_MAC_VER_39; } static void rtl_read_mac_from_reg(struct rtl8169_private *tp, u8 *mac, int reg) { int i; for (i = 0; i < ETH_ALEN; i++) mac[i] = RTL_R8(tp, reg + i); } struct rtl_cond { bool (*check)(struct rtl8169_private *); const char *msg; }; static void rtl_udelay(unsigned int d) { udelay(d); } static bool rtl_loop_wait(struct rtl8169_private *tp, const struct rtl_cond *c, void (*delay)(unsigned int), unsigned int d, int n, bool high) { int i; for (i = 0; i < n; i++) { if (c->check(tp) == high) return true; delay(d); } netif_err(tp, drv, tp->dev, "%s == %d (loop: %d, delay: %d).\n", c->msg, !high, n, d); return false; } static bool rtl_udelay_loop_wait_high(struct rtl8169_private *tp, const struct rtl_cond *c, unsigned int d, int n) { return rtl_loop_wait(tp, c, rtl_udelay, d, n, true); } static bool rtl_udelay_loop_wait_low(struct rtl8169_private *tp, const struct rtl_cond *c, unsigned int d, int n) { return rtl_loop_wait(tp, c, rtl_udelay, d, n, false); } static bool rtl_msleep_loop_wait_high(struct rtl8169_private *tp, const struct rtl_cond *c, unsigned int d, int n) { return rtl_loop_wait(tp, c, msleep, d, n, true); } static bool rtl_msleep_loop_wait_low(struct rtl8169_private *tp, const struct rtl_cond *c, unsigned int d, int n) { return rtl_loop_wait(tp, c, msleep, d, n, false); } #define DECLARE_RTL_COND(name) \ static bool name ## _check(struct rtl8169_private *); \ \ static const struct rtl_cond name = { \ .check = name ## _check, \ .msg = #name \ }; \ \ static bool name ## _check(struct rtl8169_private *tp) static bool rtl_ocp_reg_failure(struct rtl8169_private *tp, u32 reg) { if (reg & 0xffff0001) { netif_err(tp, drv, tp->dev, "Invalid ocp reg %x!\n", reg); return true; } return false; } DECLARE_RTL_COND(rtl_ocp_gphy_cond) { return RTL_R32(tp, GPHY_OCP) & OCPAR_FLAG; } static void r8168_phy_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data) { if (rtl_ocp_reg_failure(tp, reg)) return; RTL_W32(tp, GPHY_OCP, OCPAR_FLAG | (reg << 15) | data); rtl_udelay_loop_wait_low(tp, &rtl_ocp_gphy_cond, 25, 10); } static int r8168_phy_ocp_read(struct rtl8169_private *tp, u32 reg) { if (rtl_ocp_reg_failure(tp, reg)) return 0; RTL_W32(tp, GPHY_OCP, reg << 15); return rtl_udelay_loop_wait_high(tp, &rtl_ocp_gphy_cond, 25, 10) ? (RTL_R32(tp, GPHY_OCP) & 0xffff) : -ETIMEDOUT; } static void r8168_mac_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data) { if (rtl_ocp_reg_failure(tp, reg)) return; RTL_W32(tp, OCPDR, OCPAR_FLAG | (reg << 15) | data); } static u16 r8168_mac_ocp_read(struct rtl8169_private *tp, u32 reg) { if (rtl_ocp_reg_failure(tp, reg)) return 0; RTL_W32(tp, OCPDR, reg << 15); return RTL_R32(tp, OCPDR); } static void r8168_mac_ocp_modify(struct rtl8169_private *tp, u32 reg, u16 mask, u16 set) { u16 data = r8168_mac_ocp_read(tp, reg); r8168_mac_ocp_write(tp, reg, (data & ~mask) | set); } #define OCP_STD_PHY_BASE 0xa400 static void r8168g_mdio_write(struct rtl8169_private *tp, int reg, int value) { if (reg == 0x1f) { tp->ocp_base = value ? value << 4 : OCP_STD_PHY_BASE; return; } if (tp->ocp_base != OCP_STD_PHY_BASE) reg -= 0x10; r8168_phy_ocp_write(tp, tp->ocp_base + reg * 2, value); } static int r8168g_mdio_read(struct rtl8169_private *tp, int reg) { if (reg == 0x1f) return tp->ocp_base == OCP_STD_PHY_BASE ? 0 : tp->ocp_base >> 4; if (tp->ocp_base != OCP_STD_PHY_BASE) reg -= 0x10; return r8168_phy_ocp_read(tp, tp->ocp_base + reg * 2); } static void mac_mcu_write(struct rtl8169_private *tp, int reg, int value) { if (reg == 0x1f) { tp->ocp_base = value << 4; return; } r8168_mac_ocp_write(tp, tp->ocp_base + reg, value); } static int mac_mcu_read(struct rtl8169_private *tp, int reg) { return r8168_mac_ocp_read(tp, tp->ocp_base + reg); } DECLARE_RTL_COND(rtl_phyar_cond) { return RTL_R32(tp, PHYAR) & 0x80000000; } static void r8169_mdio_write(struct rtl8169_private *tp, int reg, int value) { RTL_W32(tp, PHYAR, 0x80000000 | (reg & 0x1f) << 16 | (value & 0xffff)); rtl_udelay_loop_wait_low(tp, &rtl_phyar_cond, 25, 20); /* * According to hardware specs a 20us delay is required after write * complete indication, but before sending next command. */ udelay(20); } static int r8169_mdio_read(struct rtl8169_private *tp, int reg) { int value; RTL_W32(tp, PHYAR, 0x0 | (reg & 0x1f) << 16); value = rtl_udelay_loop_wait_high(tp, &rtl_phyar_cond, 25, 20) ? RTL_R32(tp, PHYAR) & 0xffff : -ETIMEDOUT; /* * According to hardware specs a 20us delay is required after read * complete indication, but before sending next command. */ udelay(20); return value; } DECLARE_RTL_COND(rtl_ocpar_cond) { return RTL_R32(tp, OCPAR) & OCPAR_FLAG; } static void r8168dp_1_mdio_access(struct rtl8169_private *tp, int reg, u32 data) { RTL_W32(tp, OCPDR, data | ((reg & OCPDR_REG_MASK) << OCPDR_GPHY_REG_SHIFT)); RTL_W32(tp, OCPAR, OCPAR_GPHY_WRITE_CMD); RTL_W32(tp, EPHY_RXER_NUM, 0); rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 1000, 100); } static void r8168dp_1_mdio_write(struct rtl8169_private *tp, int reg, int value) { r8168dp_1_mdio_access(tp, reg, OCPDR_WRITE_CMD | (value & OCPDR_DATA_MASK)); } static int r8168dp_1_mdio_read(struct rtl8169_private *tp, int reg) { r8168dp_1_mdio_access(tp, reg, OCPDR_READ_CMD); mdelay(1); RTL_W32(tp, OCPAR, OCPAR_GPHY_READ_CMD); RTL_W32(tp, EPHY_RXER_NUM, 0); return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 1000, 100) ? RTL_R32(tp, OCPDR) & OCPDR_DATA_MASK : -ETIMEDOUT; } #define R8168DP_1_MDIO_ACCESS_BIT 0x00020000 static void r8168dp_2_mdio_start(struct rtl8169_private *tp) { RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) & ~R8168DP_1_MDIO_ACCESS_BIT); } static void r8168dp_2_mdio_stop(struct rtl8169_private *tp) { RTL_W32(tp, 0xd0, RTL_R32(tp, 0xd0) | R8168DP_1_MDIO_ACCESS_BIT); } static void r8168dp_2_mdio_write(struct rtl8169_private *tp, int reg, int value) { r8168dp_2_mdio_start(tp); r8169_mdio_write(tp, reg, value); r8168dp_2_mdio_stop(tp); } static int r8168dp_2_mdio_read(struct rtl8169_private *tp, int reg) { int value; /* Work around issue with chip reporting wrong PHY ID */ if (reg == MII_PHYSID2) return 0xc912; r8168dp_2_mdio_start(tp); value = r8169_mdio_read(tp, reg); r8168dp_2_mdio_stop(tp); return value; } static void rtl_writephy(struct rtl8169_private *tp, int location, int val) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: r8168dp_1_mdio_write(tp, location, val); break; case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: r8168dp_2_mdio_write(tp, location, val); break; case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_61: r8168g_mdio_write(tp, location, val); break; default: r8169_mdio_write(tp, location, val); break; } } static int rtl_readphy(struct rtl8169_private *tp, int location) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: return r8168dp_1_mdio_read(tp, location); case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: return r8168dp_2_mdio_read(tp, location); case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_61: return r8168g_mdio_read(tp, location); default: return r8169_mdio_read(tp, location); } } DECLARE_RTL_COND(rtl_ephyar_cond) { return RTL_R32(tp, EPHYAR) & EPHYAR_FLAG; } static void rtl_ephy_write(struct rtl8169_private *tp, int reg_addr, int value) { RTL_W32(tp, EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) | (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT); rtl_udelay_loop_wait_low(tp, &rtl_ephyar_cond, 10, 100); udelay(10); } static u16 rtl_ephy_read(struct rtl8169_private *tp, int reg_addr) { RTL_W32(tp, EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT); return rtl_udelay_loop_wait_high(tp, &rtl_ephyar_cond, 10, 100) ? RTL_R32(tp, EPHYAR) & EPHYAR_DATA_MASK : ~0; } DECLARE_RTL_COND(rtl_eriar_cond) { return RTL_R32(tp, ERIAR) & ERIAR_FLAG; } static void _rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask, u32 val, int type) { BUG_ON((addr & 3) || (mask == 0)); RTL_W32(tp, ERIDR, val); RTL_W32(tp, ERIAR, ERIAR_WRITE_CMD | type | mask | addr); rtl_udelay_loop_wait_low(tp, &rtl_eriar_cond, 100, 100); } static void rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask, u32 val) { _rtl_eri_write(tp, addr, mask, val, ERIAR_EXGMAC); } static u32 _rtl_eri_read(struct rtl8169_private *tp, int addr, int type) { RTL_W32(tp, ERIAR, ERIAR_READ_CMD | type | ERIAR_MASK_1111 | addr); return rtl_udelay_loop_wait_high(tp, &rtl_eriar_cond, 100, 100) ? RTL_R32(tp, ERIDR) : ~0; } static u32 rtl_eri_read(struct rtl8169_private *tp, int addr) { return _rtl_eri_read(tp, addr, ERIAR_EXGMAC); } static void rtl_w0w1_eri(struct rtl8169_private *tp, int addr, u32 mask, u32 p, u32 m) { u32 val; val = rtl_eri_read(tp, addr); rtl_eri_write(tp, addr, mask, (val & ~m) | p); } static void rtl_eri_set_bits(struct rtl8169_private *tp, int addr, u32 mask, u32 p) { rtl_w0w1_eri(tp, addr, mask, p, 0); } static void rtl_eri_clear_bits(struct rtl8169_private *tp, int addr, u32 mask, u32 m) { rtl_w0w1_eri(tp, addr, mask, 0, m); } static u32 r8168dp_ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg) { RTL_W32(tp, OCPAR, ((u32)mask & 0x0f) << 12 | (reg & 0x0fff)); return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 100, 20) ? RTL_R32(tp, OCPDR) : ~0; } static u32 r8168ep_ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg) { return _rtl_eri_read(tp, reg, ERIAR_OOB); } static void r8168dp_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg, u32 data) { RTL_W32(tp, OCPDR, data); RTL_W32(tp, OCPAR, OCPAR_FLAG | ((u32)mask & 0x0f) << 12 | (reg & 0x0fff)); rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 100, 20); } static void r8168ep_ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg, u32 data) { _rtl_eri_write(tp, reg, ((u32)mask & 0x0f) << ERIAR_MASK_SHIFT, data, ERIAR_OOB); } static void r8168dp_oob_notify(struct rtl8169_private *tp, u8 cmd) { rtl_eri_write(tp, 0xe8, ERIAR_MASK_0001, cmd); r8168dp_ocp_write(tp, 0x1, 0x30, 0x00000001); } #define OOB_CMD_RESET 0x00 #define OOB_CMD_DRIVER_START 0x05 #define OOB_CMD_DRIVER_STOP 0x06 static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp) { return (tp->mac_version == RTL_GIGA_MAC_VER_31) ? 0xb8 : 0x10; } DECLARE_RTL_COND(rtl_dp_ocp_read_cond) { u16 reg; reg = rtl8168_get_ocp_reg(tp); return r8168dp_ocp_read(tp, 0x0f, reg) & 0x00000800; } DECLARE_RTL_COND(rtl_ep_ocp_read_cond) { return r8168ep_ocp_read(tp, 0x0f, 0x124) & 0x00000001; } DECLARE_RTL_COND(rtl_ocp_tx_cond) { return RTL_R8(tp, IBISR0) & 0x20; } static void rtl8168ep_stop_cmac(struct rtl8169_private *tp) { RTL_W8(tp, IBCR2, RTL_R8(tp, IBCR2) & ~0x01); rtl_msleep_loop_wait_high(tp, &rtl_ocp_tx_cond, 50, 2000); RTL_W8(tp, IBISR0, RTL_R8(tp, IBISR0) | 0x20); RTL_W8(tp, IBCR0, RTL_R8(tp, IBCR0) & ~0x01); } static void rtl8168dp_driver_start(struct rtl8169_private *tp) { r8168dp_oob_notify(tp, OOB_CMD_DRIVER_START); rtl_msleep_loop_wait_high(tp, &rtl_dp_ocp_read_cond, 10, 10); } static void rtl8168ep_driver_start(struct rtl8169_private *tp) { r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_START); r8168ep_ocp_write(tp, 0x01, 0x30, r8168ep_ocp_read(tp, 0x01, 0x30) | 0x01); rtl_msleep_loop_wait_high(tp, &rtl_ep_ocp_read_cond, 10, 10); } static void rtl8168_driver_start(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: rtl8168dp_driver_start(tp); break; case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_52: rtl8168ep_driver_start(tp); break; default: BUG(); break; } } static void rtl8168dp_driver_stop(struct rtl8169_private *tp) { r8168dp_oob_notify(tp, OOB_CMD_DRIVER_STOP); rtl_msleep_loop_wait_low(tp, &rtl_dp_ocp_read_cond, 10, 10); } static void rtl8168ep_driver_stop(struct rtl8169_private *tp) { rtl8168ep_stop_cmac(tp); r8168ep_ocp_write(tp, 0x01, 0x180, OOB_CMD_DRIVER_STOP); r8168ep_ocp_write(tp, 0x01, 0x30, r8168ep_ocp_read(tp, 0x01, 0x30) | 0x01); rtl_msleep_loop_wait_low(tp, &rtl_ep_ocp_read_cond, 10, 10); } static void rtl8168_driver_stop(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: rtl8168dp_driver_stop(tp); break; case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_52: rtl8168ep_driver_stop(tp); break; default: BUG(); break; } } static bool r8168dp_check_dash(struct rtl8169_private *tp) { u16 reg = rtl8168_get_ocp_reg(tp); return !!(r8168dp_ocp_read(tp, 0x0f, reg) & 0x00008000); } static bool r8168ep_check_dash(struct rtl8169_private *tp) { return !!(r8168ep_ocp_read(tp, 0x0f, 0x128) & 0x00000001); } static bool r8168_check_dash(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: return r8168dp_check_dash(tp); case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_52: return r8168ep_check_dash(tp); default: return false; } } static void rtl_reset_packet_filter(struct rtl8169_private *tp) { rtl_eri_clear_bits(tp, 0xdc, ERIAR_MASK_0001, BIT(0)); rtl_eri_set_bits(tp, 0xdc, ERIAR_MASK_0001, BIT(0)); } DECLARE_RTL_COND(rtl_efusear_cond) { return RTL_R32(tp, EFUSEAR) & EFUSEAR_FLAG; } u8 rtl8168d_efuse_read(struct rtl8169_private *tp, int reg_addr) { RTL_W32(tp, EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT); return rtl_udelay_loop_wait_high(tp, &rtl_efusear_cond, 100, 300) ? RTL_R32(tp, EFUSEAR) & EFUSEAR_DATA_MASK : ~0; } static u32 rtl_get_events(struct rtl8169_private *tp) { if (rtl_is_8125(tp)) return RTL_R32(tp, IntrStatus_8125); else return RTL_R16(tp, IntrStatus); } static void rtl_ack_events(struct rtl8169_private *tp, u32 bits) { if (rtl_is_8125(tp)) RTL_W32(tp, IntrStatus_8125, bits); else RTL_W16(tp, IntrStatus, bits); } static void rtl_irq_disable(struct rtl8169_private *tp) { if (rtl_is_8125(tp)) RTL_W32(tp, IntrMask_8125, 0); else RTL_W16(tp, IntrMask, 0); tp->irq_enabled = 0; } #define RTL_EVENT_NAPI_RX (RxOK | RxErr) #define RTL_EVENT_NAPI_TX (TxOK | TxErr) #define RTL_EVENT_NAPI (RTL_EVENT_NAPI_RX | RTL_EVENT_NAPI_TX) static void rtl_irq_enable(struct rtl8169_private *tp) { tp->irq_enabled = 1; if (rtl_is_8125(tp)) RTL_W32(tp, IntrMask_8125, tp->irq_mask); else RTL_W16(tp, IntrMask, tp->irq_mask); } static void rtl8169_irq_mask_and_ack(struct rtl8169_private *tp) { rtl_irq_disable(tp); rtl_ack_events(tp, 0xffffffff); rtl_pci_commit(tp); } static void rtl_link_chg_patch(struct rtl8169_private *tp) { struct phy_device *phydev = tp->phydev; if (tp->mac_version == RTL_GIGA_MAC_VER_34 || tp->mac_version == RTL_GIGA_MAC_VER_38) { if (phydev->speed == SPEED_1000) { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005); } else if (phydev->speed == SPEED_100) { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005); } else { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f); } rtl_reset_packet_filter(tp); } else if (tp->mac_version == RTL_GIGA_MAC_VER_35 || tp->mac_version == RTL_GIGA_MAC_VER_36) { if (phydev->speed == SPEED_1000) { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005); } else { rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f); } } else if (tp->mac_version == RTL_GIGA_MAC_VER_37) { if (phydev->speed == SPEED_10) { rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x4d02); rtl_eri_write(tp, 0x1dc, ERIAR_MASK_0011, 0x0060a); } else { rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000); } } } #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); rtl_lock_work(tp); wol->supported = WAKE_ANY; wol->wolopts = tp->saved_wolopts; rtl_unlock_work(tp); } static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts) { static const struct { u32 opt; u16 reg; u8 mask; } cfg[] = { { WAKE_PHY, Config3, LinkUp }, { WAKE_UCAST, Config5, UWF }, { WAKE_BCAST, Config5, BWF }, { WAKE_MCAST, Config5, MWF }, { WAKE_ANY, Config5, LanWake }, { WAKE_MAGIC, Config3, MagicPacket } }; unsigned int i, tmp = ARRAY_SIZE(cfg); u8 options; rtl_unlock_config_regs(tp); if (rtl_is_8168evl_up(tp)) { tmp--; if (wolopts & WAKE_MAGIC) rtl_eri_set_bits(tp, 0x0dc, ERIAR_MASK_0100, MagicPacket_v2); else rtl_eri_clear_bits(tp, 0x0dc, ERIAR_MASK_0100, MagicPacket_v2); } else if (rtl_is_8125(tp)) { tmp--; if (wolopts & WAKE_MAGIC) r8168_mac_ocp_modify(tp, 0xc0b6, 0, BIT(0)); else r8168_mac_ocp_modify(tp, 0xc0b6, BIT(0), 0); } for (i = 0; i < tmp; i++) { options = RTL_R8(tp, cfg[i].reg) & ~cfg[i].mask; if (wolopts & cfg[i].opt) options |= cfg[i].mask; RTL_W8(tp, cfg[i].reg, options); } switch (tp->mac_version) { case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06: options = RTL_R8(tp, Config1) & ~PMEnable; if (wolopts) options |= PMEnable; RTL_W8(tp, Config1, options); break; case RTL_GIGA_MAC_VER_34: case RTL_GIGA_MAC_VER_37: case RTL_GIGA_MAC_VER_39 ... RTL_GIGA_MAC_VER_52: options = RTL_R8(tp, Config2) & ~PME_SIGNAL; if (wolopts) options |= PME_SIGNAL; RTL_W8(tp, Config2, options); break; default: break; } rtl_lock_config_regs(tp); device_set_wakeup_enable(tp_to_dev(tp), wolopts); tp->dev->wol_enabled = wolopts ? 1 : 0; } static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); struct device *d = tp_to_dev(tp); if (wol->wolopts & ~WAKE_ANY) return -EINVAL; pm_runtime_get_noresume(d); rtl_lock_work(tp); tp->saved_wolopts = wol->wolopts; if (pm_runtime_active(d)) __rtl8169_set_wol(tp, tp->saved_wolopts); rtl_unlock_work(tp); pm_runtime_put_noidle(d); return 0; } static void rtl8169_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct rtl8169_private *tp = netdev_priv(dev); struct rtl_fw *rtl_fw = tp->rtl_fw; strlcpy(info->driver, MODULENAME, sizeof(info->driver)); strlcpy(info->bus_info, pci_name(tp->pci_dev), sizeof(info->bus_info)); BUILD_BUG_ON(sizeof(info->fw_version) < sizeof(rtl_fw->version)); if (rtl_fw) strlcpy(info->fw_version, rtl_fw->version, sizeof(info->fw_version)); } static int rtl8169_get_regs_len(struct net_device *dev) { return R8169_REGS_SIZE; } static netdev_features_t rtl8169_fix_features(struct net_device *dev, netdev_features_t features) { struct rtl8169_private *tp = netdev_priv(dev); if (dev->mtu > TD_MSS_MAX) features &= ~NETIF_F_ALL_TSO; if (dev->mtu > ETH_DATA_LEN && tp->mac_version > RTL_GIGA_MAC_VER_06) features &= ~(NETIF_F_CSUM_MASK | NETIF_F_ALL_TSO); return features; } static int rtl8169_set_features(struct net_device *dev, netdev_features_t features) { struct rtl8169_private *tp = netdev_priv(dev); u32 rx_config; rtl_lock_work(tp); rx_config = RTL_R32(tp, RxConfig); if (features & NETIF_F_RXALL) rx_config |= (AcceptErr | AcceptRunt); else rx_config &= ~(AcceptErr | AcceptRunt); if (rtl_is_8125(tp)) { if (features & NETIF_F_HW_VLAN_CTAG_RX) rx_config |= RX_VLAN_8125; else rx_config &= ~RX_VLAN_8125; } RTL_W32(tp, RxConfig, rx_config); if (features & NETIF_F_RXCSUM) tp->cp_cmd |= RxChkSum; else tp->cp_cmd &= ~RxChkSum; if (!rtl_is_8125(tp)) { if (features & NETIF_F_HW_VLAN_CTAG_RX) tp->cp_cmd |= RxVlan; else tp->cp_cmd &= ~RxVlan; } RTL_W16(tp, CPlusCmd, tp->cp_cmd); rtl_pci_commit(tp); rtl_unlock_work(tp); return 0; } static inline u32 rtl8169_tx_vlan_tag(struct sk_buff *skb) { return (skb_vlan_tag_present(skb)) ? TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00; } static void rtl8169_rx_vlan_tag(struct RxDesc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); if (opts2 & RxVlanTag) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff)); } static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct rtl8169_private *tp = netdev_priv(dev); u32 __iomem *data = tp->mmio_addr; u32 *dw = p; int i; rtl_lock_work(tp); for (i = 0; i < R8169_REGS_SIZE; i += 4) memcpy_fromio(dw++, data++, 4); rtl_unlock_work(tp); } static u32 rtl8169_get_msglevel(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8169_set_msglevel(struct net_device *dev, u32 value) { struct rtl8169_private *tp = netdev_priv(dev); tp->msg_enable = value; } static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "unicast", "broadcast", "multicast", "tx_aborted", "tx_underrun", }; static int rtl8169_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(rtl8169_gstrings); default: return -EOPNOTSUPP; } } DECLARE_RTL_COND(rtl_counters_cond) { return RTL_R32(tp, CounterAddrLow) & (CounterReset | CounterDump); } static bool rtl8169_do_counters(struct rtl8169_private *tp, u32 counter_cmd) { dma_addr_t paddr = tp->counters_phys_addr; u32 cmd; RTL_W32(tp, CounterAddrHigh, (u64)paddr >> 32); rtl_pci_commit(tp); cmd = (u64)paddr & DMA_BIT_MASK(32); RTL_W32(tp, CounterAddrLow, cmd); RTL_W32(tp, CounterAddrLow, cmd | counter_cmd); return rtl_udelay_loop_wait_low(tp, &rtl_counters_cond, 10, 1000); } static bool rtl8169_reset_counters(struct rtl8169_private *tp) { /* * Versions prior to RTL_GIGA_MAC_VER_19 don't support resetting the * tally counters. */ if (tp->mac_version < RTL_GIGA_MAC_VER_19) return true; return rtl8169_do_counters(tp, CounterReset); } static bool rtl8169_update_counters(struct rtl8169_private *tp) { u8 val = RTL_R8(tp, ChipCmd); /* * Some chips are unable to dump tally counters when the receiver * is disabled. If 0xff chip may be in a PCI power-save state. */ if (!(val & CmdRxEnb) || val == 0xff) return true; return rtl8169_do_counters(tp, CounterDump); } static bool rtl8169_init_counter_offsets(struct rtl8169_private *tp) { struct rtl8169_counters *counters = tp->counters; bool ret = false; /* * rtl8169_init_counter_offsets is called from rtl_open. On chip * versions prior to RTL_GIGA_MAC_VER_19 the tally counters are only * reset by a power cycle, while the counter values collected by the * driver are reset at every driver unload/load cycle. * * To make sure the HW values returned by @get_stats64 match the SW * values, we collect the initial values at first open(*) and use them * as offsets to normalize the values returned by @get_stats64. * * (*) We can't call rtl8169_init_counter_offsets from rtl_init_one * for the reason stated in rtl8169_update_counters; CmdRxEnb is only * set at open time by rtl_hw_start. */ if (tp->tc_offset.inited) return true; /* If both, reset and update fail, propagate to caller. */ if (rtl8169_reset_counters(tp)) ret = true; if (rtl8169_update_counters(tp)) ret = true; tp->tc_offset.tx_errors = counters->tx_errors; tp->tc_offset.tx_multi_collision = counters->tx_multi_collision; tp->tc_offset.tx_aborted = counters->tx_aborted; tp->tc_offset.inited = true; return ret; } static void rtl8169_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct rtl8169_private *tp = netdev_priv(dev); struct device *d = tp_to_dev(tp); struct rtl8169_counters *counters = tp->counters; ASSERT_RTNL(); pm_runtime_get_noresume(d); if (pm_runtime_active(d)) rtl8169_update_counters(tp); pm_runtime_put_noidle(d); data[0] = le64_to_cpu(counters->tx_packets); data[1] = le64_to_cpu(counters->rx_packets); data[2] = le64_to_cpu(counters->tx_errors); data[3] = le32_to_cpu(counters->rx_errors); data[4] = le16_to_cpu(counters->rx_missed); data[5] = le16_to_cpu(counters->align_errors); data[6] = le32_to_cpu(counters->tx_one_collision); data[7] = le32_to_cpu(counters->tx_multi_collision); data[8] = le64_to_cpu(counters->rx_unicast); data[9] = le64_to_cpu(counters->rx_broadcast); data[10] = le32_to_cpu(counters->rx_multicast); data[11] = le16_to_cpu(counters->tx_aborted); data[12] = le16_to_cpu(counters->tx_underun); } static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_STATS: memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings)); break; } } /* * Interrupt coalescing * * > 1 - the availability of the IntrMitigate (0xe2) register through the * > 8169, 8168 and 810x line of chipsets * * 8169, 8168, and 8136(810x) serial chipsets support it. * * > 2 - the Tx timer unit at gigabit speed * * The unit of the timer depends on both the speed and the setting of CPlusCmd * (0xe0) bit 1 and bit 0. * * For 8169 * bit[1:0] \ speed 1000M 100M 10M * 0 0 320ns 2.56us 40.96us * 0 1 2.56us 20.48us 327.7us * 1 0 5.12us 40.96us 655.4us * 1 1 10.24us 81.92us 1.31ms * * For the other * bit[1:0] \ speed 1000M 100M 10M * 0 0 5us 2.56us 40.96us * 0 1 40us 20.48us 327.7us * 1 0 80us 40.96us 655.4us * 1 1 160us 81.92us 1.31ms */ /* rx/tx scale factors for one particular CPlusCmd[0:1] value */ struct rtl_coalesce_scale { /* Rx / Tx */ u32 nsecs[2]; }; /* rx/tx scale factors for all CPlusCmd[0:1] cases */ struct rtl_coalesce_info { u32 speed; struct rtl_coalesce_scale scalev[4]; /* each CPlusCmd[0:1] case */ }; /* produce (r,t) pairs with each being in series of *1, *8, *8*2, *8*2*2 */ #define rxtx_x1822(r, t) { \ {{(r), (t)}}, \ {{(r)*8, (t)*8}}, \ {{(r)*8*2, (t)*8*2}}, \ {{(r)*8*2*2, (t)*8*2*2}}, \ } static const struct rtl_coalesce_info rtl_coalesce_info_8169[] = { /* speed delays: rx00 tx00 */ { SPEED_10, rxtx_x1822(40960, 40960) }, { SPEED_100, rxtx_x1822( 2560, 2560) }, { SPEED_1000, rxtx_x1822( 320, 320) }, { 0 }, }; static const struct rtl_coalesce_info rtl_coalesce_info_8168_8136[] = { /* speed delays: rx00 tx00 */ { SPEED_10, rxtx_x1822(40960, 40960) }, { SPEED_100, rxtx_x1822( 2560, 2560) }, { SPEED_1000, rxtx_x1822( 5000, 5000) }, { 0 }, }; #undef rxtx_x1822 /* get rx/tx scale vector corresponding to current speed */ static const struct rtl_coalesce_info *rtl_coalesce_info(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); const struct rtl_coalesce_info *ci; if (tp->mac_version <= RTL_GIGA_MAC_VER_06) ci = rtl_coalesce_info_8169; else ci = rtl_coalesce_info_8168_8136; for (; ci->speed; ci++) { if (tp->phydev->speed == ci->speed) return ci; } return ERR_PTR(-ELNRNG); } static int rtl_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct rtl8169_private *tp = netdev_priv(dev); const struct rtl_coalesce_info *ci; const struct rtl_coalesce_scale *scale; struct { u32 *max_frames; u32 *usecs; } coal_settings [] = { { &ec->rx_max_coalesced_frames, &ec->rx_coalesce_usecs }, { &ec->tx_max_coalesced_frames, &ec->tx_coalesce_usecs } }, *p = coal_settings; int i; u16 w; if (rtl_is_8125(tp)) return -EOPNOTSUPP; memset(ec, 0, sizeof(*ec)); /* get rx/tx scale corresponding to current speed and CPlusCmd[0:1] */ ci = rtl_coalesce_info(dev); if (IS_ERR(ci)) return PTR_ERR(ci); scale = &ci->scalev[tp->cp_cmd & INTT_MASK]; /* read IntrMitigate and adjust according to scale */ for (w = RTL_R16(tp, IntrMitigate); w; w >>= RTL_COALESCE_SHIFT, p++) { *p->max_frames = (w & RTL_COALESCE_MASK) << 2; w >>= RTL_COALESCE_SHIFT; *p->usecs = w & RTL_COALESCE_MASK; } for (i = 0; i < 2; i++) { p = coal_settings + i; *p->usecs = (*p->usecs * scale->nsecs[i]) / 1000; /* * ethtool_coalesce says it is illegal to set both usecs and * max_frames to 0. */ if (!*p->usecs && !*p->max_frames) *p->max_frames = 1; } return 0; } /* choose appropriate scale factor and CPlusCmd[0:1] for (speed, nsec) */ static const struct rtl_coalesce_scale *rtl_coalesce_choose_scale( struct net_device *dev, u32 nsec, u16 *cp01) { const struct rtl_coalesce_info *ci; u16 i; ci = rtl_coalesce_info(dev); if (IS_ERR(ci)) return ERR_CAST(ci); for (i = 0; i < 4; i++) { u32 rxtx_maxscale = max(ci->scalev[i].nsecs[0], ci->scalev[i].nsecs[1]); if (nsec <= rxtx_maxscale * RTL_COALESCE_T_MAX) { *cp01 = i; return &ci->scalev[i]; } } return ERR_PTR(-EINVAL); } static int rtl_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct rtl8169_private *tp = netdev_priv(dev); const struct rtl_coalesce_scale *scale; struct { u32 frames; u32 usecs; } coal_settings [] = { { ec->rx_max_coalesced_frames, ec->rx_coalesce_usecs }, { ec->tx_max_coalesced_frames, ec->tx_coalesce_usecs } }, *p = coal_settings; u16 w = 0, cp01; int i; if (rtl_is_8125(tp)) return -EOPNOTSUPP; scale = rtl_coalesce_choose_scale(dev, max(p[0].usecs, p[1].usecs) * 1000, &cp01); if (IS_ERR(scale)) return PTR_ERR(scale); for (i = 0; i < 2; i++, p++) { u32 units; /* * accept max_frames=1 we returned in rtl_get_coalesce. * accept it not only when usecs=0 because of e.g. the following scenario: * * - both rx_usecs=0 & rx_frames=0 in hardware (no delay on RX) * - rtl_get_coalesce returns rx_usecs=0, rx_frames=1 * - then user does `ethtool -C eth0 rx-usecs 100` * * since ethtool sends to kernel whole ethtool_coalesce * settings, if we do not handle rx_usecs=!0, rx_frames=1 * we'll reject it below in `frames % 4 != 0`. */ if (p->frames == 1) { p->frames = 0; } units = p->usecs * 1000 / scale->nsecs[i]; if (p->frames > RTL_COALESCE_FRAME_MAX || p->frames % 4) return -EINVAL; w <<= RTL_COALESCE_SHIFT; w |= units; w <<= RTL_COALESCE_SHIFT; w |= p->frames >> 2; } rtl_lock_work(tp); RTL_W16(tp, IntrMitigate, swab16(w)); tp->cp_cmd = (tp->cp_cmd & ~INTT_MASK) | cp01; RTL_W16(tp, CPlusCmd, tp->cp_cmd); rtl_pci_commit(tp); rtl_unlock_work(tp); return 0; } static int rtl8169_get_eee(struct net_device *dev, struct ethtool_eee *data) { struct rtl8169_private *tp = netdev_priv(dev); struct device *d = tp_to_dev(tp); int ret; if (!rtl_supports_eee(tp)) return -EOPNOTSUPP; pm_runtime_get_noresume(d); if (!pm_runtime_active(d)) { ret = -EOPNOTSUPP; } else { ret = phy_ethtool_get_eee(tp->phydev, data); } pm_runtime_put_noidle(d); return ret; } static int rtl8169_set_eee(struct net_device *dev, struct ethtool_eee *data) { struct rtl8169_private *tp = netdev_priv(dev); struct device *d = tp_to_dev(tp); int ret; if (!rtl_supports_eee(tp)) return -EOPNOTSUPP; pm_runtime_get_noresume(d); if (!pm_runtime_active(d)) { ret = -EOPNOTSUPP; goto out; } if (dev->phydev->autoneg == AUTONEG_DISABLE || dev->phydev->duplex != DUPLEX_FULL) { ret = -EPROTONOSUPPORT; goto out; } ret = phy_ethtool_set_eee(tp->phydev, data); if (!ret) tp->eee_adv = phy_read_mmd(dev->phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV); out: pm_runtime_put_noidle(d); return ret; } static const struct ethtool_ops rtl8169_ethtool_ops = { .get_drvinfo = rtl8169_get_drvinfo, .get_regs_len = rtl8169_get_regs_len, .get_link = ethtool_op_get_link, .get_coalesce = rtl_get_coalesce, .set_coalesce = rtl_set_coalesce, .get_msglevel = rtl8169_get_msglevel, .set_msglevel = rtl8169_set_msglevel, .get_regs = rtl8169_get_regs, .get_wol = rtl8169_get_wol, .set_wol = rtl8169_set_wol, .get_strings = rtl8169_get_strings, .get_sset_count = rtl8169_get_sset_count, .get_ethtool_stats = rtl8169_get_ethtool_stats, .get_ts_info = ethtool_op_get_ts_info, .nway_reset = phy_ethtool_nway_reset, .get_eee = rtl8169_get_eee, .set_eee = rtl8169_set_eee, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static void rtl_enable_eee(struct rtl8169_private *tp) { struct phy_device *phydev = tp->phydev; int adv; /* respect EEE advertisement the user may have set */ if (tp->eee_adv >= 0) adv = tp->eee_adv; else adv = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE); if (adv >= 0) phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, adv); } static enum mac_version rtl8169_get_mac_version(u16 xid, bool gmii) { /* * The driver currently handles the 8168Bf and the 8168Be identically * but they can be identified more specifically through the test below * if needed: * * (RTL_R32(tp, TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be * * Same thing for the 8101Eb and the 8101Ec: * * (RTL_R32(tp, TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec */ static const struct rtl_mac_info { u16 mask; u16 val; enum mac_version ver; } mac_info[] = { /* 8125 family. */ { 0x7cf, 0x608, RTL_GIGA_MAC_VER_60 }, { 0x7c8, 0x608, RTL_GIGA_MAC_VER_61 }, /* RTL8117 */ { 0x7cf, 0x54a, RTL_GIGA_MAC_VER_52 }, /* 8168EP family. */ { 0x7cf, 0x502, RTL_GIGA_MAC_VER_51 }, { 0x7cf, 0x501, RTL_GIGA_MAC_VER_50 }, { 0x7cf, 0x500, RTL_GIGA_MAC_VER_49 }, /* 8168H family. */ { 0x7cf, 0x541, RTL_GIGA_MAC_VER_46 }, { 0x7cf, 0x540, RTL_GIGA_MAC_VER_45 }, /* 8168G family. */ { 0x7cf, 0x5c8, RTL_GIGA_MAC_VER_44 }, { 0x7cf, 0x509, RTL_GIGA_MAC_VER_42 }, { 0x7cf, 0x4c1, RTL_GIGA_MAC_VER_41 }, { 0x7cf, 0x4c0, RTL_GIGA_MAC_VER_40 }, /* 8168F family. */ { 0x7c8, 0x488, RTL_GIGA_MAC_VER_38 }, { 0x7cf, 0x481, RTL_GIGA_MAC_VER_36 }, { 0x7cf, 0x480, RTL_GIGA_MAC_VER_35 }, /* 8168E family. */ { 0x7c8, 0x2c8, RTL_GIGA_MAC_VER_34 }, { 0x7cf, 0x2c1, RTL_GIGA_MAC_VER_32 }, { 0x7c8, 0x2c0, RTL_GIGA_MAC_VER_33 }, /* 8168D family. */ { 0x7cf, 0x281, RTL_GIGA_MAC_VER_25 }, { 0x7c8, 0x280, RTL_GIGA_MAC_VER_26 }, /* 8168DP family. */ { 0x7cf, 0x288, RTL_GIGA_MAC_VER_27 }, { 0x7cf, 0x28a, RTL_GIGA_MAC_VER_28 }, { 0x7cf, 0x28b, RTL_GIGA_MAC_VER_31 }, /* 8168C family. */ { 0x7cf, 0x3c9, RTL_GIGA_MAC_VER_23 }, { 0x7cf, 0x3c8, RTL_GIGA_MAC_VER_18 }, { 0x7c8, 0x3c8, RTL_GIGA_MAC_VER_24 }, { 0x7cf, 0x3c0, RTL_GIGA_MAC_VER_19 }, { 0x7cf, 0x3c2, RTL_GIGA_MAC_VER_20 }, { 0x7cf, 0x3c3, RTL_GIGA_MAC_VER_21 }, { 0x7c8, 0x3c0, RTL_GIGA_MAC_VER_22 }, /* 8168B family. */ { 0x7cf, 0x380, RTL_GIGA_MAC_VER_12 }, { 0x7c8, 0x380, RTL_GIGA_MAC_VER_17 }, { 0x7c8, 0x300, RTL_GIGA_MAC_VER_11 }, /* 8101 family. */ { 0x7c8, 0x448, RTL_GIGA_MAC_VER_39 }, { 0x7c8, 0x440, RTL_GIGA_MAC_VER_37 }, { 0x7cf, 0x409, RTL_GIGA_MAC_VER_29 }, { 0x7c8, 0x408, RTL_GIGA_MAC_VER_30 }, { 0x7cf, 0x349, RTL_GIGA_MAC_VER_08 }, { 0x7cf, 0x249, RTL_GIGA_MAC_VER_08 }, { 0x7cf, 0x348, RTL_GIGA_MAC_VER_07 }, { 0x7cf, 0x248, RTL_GIGA_MAC_VER_07 }, { 0x7cf, 0x340, RTL_GIGA_MAC_VER_13 }, { 0x7cf, 0x343, RTL_GIGA_MAC_VER_10 }, { 0x7cf, 0x342, RTL_GIGA_MAC_VER_16 }, { 0x7c8, 0x348, RTL_GIGA_MAC_VER_09 }, { 0x7c8, 0x248, RTL_GIGA_MAC_VER_09 }, { 0x7c8, 0x340, RTL_GIGA_MAC_VER_16 }, /* FIXME: where did these entries come from ? -- FR */ { 0xfc8, 0x388, RTL_GIGA_MAC_VER_15 }, { 0xfc8, 0x308, RTL_GIGA_MAC_VER_14 }, /* 8110 family. */ { 0xfc8, 0x980, RTL_GIGA_MAC_VER_06 }, { 0xfc8, 0x180, RTL_GIGA_MAC_VER_05 }, { 0xfc8, 0x100, RTL_GIGA_MAC_VER_04 }, { 0xfc8, 0x040, RTL_GIGA_MAC_VER_03 }, { 0xfc8, 0x008, RTL_GIGA_MAC_VER_02 }, /* Catch-all */ { 0x000, 0x000, RTL_GIGA_MAC_NONE } }; const struct rtl_mac_info *p = mac_info; enum mac_version ver; while ((xid & p->mask) != p->val) p++; ver = p->ver; if (ver != RTL_GIGA_MAC_NONE && !gmii) { if (ver == RTL_GIGA_MAC_VER_42) ver = RTL_GIGA_MAC_VER_43; else if (ver == RTL_GIGA_MAC_VER_45) ver = RTL_GIGA_MAC_VER_47; else if (ver == RTL_GIGA_MAC_VER_46) ver = RTL_GIGA_MAC_VER_48; } return ver; } static void rtl_release_firmware(struct rtl8169_private *tp) { if (tp->rtl_fw) { rtl_fw_release_firmware(tp->rtl_fw); kfree(tp->rtl_fw); tp->rtl_fw = NULL; } } void r8169_apply_firmware(struct rtl8169_private *tp) { /* TODO: release firmware if rtl_fw_write_firmware signals failure. */ if (tp->rtl_fw) rtl_fw_write_firmware(tp, tp->rtl_fw); } static void rtl8168_config_eee_mac(struct rtl8169_private *tp) { /* Adjust EEE LED frequency */ if (tp->mac_version != RTL_GIGA_MAC_VER_38) RTL_W8(tp, EEE_LED, RTL_R8(tp, EEE_LED) & ~0x07); rtl_eri_set_bits(tp, 0x1b0, ERIAR_MASK_1111, 0x0003); } static void rtl8125_config_eee_mac(struct rtl8169_private *tp) { r8168_mac_ocp_modify(tp, 0xe040, 0, BIT(1) | BIT(0)); r8168_mac_ocp_modify(tp, 0xeb62, 0, BIT(2) | BIT(1)); } static void rtl_rar_exgmac_set(struct rtl8169_private *tp, u8 *addr) { const u16 w[] = { addr[0] | (addr[1] << 8), addr[2] | (addr[3] << 8), addr[4] | (addr[5] << 8) }; rtl_eri_write(tp, 0xe0, ERIAR_MASK_1111, w[0] | (w[1] << 16)); rtl_eri_write(tp, 0xe4, ERIAR_MASK_1111, w[2]); rtl_eri_write(tp, 0xf0, ERIAR_MASK_1111, w[0] << 16); rtl_eri_write(tp, 0xf4, ERIAR_MASK_1111, w[1] | (w[2] << 16)); } u16 rtl8168h_2_get_adc_bias_ioffset(struct rtl8169_private *tp) { u16 data1, data2, ioffset; r8168_mac_ocp_write(tp, 0xdd02, 0x807d); data1 = r8168_mac_ocp_read(tp, 0xdd02); data2 = r8168_mac_ocp_read(tp, 0xdd00); ioffset = (data2 >> 1) & 0x7ff8; ioffset |= data2 & 0x0007; if (data1 & BIT(7)) ioffset |= BIT(15); return ioffset; } static void rtl_schedule_task(struct rtl8169_private *tp, enum rtl_flag flag) { if (!test_and_set_bit(flag, tp->wk.flags)) schedule_work(&tp->wk.work); } static void rtl8169_init_phy(struct rtl8169_private *tp) { r8169_hw_phy_config(tp, tp->phydev, tp->mac_version); if (tp->mac_version <= RTL_GIGA_MAC_VER_06) { pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40); pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08); /* set undocumented MAC Reg C+CR Offset 0x82h */ RTL_W8(tp, 0x82, 0x01); } if (tp->mac_version == RTL_GIGA_MAC_VER_05 && tp->pci_dev->subsystem_vendor == PCI_VENDOR_ID_GIGABYTE && tp->pci_dev->subsystem_device == 0xe000) phy_write_paged(tp->phydev, 0x0001, 0x10, 0xf01b); /* We may have called phy_speed_down before */ phy_speed_up(tp->phydev); if (rtl_supports_eee(tp)) rtl_enable_eee(tp); genphy_soft_reset(tp->phydev); } static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr) { rtl_lock_work(tp); rtl_unlock_config_regs(tp); RTL_W32(tp, MAC4, addr[4] | addr[5] << 8); rtl_pci_commit(tp); RTL_W32(tp, MAC0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); rtl_pci_commit(tp); if (tp->mac_version == RTL_GIGA_MAC_VER_34) rtl_rar_exgmac_set(tp, addr); rtl_lock_config_regs(tp); rtl_unlock_work(tp); } static int rtl_set_mac_address(struct net_device *dev, void *p) { struct rtl8169_private *tp = netdev_priv(dev); struct device *d = tp_to_dev(tp); int ret; ret = eth_mac_addr(dev, p); if (ret) return ret; pm_runtime_get_noresume(d); if (pm_runtime_active(d)) rtl_rar_set(tp, dev->dev_addr); pm_runtime_put_noidle(d); return 0; } static void rtl_wol_suspend_quirk(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_25: case RTL_GIGA_MAC_VER_26: case RTL_GIGA_MAC_VER_29: case RTL_GIGA_MAC_VER_30: case RTL_GIGA_MAC_VER_32: case RTL_GIGA_MAC_VER_33: case RTL_GIGA_MAC_VER_34: case RTL_GIGA_MAC_VER_37 ... RTL_GIGA_MAC_VER_61: RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) | AcceptBroadcast | AcceptMulticast | AcceptMyPhys); break; default: break; } } static void rtl_pll_power_down(struct rtl8169_private *tp) { if (r8168_check_dash(tp)) return; if (tp->mac_version == RTL_GIGA_MAC_VER_32 || tp->mac_version == RTL_GIGA_MAC_VER_33) rtl_ephy_write(tp, 0x19, 0xff64); if (device_may_wakeup(tp_to_dev(tp))) { phy_speed_down(tp->phydev, false); rtl_wol_suspend_quirk(tp); return; } switch (tp->mac_version) { case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33: case RTL_GIGA_MAC_VER_37: case RTL_GIGA_MAC_VER_39: case RTL_GIGA_MAC_VER_43: case RTL_GIGA_MAC_VER_44: case RTL_GIGA_MAC_VER_45: case RTL_GIGA_MAC_VER_46: case RTL_GIGA_MAC_VER_47: case RTL_GIGA_MAC_VER_48: case RTL_GIGA_MAC_VER_50: case RTL_GIGA_MAC_VER_51: case RTL_GIGA_MAC_VER_52: case RTL_GIGA_MAC_VER_60: case RTL_GIGA_MAC_VER_61: RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80); break; case RTL_GIGA_MAC_VER_40: case RTL_GIGA_MAC_VER_41: case RTL_GIGA_MAC_VER_49: rtl_eri_clear_bits(tp, 0x1a8, ERIAR_MASK_1111, 0xfc000000); RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) & ~0x80); break; default: break; } } static void rtl_pll_power_up(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_25 ... RTL_GIGA_MAC_VER_33: case RTL_GIGA_MAC_VER_37: case RTL_GIGA_MAC_VER_39: case RTL_GIGA_MAC_VER_43: RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0x80); break; case RTL_GIGA_MAC_VER_44: case RTL_GIGA_MAC_VER_45: case RTL_GIGA_MAC_VER_46: case RTL_GIGA_MAC_VER_47: case RTL_GIGA_MAC_VER_48: case RTL_GIGA_MAC_VER_50: case RTL_GIGA_MAC_VER_51: case RTL_GIGA_MAC_VER_52: case RTL_GIGA_MAC_VER_60: case RTL_GIGA_MAC_VER_61: RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0); break; case RTL_GIGA_MAC_VER_40: case RTL_GIGA_MAC_VER_41: case RTL_GIGA_MAC_VER_49: RTL_W8(tp, PMCH, RTL_R8(tp, PMCH) | 0xc0); rtl_eri_set_bits(tp, 0x1a8, ERIAR_MASK_1111, 0xfc000000); break; default: break; } phy_resume(tp->phydev); /* give MAC/PHY some time to resume */ msleep(20); } static void rtl_init_rxcfg(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06: case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17: RTL_W32(tp, RxConfig, RX_FIFO_THRESH | RX_DMA_BURST); break; case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24: case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_36: case RTL_GIGA_MAC_VER_38: RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST); break; case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_52: RTL_W32(tp, RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST | RX_EARLY_OFF); break; case RTL_GIGA_MAC_VER_60 ... RTL_GIGA_MAC_VER_61: RTL_W32(tp, RxConfig, RX_FETCH_DFLT_8125 | RX_VLAN_8125 | RX_DMA_BURST); break; default: RTL_W32(tp, RxConfig, RX128_INT_EN | RX_DMA_BURST); break; } } static void rtl8169_init_ring_indexes(struct rtl8169_private *tp) { tp->dirty_tx = tp->cur_tx = tp->cur_rx = 0; } static void r8168c_hw_jumbo_enable(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0); RTL_W8(tp, Config4, RTL_R8(tp, Config4) | Jumbo_En1); } static void r8168c_hw_jumbo_disable(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0); RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~Jumbo_En1); } static void r8168dp_hw_jumbo_enable(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0); } static void r8168dp_hw_jumbo_disable(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0); } static void r8168e_hw_jumbo_enable(struct rtl8169_private *tp) { RTL_W8(tp, MaxTxPacketSize, 0x3f); RTL_W8(tp, Config3, RTL_R8(tp, Config3) | Jumbo_En0); RTL_W8(tp, Config4, RTL_R8(tp, Config4) | 0x01); } static void r8168e_hw_jumbo_disable(struct rtl8169_private *tp) { RTL_W8(tp, MaxTxPacketSize, 0x0c); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Jumbo_En0); RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~0x01); } static void r8168b_1_hw_jumbo_enable(struct rtl8169_private *tp) { RTL_W8(tp, Config4, RTL_R8(tp, Config4) | (1 << 0)); } static void r8168b_1_hw_jumbo_disable(struct rtl8169_private *tp) { RTL_W8(tp, Config4, RTL_R8(tp, Config4) & ~(1 << 0)); } static void rtl_hw_jumbo_enable(struct rtl8169_private *tp) { rtl_unlock_config_regs(tp); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: pcie_set_readrq(tp->pci_dev, 512); r8168b_1_hw_jumbo_enable(tp); break; case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_26: pcie_set_readrq(tp->pci_dev, 512); r8168c_hw_jumbo_enable(tp); break; case RTL_GIGA_MAC_VER_27 ... RTL_GIGA_MAC_VER_28: r8168dp_hw_jumbo_enable(tp); break; case RTL_GIGA_MAC_VER_31 ... RTL_GIGA_MAC_VER_33: pcie_set_readrq(tp->pci_dev, 512); r8168e_hw_jumbo_enable(tp); break; default: break; } rtl_lock_config_regs(tp); } static void rtl_hw_jumbo_disable(struct rtl8169_private *tp) { rtl_unlock_config_regs(tp); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: r8168b_1_hw_jumbo_disable(tp); break; case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_26: r8168c_hw_jumbo_disable(tp); break; case RTL_GIGA_MAC_VER_27 ... RTL_GIGA_MAC_VER_28: r8168dp_hw_jumbo_disable(tp); break; case RTL_GIGA_MAC_VER_31 ... RTL_GIGA_MAC_VER_33: r8168e_hw_jumbo_disable(tp); break; default: break; } rtl_lock_config_regs(tp); if (pci_is_pcie(tp->pci_dev) && tp->supports_gmii) pcie_set_readrq(tp->pci_dev, 4096); } static void rtl_jumbo_config(struct rtl8169_private *tp, int mtu) { if (mtu > ETH_DATA_LEN) rtl_hw_jumbo_enable(tp); else rtl_hw_jumbo_disable(tp); } DECLARE_RTL_COND(rtl_chipcmd_cond) { return RTL_R8(tp, ChipCmd) & CmdReset; } static void rtl_hw_reset(struct rtl8169_private *tp) { RTL_W8(tp, ChipCmd, CmdReset); rtl_udelay_loop_wait_low(tp, &rtl_chipcmd_cond, 100, 100); } static void rtl_request_firmware(struct rtl8169_private *tp) { struct rtl_fw *rtl_fw; /* firmware loaded already or no firmware available */ if (tp->rtl_fw || !tp->fw_name) return; rtl_fw = kzalloc(sizeof(*rtl_fw), GFP_KERNEL); if (!rtl_fw) { netif_warn(tp, ifup, tp->dev, "Unable to load firmware, out of memory\n"); return; } rtl_fw->phy_write = rtl_writephy; rtl_fw->phy_read = rtl_readphy; rtl_fw->mac_mcu_write = mac_mcu_write; rtl_fw->mac_mcu_read = mac_mcu_read; rtl_fw->fw_name = tp->fw_name; rtl_fw->dev = tp_to_dev(tp); if (rtl_fw_request_firmware(rtl_fw)) kfree(rtl_fw); else tp->rtl_fw = rtl_fw; } static void rtl_rx_close(struct rtl8169_private *tp) { RTL_W32(tp, RxConfig, RTL_R32(tp, RxConfig) & ~RX_CONFIG_ACCEPT_MASK); } DECLARE_RTL_COND(rtl_npq_cond) { return RTL_R8(tp, TxPoll) & NPQ; } DECLARE_RTL_COND(rtl_txcfg_empty_cond) { return RTL_R32(tp, TxConfig) & TXCFG_EMPTY; } static void rtl8169_hw_reset(struct rtl8169_private *tp) { /* Disable interrupts */ rtl8169_irq_mask_and_ack(tp); rtl_rx_close(tp); switch (tp->mac_version) { case RTL_GIGA_MAC_VER_27: case RTL_GIGA_MAC_VER_28: case RTL_GIGA_MAC_VER_31: rtl_udelay_loop_wait_low(tp, &rtl_npq_cond, 20, 42*42); break; case RTL_GIGA_MAC_VER_34 ... RTL_GIGA_MAC_VER_38: case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_52: RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq); rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 666); break; default: RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) | StopReq); udelay(100); break; } rtl_hw_reset(tp); } static void rtl_set_tx_config_registers(struct rtl8169_private *tp) { u32 val = TX_DMA_BURST << TxDMAShift | InterFrameGap << TxInterFrameGapShift; if (rtl_is_8168evl_up(tp)) val |= TXCFG_AUTO_FIFO; RTL_W32(tp, TxConfig, val); } static void rtl_set_rx_max_size(struct rtl8169_private *tp) { /* Low hurts. Let's disable the filtering. */ RTL_W16(tp, RxMaxSize, R8169_RX_BUF_SIZE + 1); } static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp) { /* * Magic spell: some iop3xx ARM board needs the TxDescAddrHigh * register to be written before TxDescAddrLow to work. * Switching from MMIO to I/O access fixes the issue as well. */ RTL_W32(tp, TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32); RTL_W32(tp, TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32)); RTL_W32(tp, RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32); RTL_W32(tp, RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32)); } static void rtl8169_set_magic_reg(struct rtl8169_private *tp, unsigned mac_version) { u32 val; if (tp->mac_version == RTL_GIGA_MAC_VER_05) val = 0x000fff00; else if (tp->mac_version == RTL_GIGA_MAC_VER_06) val = 0x00ffff00; else return; if (RTL_R8(tp, Config2) & PCI_Clock_66MHz) val |= 0xff; RTL_W32(tp, 0x7c, val); } static void rtl_set_rx_mode(struct net_device *dev) { u32 rx_mode = AcceptBroadcast | AcceptMyPhys | AcceptMulticast; /* Multicast hash filter */ u32 mc_filter[2] = { 0xffffffff, 0xffffffff }; struct rtl8169_private *tp = netdev_priv(dev); u32 tmp; if (dev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ netif_notice(tp, link, dev, "Promiscuous mode enabled\n"); rx_mode |= AcceptAllPhys; } else if (netdev_mc_count(dev) > MC_FILTER_LIMIT || dev->flags & IFF_ALLMULTI || tp->mac_version == RTL_GIGA_MAC_VER_35) { /* accept all multicasts */ } else if (netdev_mc_empty(dev)) { rx_mode &= ~AcceptMulticast; } else { struct netdev_hw_addr *ha; mc_filter[1] = mc_filter[0] = 0; netdev_for_each_mc_addr(ha, dev) { u32 bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter[bit_nr >> 5] |= BIT(bit_nr & 31); } if (tp->mac_version > RTL_GIGA_MAC_VER_06) { tmp = mc_filter[0]; mc_filter[0] = swab32(mc_filter[1]); mc_filter[1] = swab32(tmp); } } if (dev->features & NETIF_F_RXALL) rx_mode |= (AcceptErr | AcceptRunt); RTL_W32(tp, MAR0 + 4, mc_filter[1]); RTL_W32(tp, MAR0 + 0, mc_filter[0]); tmp = RTL_R32(tp, RxConfig); RTL_W32(tp, RxConfig, (tmp & ~RX_CONFIG_ACCEPT_MASK) | rx_mode); } DECLARE_RTL_COND(rtl_csiar_cond) { return RTL_R32(tp, CSIAR) & CSIAR_FLAG; } static void rtl_csi_write(struct rtl8169_private *tp, int addr, int value) { u32 func = PCI_FUNC(tp->pci_dev->devfn); RTL_W32(tp, CSIDR, value); RTL_W32(tp, CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) | CSIAR_BYTE_ENABLE | func << 16); rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100); } static u32 rtl_csi_read(struct rtl8169_private *tp, int addr) { u32 func = PCI_FUNC(tp->pci_dev->devfn); RTL_W32(tp, CSIAR, (addr & CSIAR_ADDR_MASK) | func << 16 | CSIAR_BYTE_ENABLE); return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ? RTL_R32(tp, CSIDR) : ~0; } static void rtl_csi_access_enable(struct rtl8169_private *tp, u8 val) { struct pci_dev *pdev = tp->pci_dev; u32 csi; /* According to Realtek the value at config space address 0x070f * controls the L0s/L1 entrance latency. We try standard ECAM access * first and if it fails fall back to CSI. */ if (pdev->cfg_size > 0x070f && pci_write_config_byte(pdev, 0x070f, val) == PCIBIOS_SUCCESSFUL) return; netdev_notice_once(tp->dev, "No native access to PCI extended config space, falling back to CSI\n"); csi = rtl_csi_read(tp, 0x070c) & 0x00ffffff; rtl_csi_write(tp, 0x070c, csi | val << 24); } static void rtl_set_def_aspm_entry_latency(struct rtl8169_private *tp) { rtl_csi_access_enable(tp, 0x27); } struct ephy_info { unsigned int offset; u16 mask; u16 bits; }; static void __rtl_ephy_init(struct rtl8169_private *tp, const struct ephy_info *e, int len) { u16 w; while (len-- > 0) { w = (rtl_ephy_read(tp, e->offset) & ~e->mask) | e->bits; rtl_ephy_write(tp, e->offset, w); e++; } } #define rtl_ephy_init(tp, a) __rtl_ephy_init(tp, a, ARRAY_SIZE(a)) static void rtl_disable_clock_request(struct rtl8169_private *tp) { pcie_capability_clear_word(tp->pci_dev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_CLKREQ_EN); } static void rtl_enable_clock_request(struct rtl8169_private *tp) { pcie_capability_set_word(tp->pci_dev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_CLKREQ_EN); } static void rtl_pcie_state_l2l3_disable(struct rtl8169_private *tp) { /* work around an issue when PCI reset occurs during L2/L3 state */ RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Rdy_to_L23); } static void rtl_hw_aspm_clkreq_enable(struct rtl8169_private *tp, bool enable) { /* Don't enable ASPM in the chip if OS can't control ASPM */ if (enable && tp->aspm_manageable) { RTL_W8(tp, Config5, RTL_R8(tp, Config5) | ASPM_en); RTL_W8(tp, Config2, RTL_R8(tp, Config2) | ClkReqEn); } else { RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~ClkReqEn); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~ASPM_en); } udelay(10); } static void rtl_set_fifo_size(struct rtl8169_private *tp, u16 rx_stat, u16 tx_stat, u16 rx_dyn, u16 tx_dyn) { /* Usage of dynamic vs. static FIFO is controlled by bit * TXCFG_AUTO_FIFO. Exact meaning of FIFO values isn't known. */ rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, (rx_stat << 16) | rx_dyn); rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, (tx_stat << 16) | tx_dyn); } static void rtl8168g_set_pause_thresholds(struct rtl8169_private *tp, u8 low, u8 high) { /* FIFO thresholds for pause flow control */ rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, low); rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, high); } static void rtl_hw_start_8168b(struct rtl8169_private *tp) { RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); } static void __rtl_hw_start_8168cp(struct rtl8169_private *tp) { RTL_W8(tp, Config1, RTL_R8(tp, Config1) | Speed_down); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); rtl_disable_clock_request(tp); } static void rtl_hw_start_8168cp_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168cp[] = { { 0x01, 0, 0x0001 }, { 0x02, 0x0800, 0x1000 }, { 0x03, 0, 0x0042 }, { 0x06, 0x0080, 0x0000 }, { 0x07, 0, 0x2000 } }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168cp); __rtl_hw_start_8168cp(tp); } static void rtl_hw_start_8168cp_2(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); } static void rtl_hw_start_8168cp_3(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); /* Magic. */ RTL_W8(tp, DBG_REG, 0x20); } static void rtl_hw_start_8168c_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168c_1[] = { { 0x02, 0x0800, 0x1000 }, { 0x03, 0, 0x0002 }, { 0x06, 0x0080, 0x0000 } }; rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2); rtl_ephy_init(tp, e_info_8168c_1); __rtl_hw_start_8168cp(tp); } static void rtl_hw_start_8168c_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168c_2[] = { { 0x01, 0, 0x0001 }, { 0x03, 0x0400, 0x0020 } }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168c_2); __rtl_hw_start_8168cp(tp); } static void rtl_hw_start_8168c_3(struct rtl8169_private *tp) { rtl_hw_start_8168c_2(tp); } static void rtl_hw_start_8168c_4(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); __rtl_hw_start_8168cp(tp); } static void rtl_hw_start_8168d(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); rtl_disable_clock_request(tp); } static void rtl_hw_start_8168d_4(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168d_4[] = { { 0x0b, 0x0000, 0x0048 }, { 0x19, 0x0020, 0x0050 }, { 0x0c, 0x0100, 0x0020 }, { 0x10, 0x0004, 0x0000 }, }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168d_4); rtl_enable_clock_request(tp); } static void rtl_hw_start_8168e_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168e_1[] = { { 0x00, 0x0200, 0x0100 }, { 0x00, 0x0000, 0x0004 }, { 0x06, 0x0002, 0x0001 }, { 0x06, 0x0000, 0x0030 }, { 0x07, 0x0000, 0x2000 }, { 0x00, 0x0000, 0x0020 }, { 0x03, 0x5800, 0x2000 }, { 0x03, 0x0000, 0x0001 }, { 0x01, 0x0800, 0x1000 }, { 0x07, 0x0000, 0x4000 }, { 0x1e, 0x0000, 0x2000 }, { 0x19, 0xffff, 0xfe6c }, { 0x0a, 0x0000, 0x0040 } }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168e_1); rtl_disable_clock_request(tp); /* Reset tx FIFO pointer */ RTL_W32(tp, MISC, RTL_R32(tp, MISC) | TXPLA_RST); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~TXPLA_RST); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en); } static void rtl_hw_start_8168e_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168e_2[] = { { 0x09, 0x0000, 0x0080 }, { 0x19, 0x0000, 0x0224 }, { 0x00, 0x0000, 0x0004 }, { 0x0c, 0x3df0, 0x0200 }, }; rtl_set_def_aspm_entry_latency(tp); rtl_ephy_init(tp, e_info_8168e_2); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000); rtl_set_fifo_size(tp, 0x10, 0x10, 0x02, 0x06); rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050); rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x07ff0060); rtl_eri_set_bits(tp, 0x1b0, ERIAR_MASK_0001, BIT(4)); rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00); rtl_disable_clock_request(tp); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); rtl8168_config_eee_mac(tp); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN); RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168f(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000); rtl_set_fifo_size(tp, 0x10, 0x10, 0x02, 0x06); rtl_reset_packet_filter(tp); rtl_eri_set_bits(tp, 0x1b0, ERIAR_MASK_0001, BIT(4)); rtl_eri_set_bits(tp, 0x1d0, ERIAR_MASK_0001, BIT(4)); rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050); rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x00000060); rtl_disable_clock_request(tp); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN); RTL_W32(tp, MISC, RTL_R32(tp, MISC) | PWM_EN); RTL_W8(tp, Config5, RTL_R8(tp, Config5) & ~Spi_en); rtl8168_config_eee_mac(tp); } static void rtl_hw_start_8168f_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168f_1[] = { { 0x06, 0x00c0, 0x0020 }, { 0x08, 0x0001, 0x0002 }, { 0x09, 0x0000, 0x0080 }, { 0x19, 0x0000, 0x0224 }, { 0x00, 0x0000, 0x0004 }, { 0x0c, 0x3df0, 0x0200 }, }; rtl_hw_start_8168f(tp); rtl_ephy_init(tp, e_info_8168f_1); rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00); } static void rtl_hw_start_8411(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168f_1[] = { { 0x06, 0x00c0, 0x0020 }, { 0x0f, 0xffff, 0x5200 }, { 0x19, 0x0000, 0x0224 }, { 0x00, 0x0000, 0x0004 }, { 0x0c, 0x3df0, 0x0200 }, }; rtl_hw_start_8168f(tp); rtl_pcie_state_l2l3_disable(tp); rtl_ephy_init(tp, e_info_8168f_1); rtl_eri_set_bits(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00); } static void rtl_hw_start_8168g(struct rtl8169_private *tp) { rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06); rtl8168g_set_pause_thresholds(tp, 0x38, 0x48); rtl_set_def_aspm_entry_latency(tp); rtl_reset_packet_filter(tp); rtl_eri_write(tp, 0x2f8, ERIAR_MASK_0011, 0x1d8f); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000); rtl8168_config_eee_mac(tp); rtl_w0w1_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06); rtl_eri_clear_bits(tp, 0x1b0, ERIAR_MASK_0011, BIT(12)); rtl_pcie_state_l2l3_disable(tp); } static void rtl_hw_start_8168g_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168g_1[] = { { 0x00, 0x0008, 0x0000 }, { 0x0c, 0x3ff0, 0x0820 }, { 0x1e, 0x0000, 0x0001 }, { 0x19, 0x8000, 0x0000 } }; rtl_hw_start_8168g(tp); /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168g_1); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168g_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168g_2[] = { { 0x00, 0x0008, 0x0000 }, { 0x0c, 0x3ff0, 0x0820 }, { 0x19, 0xffff, 0x7c00 }, { 0x1e, 0xffff, 0x20eb }, { 0x0d, 0xffff, 0x1666 }, { 0x00, 0xffff, 0x10a3 }, { 0x06, 0xffff, 0xf050 }, { 0x04, 0x0000, 0x0010 }, { 0x1d, 0x4000, 0x0000 }, }; rtl_hw_start_8168g(tp); /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168g_2); } static void rtl_hw_start_8411_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8411_2[] = { { 0x00, 0x0008, 0x0000 }, { 0x0c, 0x37d0, 0x0820 }, { 0x1e, 0x0000, 0x0001 }, { 0x19, 0x8021, 0x0000 }, { 0x1e, 0x0000, 0x2000 }, { 0x0d, 0x0100, 0x0200 }, { 0x00, 0x0000, 0x0080 }, { 0x06, 0x0000, 0x0010 }, { 0x04, 0x0000, 0x0010 }, { 0x1d, 0x0000, 0x4000 }, }; rtl_hw_start_8168g(tp); /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8411_2); /* The following Realtek-provided magic fixes an issue with the RX unit * getting confused after the PHY having been powered-down. */ r8168_mac_ocp_write(tp, 0xFC28, 0x0000); r8168_mac_ocp_write(tp, 0xFC2A, 0x0000); r8168_mac_ocp_write(tp, 0xFC2C, 0x0000); r8168_mac_ocp_write(tp, 0xFC2E, 0x0000); r8168_mac_ocp_write(tp, 0xFC30, 0x0000); r8168_mac_ocp_write(tp, 0xFC32, 0x0000); r8168_mac_ocp_write(tp, 0xFC34, 0x0000); r8168_mac_ocp_write(tp, 0xFC36, 0x0000); mdelay(3); r8168_mac_ocp_write(tp, 0xFC26, 0x0000); r8168_mac_ocp_write(tp, 0xF800, 0xE008); r8168_mac_ocp_write(tp, 0xF802, 0xE00A); r8168_mac_ocp_write(tp, 0xF804, 0xE00C); r8168_mac_ocp_write(tp, 0xF806, 0xE00E); r8168_mac_ocp_write(tp, 0xF808, 0xE027); r8168_mac_ocp_write(tp, 0xF80A, 0xE04F); r8168_mac_ocp_write(tp, 0xF80C, 0xE05E); r8168_mac_ocp_write(tp, 0xF80E, 0xE065); r8168_mac_ocp_write(tp, 0xF810, 0xC602); r8168_mac_ocp_write(tp, 0xF812, 0xBE00); r8168_mac_ocp_write(tp, 0xF814, 0x0000); r8168_mac_ocp_write(tp, 0xF816, 0xC502); r8168_mac_ocp_write(tp, 0xF818, 0xBD00); r8168_mac_ocp_write(tp, 0xF81A, 0x074C); r8168_mac_ocp_write(tp, 0xF81C, 0xC302); r8168_mac_ocp_write(tp, 0xF81E, 0xBB00); r8168_mac_ocp_write(tp, 0xF820, 0x080A); r8168_mac_ocp_write(tp, 0xF822, 0x6420); r8168_mac_ocp_write(tp, 0xF824, 0x48C2); r8168_mac_ocp_write(tp, 0xF826, 0x8C20); r8168_mac_ocp_write(tp, 0xF828, 0xC516); r8168_mac_ocp_write(tp, 0xF82A, 0x64A4); r8168_mac_ocp_write(tp, 0xF82C, 0x49C0); r8168_mac_ocp_write(tp, 0xF82E, 0xF009); r8168_mac_ocp_write(tp, 0xF830, 0x74A2); r8168_mac_ocp_write(tp, 0xF832, 0x8CA5); r8168_mac_ocp_write(tp, 0xF834, 0x74A0); r8168_mac_ocp_write(tp, 0xF836, 0xC50E); r8168_mac_ocp_write(tp, 0xF838, 0x9CA2); r8168_mac_ocp_write(tp, 0xF83A, 0x1C11); r8168_mac_ocp_write(tp, 0xF83C, 0x9CA0); r8168_mac_ocp_write(tp, 0xF83E, 0xE006); r8168_mac_ocp_write(tp, 0xF840, 0x74F8); r8168_mac_ocp_write(tp, 0xF842, 0x48C4); r8168_mac_ocp_write(tp, 0xF844, 0x8CF8); r8168_mac_ocp_write(tp, 0xF846, 0xC404); r8168_mac_ocp_write(tp, 0xF848, 0xBC00); r8168_mac_ocp_write(tp, 0xF84A, 0xC403); r8168_mac_ocp_write(tp, 0xF84C, 0xBC00); r8168_mac_ocp_write(tp, 0xF84E, 0x0BF2); r8168_mac_ocp_write(tp, 0xF850, 0x0C0A); r8168_mac_ocp_write(tp, 0xF852, 0xE434); r8168_mac_ocp_write(tp, 0xF854, 0xD3C0); r8168_mac_ocp_write(tp, 0xF856, 0x49D9); r8168_mac_ocp_write(tp, 0xF858, 0xF01F); r8168_mac_ocp_write(tp, 0xF85A, 0xC526); r8168_mac_ocp_write(tp, 0xF85C, 0x64A5); r8168_mac_ocp_write(tp, 0xF85E, 0x1400); r8168_mac_ocp_write(tp, 0xF860, 0xF007); r8168_mac_ocp_write(tp, 0xF862, 0x0C01); r8168_mac_ocp_write(tp, 0xF864, 0x8CA5); r8168_mac_ocp_write(tp, 0xF866, 0x1C15); r8168_mac_ocp_write(tp, 0xF868, 0xC51B); r8168_mac_ocp_write(tp, 0xF86A, 0x9CA0); r8168_mac_ocp_write(tp, 0xF86C, 0xE013); r8168_mac_ocp_write(tp, 0xF86E, 0xC519); r8168_mac_ocp_write(tp, 0xF870, 0x74A0); r8168_mac_ocp_write(tp, 0xF872, 0x48C4); r8168_mac_ocp_write(tp, 0xF874, 0x8CA0); r8168_mac_ocp_write(tp, 0xF876, 0xC516); r8168_mac_ocp_write(tp, 0xF878, 0x74A4); r8168_mac_ocp_write(tp, 0xF87A, 0x48C8); r8168_mac_ocp_write(tp, 0xF87C, 0x48CA); r8168_mac_ocp_write(tp, 0xF87E, 0x9CA4); r8168_mac_ocp_write(tp, 0xF880, 0xC512); r8168_mac_ocp_write(tp, 0xF882, 0x1B00); r8168_mac_ocp_write(tp, 0xF884, 0x9BA0); r8168_mac_ocp_write(tp, 0xF886, 0x1B1C); r8168_mac_ocp_write(tp, 0xF888, 0x483F); r8168_mac_ocp_write(tp, 0xF88A, 0x9BA2); r8168_mac_ocp_write(tp, 0xF88C, 0x1B04); r8168_mac_ocp_write(tp, 0xF88E, 0xC508); r8168_mac_ocp_write(tp, 0xF890, 0x9BA0); r8168_mac_ocp_write(tp, 0xF892, 0xC505); r8168_mac_ocp_write(tp, 0xF894, 0xBD00); r8168_mac_ocp_write(tp, 0xF896, 0xC502); r8168_mac_ocp_write(tp, 0xF898, 0xBD00); r8168_mac_ocp_write(tp, 0xF89A, 0x0300); r8168_mac_ocp_write(tp, 0xF89C, 0x051E); r8168_mac_ocp_write(tp, 0xF89E, 0xE434); r8168_mac_ocp_write(tp, 0xF8A0, 0xE018); r8168_mac_ocp_write(tp, 0xF8A2, 0xE092); r8168_mac_ocp_write(tp, 0xF8A4, 0xDE20); r8168_mac_ocp_write(tp, 0xF8A6, 0xD3C0); r8168_mac_ocp_write(tp, 0xF8A8, 0xC50F); r8168_mac_ocp_write(tp, 0xF8AA, 0x76A4); r8168_mac_ocp_write(tp, 0xF8AC, 0x49E3); r8168_mac_ocp_write(tp, 0xF8AE, 0xF007); r8168_mac_ocp_write(tp, 0xF8B0, 0x49C0); r8168_mac_ocp_write(tp, 0xF8B2, 0xF103); r8168_mac_ocp_write(tp, 0xF8B4, 0xC607); r8168_mac_ocp_write(tp, 0xF8B6, 0xBE00); r8168_mac_ocp_write(tp, 0xF8B8, 0xC606); r8168_mac_ocp_write(tp, 0xF8BA, 0xBE00); r8168_mac_ocp_write(tp, 0xF8BC, 0xC602); r8168_mac_ocp_write(tp, 0xF8BE, 0xBE00); r8168_mac_ocp_write(tp, 0xF8C0, 0x0C4C); r8168_mac_ocp_write(tp, 0xF8C2, 0x0C28); r8168_mac_ocp_write(tp, 0xF8C4, 0x0C2C); r8168_mac_ocp_write(tp, 0xF8C6, 0xDC00); r8168_mac_ocp_write(tp, 0xF8C8, 0xC707); r8168_mac_ocp_write(tp, 0xF8CA, 0x1D00); r8168_mac_ocp_write(tp, 0xF8CC, 0x8DE2); r8168_mac_ocp_write(tp, 0xF8CE, 0x48C1); r8168_mac_ocp_write(tp, 0xF8D0, 0xC502); r8168_mac_ocp_write(tp, 0xF8D2, 0xBD00); r8168_mac_ocp_write(tp, 0xF8D4, 0x00AA); r8168_mac_ocp_write(tp, 0xF8D6, 0xE0C0); r8168_mac_ocp_write(tp, 0xF8D8, 0xC502); r8168_mac_ocp_write(tp, 0xF8DA, 0xBD00); r8168_mac_ocp_write(tp, 0xF8DC, 0x0132); r8168_mac_ocp_write(tp, 0xFC26, 0x8000); r8168_mac_ocp_write(tp, 0xFC2A, 0x0743); r8168_mac_ocp_write(tp, 0xFC2C, 0x0801); r8168_mac_ocp_write(tp, 0xFC2E, 0x0BE9); r8168_mac_ocp_write(tp, 0xFC30, 0x02FD); r8168_mac_ocp_write(tp, 0xFC32, 0x0C25); r8168_mac_ocp_write(tp, 0xFC34, 0x00A9); r8168_mac_ocp_write(tp, 0xFC36, 0x012D); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168h_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168h_1[] = { { 0x1e, 0x0800, 0x0001 }, { 0x1d, 0x0000, 0x0800 }, { 0x05, 0xffff, 0x2089 }, { 0x06, 0xffff, 0x5881 }, { 0x04, 0xffff, 0x854a }, { 0x01, 0xffff, 0x068b } }; int rg_saw_cnt; /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168h_1); rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06); rtl8168g_set_pause_thresholds(tp, 0x38, 0x48); rtl_set_def_aspm_entry_latency(tp); rtl_reset_packet_filter(tp); rtl_eri_set_bits(tp, 0xdc, ERIAR_MASK_1111, BIT(4)); rtl_eri_set_bits(tp, 0xd4, ERIAR_MASK_1111, 0x1f00); rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000); rtl8168_config_eee_mac(tp); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN); rtl_eri_clear_bits(tp, 0x1b0, ERIAR_MASK_0011, BIT(12)); rtl_pcie_state_l2l3_disable(tp); rg_saw_cnt = phy_read_paged(tp->phydev, 0x0c42, 0x13) & 0x3fff; if (rg_saw_cnt > 0) { u16 sw_cnt_1ms_ini; sw_cnt_1ms_ini = 16000000/rg_saw_cnt; sw_cnt_1ms_ini &= 0x0fff; r8168_mac_ocp_modify(tp, 0xd412, 0x0fff, sw_cnt_1ms_ini); } r8168_mac_ocp_modify(tp, 0xe056, 0x00f0, 0x0070); r8168_mac_ocp_modify(tp, 0xe052, 0x6000, 0x8008); r8168_mac_ocp_modify(tp, 0xe0d6, 0x01ff, 0x017f); r8168_mac_ocp_modify(tp, 0xd420, 0x0fff, 0x047f); r8168_mac_ocp_write(tp, 0xe63e, 0x0001); r8168_mac_ocp_write(tp, 0xe63e, 0x0000); r8168_mac_ocp_write(tp, 0xc094, 0x0000); r8168_mac_ocp_write(tp, 0xc09e, 0x0000); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168ep(struct rtl8169_private *tp) { rtl8168ep_stop_cmac(tp); rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06); rtl8168g_set_pause_thresholds(tp, 0x2f, 0x5f); rtl_set_def_aspm_entry_latency(tp); rtl_reset_packet_filter(tp); rtl_eri_set_bits(tp, 0xd4, ERIAR_MASK_1111, 0x1f80); rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000); rtl8168_config_eee_mac(tp); rtl_w0w1_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN); rtl_pcie_state_l2l3_disable(tp); } static void rtl_hw_start_8168ep_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168ep_1[] = { { 0x00, 0xffff, 0x10ab }, { 0x06, 0xffff, 0xf030 }, { 0x08, 0xffff, 0x2006 }, { 0x0d, 0xffff, 0x1666 }, { 0x0c, 0x3ff0, 0x0000 } }; /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168ep_1); rtl_hw_start_8168ep(tp); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168ep_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168ep_2[] = { { 0x00, 0xffff, 0x10a3 }, { 0x19, 0xffff, 0xfc00 }, { 0x1e, 0xffff, 0x20ea } }; /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168ep_2); rtl_hw_start_8168ep(tp); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8168ep_3(struct rtl8169_private *tp) { static const struct ephy_info e_info_8168ep_3[] = { { 0x00, 0x0000, 0x0080 }, { 0x0d, 0x0100, 0x0200 }, { 0x19, 0x8021, 0x0000 }, { 0x1e, 0x0000, 0x2000 }, }; /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8168ep_3); rtl_hw_start_8168ep(tp); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN); r8168_mac_ocp_modify(tp, 0xd3e2, 0x0fff, 0x0271); r8168_mac_ocp_modify(tp, 0xd3e4, 0x00ff, 0x0000); r8168_mac_ocp_modify(tp, 0xe860, 0x0000, 0x0080); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8117(struct rtl8169_private *tp) { static const struct ephy_info e_info_8117[] = { { 0x19, 0x0040, 0x1100 }, { 0x59, 0x0040, 0x1100 }, }; int rg_saw_cnt; rtl8168ep_stop_cmac(tp); /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8117); rtl_set_fifo_size(tp, 0x08, 0x10, 0x02, 0x06); rtl8168g_set_pause_thresholds(tp, 0x2f, 0x5f); rtl_set_def_aspm_entry_latency(tp); rtl_reset_packet_filter(tp); rtl_eri_set_bits(tp, 0xd4, ERIAR_MASK_1111, 0x1f90); rtl_eri_write(tp, 0x5f0, ERIAR_MASK_0011, 0x4f87); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000); rtl8168_config_eee_mac(tp); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); RTL_W8(tp, MISC_1, RTL_R8(tp, MISC_1) & ~PFM_D3COLD_EN); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~TX_10M_PS_EN); rtl_eri_clear_bits(tp, 0x1b0, ERIAR_MASK_0011, BIT(12)); rtl_pcie_state_l2l3_disable(tp); rg_saw_cnt = phy_read_paged(tp->phydev, 0x0c42, 0x13) & 0x3fff; if (rg_saw_cnt > 0) { u16 sw_cnt_1ms_ini; sw_cnt_1ms_ini = (16000000 / rg_saw_cnt) & 0x0fff; r8168_mac_ocp_modify(tp, 0xd412, 0x0fff, sw_cnt_1ms_ini); } r8168_mac_ocp_modify(tp, 0xe056, 0x00f0, 0x0070); r8168_mac_ocp_write(tp, 0xea80, 0x0003); r8168_mac_ocp_modify(tp, 0xe052, 0x0000, 0x0009); r8168_mac_ocp_modify(tp, 0xd420, 0x0fff, 0x047f); r8168_mac_ocp_write(tp, 0xe63e, 0x0001); r8168_mac_ocp_write(tp, 0xe63e, 0x0000); r8168_mac_ocp_write(tp, 0xc094, 0x0000); r8168_mac_ocp_write(tp, 0xc09e, 0x0000); /* firmware is for MAC only */ r8169_apply_firmware(tp); rtl_hw_aspm_clkreq_enable(tp, true); } static void rtl_hw_start_8102e_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8102e_1[] = { { 0x01, 0, 0x6e65 }, { 0x02, 0, 0x091f }, { 0x03, 0, 0xc2f9 }, { 0x06, 0, 0xafb5 }, { 0x07, 0, 0x0e00 }, { 0x19, 0, 0xec80 }, { 0x01, 0, 0x2e65 }, { 0x01, 0, 0x6e65 } }; u8 cfg1; rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, DBG_REG, FIX_NAK_1); RTL_W8(tp, Config1, LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); cfg1 = RTL_R8(tp, Config1); if ((cfg1 & LEDS0) && (cfg1 & LEDS1)) RTL_W8(tp, Config1, cfg1 & ~LEDS0); rtl_ephy_init(tp, e_info_8102e_1); } static void rtl_hw_start_8102e_2(struct rtl8169_private *tp) { rtl_set_def_aspm_entry_latency(tp); RTL_W8(tp, Config1, MEMMAP | IOMAP | VPD | PMEnable); RTL_W8(tp, Config3, RTL_R8(tp, Config3) & ~Beacon_en); } static void rtl_hw_start_8102e_3(struct rtl8169_private *tp) { rtl_hw_start_8102e_2(tp); rtl_ephy_write(tp, 0x03, 0xc2f9); } static void rtl_hw_start_8105e_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8105e_1[] = { { 0x07, 0, 0x4000 }, { 0x19, 0, 0x0200 }, { 0x19, 0, 0x0020 }, { 0x1e, 0, 0x2000 }, { 0x03, 0, 0x0001 }, { 0x19, 0, 0x0100 }, { 0x19, 0, 0x0004 }, { 0x0a, 0, 0x0020 } }; /* Force LAN exit from ASPM if Rx/Tx are not idle */ RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800); /* Disable Early Tally Counter */ RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) & ~0x010000); RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) | PFM_EN); rtl_ephy_init(tp, e_info_8105e_1); rtl_pcie_state_l2l3_disable(tp); } static void rtl_hw_start_8105e_2(struct rtl8169_private *tp) { rtl_hw_start_8105e_1(tp); rtl_ephy_write(tp, 0x1e, rtl_ephy_read(tp, 0x1e) | 0x8000); } static void rtl_hw_start_8402(struct rtl8169_private *tp) { static const struct ephy_info e_info_8402[] = { { 0x19, 0xffff, 0xff64 }, { 0x1e, 0, 0x4000 } }; rtl_set_def_aspm_entry_latency(tp); /* Force LAN exit from ASPM if Rx/Tx are not idle */ RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); rtl_ephy_init(tp, e_info_8402); rtl_set_fifo_size(tp, 0x00, 0x00, 0x02, 0x06); rtl_reset_packet_filter(tp); rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000); rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000); rtl_w0w1_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0e00, 0xff00); /* disable EEE */ rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000); rtl_pcie_state_l2l3_disable(tp); } static void rtl_hw_start_8106(struct rtl8169_private *tp) { rtl_hw_aspm_clkreq_enable(tp, false); /* Force LAN exit from ASPM if Rx/Tx are not idle */ RTL_W32(tp, FuncEvent, RTL_R32(tp, FuncEvent) | 0x002800); RTL_W32(tp, MISC, (RTL_R32(tp, MISC) | DISABLE_LAN_EN) & ~EARLY_TALLY_EN); RTL_W8(tp, MCU, RTL_R8(tp, MCU) | EN_NDP | EN_OOB_RESET); RTL_W8(tp, DLLPR, RTL_R8(tp, DLLPR) & ~PFM_EN); rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000); /* disable EEE */ rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000); rtl_pcie_state_l2l3_disable(tp); rtl_hw_aspm_clkreq_enable(tp, true); } DECLARE_RTL_COND(rtl_mac_ocp_e00e_cond) { return r8168_mac_ocp_read(tp, 0xe00e) & BIT(13); } static void rtl_hw_start_8125_common(struct rtl8169_private *tp) { rtl_pcie_state_l2l3_disable(tp); RTL_W16(tp, 0x382, 0x221b); RTL_W8(tp, 0x4500, 0); RTL_W16(tp, 0x4800, 0); /* disable UPS */ r8168_mac_ocp_modify(tp, 0xd40a, 0x0010, 0x0000); RTL_W8(tp, Config1, RTL_R8(tp, Config1) & ~0x10); r8168_mac_ocp_write(tp, 0xc140, 0xffff); r8168_mac_ocp_write(tp, 0xc142, 0xffff); r8168_mac_ocp_modify(tp, 0xd3e2, 0x0fff, 0x03a9); r8168_mac_ocp_modify(tp, 0xd3e4, 0x00ff, 0x0000); r8168_mac_ocp_modify(tp, 0xe860, 0x0000, 0x0080); /* disable new tx descriptor format */ r8168_mac_ocp_modify(tp, 0xeb58, 0x0001, 0x0000); r8168_mac_ocp_modify(tp, 0xe614, 0x0700, 0x0400); r8168_mac_ocp_modify(tp, 0xe63e, 0x0c30, 0x0020); r8168_mac_ocp_modify(tp, 0xc0b4, 0x0000, 0x000c); r8168_mac_ocp_modify(tp, 0xeb6a, 0x00ff, 0x0033); r8168_mac_ocp_modify(tp, 0xeb50, 0x03e0, 0x0040); r8168_mac_ocp_modify(tp, 0xe056, 0x00f0, 0x0030); r8168_mac_ocp_modify(tp, 0xe040, 0x1000, 0x0000); r8168_mac_ocp_modify(tp, 0xe0c0, 0x4f0f, 0x4403); r8168_mac_ocp_modify(tp, 0xe052, 0x0080, 0x0067); r8168_mac_ocp_modify(tp, 0xc0ac, 0x0080, 0x1f00); r8168_mac_ocp_modify(tp, 0xd430, 0x0fff, 0x047f); r8168_mac_ocp_modify(tp, 0xe84c, 0x0000, 0x00c0); r8168_mac_ocp_modify(tp, 0xea1c, 0x0004, 0x0000); r8168_mac_ocp_modify(tp, 0xeb54, 0x0000, 0x0001); udelay(1); r8168_mac_ocp_modify(tp, 0xeb54, 0x0001, 0x0000); RTL_W16(tp, 0x1880, RTL_R16(tp, 0x1880) & ~0x0030); r8168_mac_ocp_write(tp, 0xe098, 0xc302); rtl_udelay_loop_wait_low(tp, &rtl_mac_ocp_e00e_cond, 1000, 10); rtl8125_config_eee_mac(tp); RTL_W32(tp, MISC, RTL_R32(tp, MISC) & ~RXDV_GATED_EN); udelay(10); } static void rtl_hw_start_8125_1(struct rtl8169_private *tp) { static const struct ephy_info e_info_8125_1[] = { { 0x01, 0xffff, 0xa812 }, { 0x09, 0xffff, 0x520c }, { 0x04, 0xffff, 0xd000 }, { 0x0d, 0xffff, 0xf702 }, { 0x0a, 0xffff, 0x8653 }, { 0x06, 0xffff, 0x001e }, { 0x08, 0xffff, 0x3595 }, { 0x20, 0xffff, 0x9455 }, { 0x21, 0xffff, 0x99ff }, { 0x02, 0xffff, 0x6046 }, { 0x29, 0xffff, 0xfe00 }, { 0x23, 0xffff, 0xab62 }, { 0x41, 0xffff, 0xa80c }, { 0x49, 0xffff, 0x520c }, { 0x44, 0xffff, 0xd000 }, { 0x4d, 0xffff, 0xf702 }, { 0x4a, 0xffff, 0x8653 }, { 0x46, 0xffff, 0x001e }, { 0x48, 0xffff, 0x3595 }, { 0x60, 0xffff, 0x9455 }, { 0x61, 0xffff, 0x99ff }, { 0x42, 0xffff, 0x6046 }, { 0x69, 0xffff, 0xfe00 }, { 0x63, 0xffff, 0xab62 }, }; rtl_set_def_aspm_entry_latency(tp); /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8125_1); rtl_hw_start_8125_common(tp); } static void rtl_hw_start_8125_2(struct rtl8169_private *tp) { static const struct ephy_info e_info_8125_2[] = { { 0x04, 0xffff, 0xd000 }, { 0x0a, 0xffff, 0x8653 }, { 0x23, 0xffff, 0xab66 }, { 0x20, 0xffff, 0x9455 }, { 0x21, 0xffff, 0x99ff }, { 0x29, 0xffff, 0xfe04 }, { 0x44, 0xffff, 0xd000 }, { 0x4a, 0xffff, 0x8653 }, { 0x63, 0xffff, 0xab66 }, { 0x60, 0xffff, 0x9455 }, { 0x61, 0xffff, 0x99ff }, { 0x69, 0xffff, 0xfe04 }, }; rtl_set_def_aspm_entry_latency(tp); /* disable aspm and clock request before access ephy */ rtl_hw_aspm_clkreq_enable(tp, false); rtl_ephy_init(tp, e_info_8125_2); rtl_hw_start_8125_common(tp); } static void rtl_hw_config(struct rtl8169_private *tp) { static const rtl_generic_fct hw_configs[] = { [RTL_GIGA_MAC_VER_07] = rtl_hw_start_8102e_1, [RTL_GIGA_MAC_VER_08] = rtl_hw_start_8102e_3, [RTL_GIGA_MAC_VER_09] = rtl_hw_start_8102e_2, [RTL_GIGA_MAC_VER_10] = NULL, [RTL_GIGA_MAC_VER_11] = rtl_hw_start_8168b, [RTL_GIGA_MAC_VER_12] = rtl_hw_start_8168b, [RTL_GIGA_MAC_VER_13] = NULL, [RTL_GIGA_MAC_VER_14] = NULL, [RTL_GIGA_MAC_VER_15] = NULL, [RTL_GIGA_MAC_VER_16] = NULL, [RTL_GIGA_MAC_VER_17] = rtl_hw_start_8168b, [RTL_GIGA_MAC_VER_18] = rtl_hw_start_8168cp_1, [RTL_GIGA_MAC_VER_19] = rtl_hw_start_8168c_1, [RTL_GIGA_MAC_VER_20] = rtl_hw_start_8168c_2, [RTL_GIGA_MAC_VER_21] = rtl_hw_start_8168c_3, [RTL_GIGA_MAC_VER_22] = rtl_hw_start_8168c_4, [RTL_GIGA_MAC_VER_23] = rtl_hw_start_8168cp_2, [RTL_GIGA_MAC_VER_24] = rtl_hw_start_8168cp_3, [RTL_GIGA_MAC_VER_25] = rtl_hw_start_8168d, [RTL_GIGA_MAC_VER_26] = rtl_hw_start_8168d, [RTL_GIGA_MAC_VER_27] = rtl_hw_start_8168d, [RTL_GIGA_MAC_VER_28] = rtl_hw_start_8168d_4, [RTL_GIGA_MAC_VER_29] = rtl_hw_start_8105e_1, [RTL_GIGA_MAC_VER_30] = rtl_hw_start_8105e_2, [RTL_GIGA_MAC_VER_31] = rtl_hw_start_8168d, [RTL_GIGA_MAC_VER_32] = rtl_hw_start_8168e_1, [RTL_GIGA_MAC_VER_33] = rtl_hw_start_8168e_1, [RTL_GIGA_MAC_VER_34] = rtl_hw_start_8168e_2, [RTL_GIGA_MAC_VER_35] = rtl_hw_start_8168f_1, [RTL_GIGA_MAC_VER_36] = rtl_hw_start_8168f_1, [RTL_GIGA_MAC_VER_37] = rtl_hw_start_8402, [RTL_GIGA_MAC_VER_38] = rtl_hw_start_8411, [RTL_GIGA_MAC_VER_39] = rtl_hw_start_8106, [RTL_GIGA_MAC_VER_40] = rtl_hw_start_8168g_1, [RTL_GIGA_MAC_VER_41] = rtl_hw_start_8168g_1, [RTL_GIGA_MAC_VER_42] = rtl_hw_start_8168g_2, [RTL_GIGA_MAC_VER_43] = rtl_hw_start_8168g_2, [RTL_GIGA_MAC_VER_44] = rtl_hw_start_8411_2, [RTL_GIGA_MAC_VER_45] = rtl_hw_start_8168h_1, [RTL_GIGA_MAC_VER_46] = rtl_hw_start_8168h_1, [RTL_GIGA_MAC_VER_47] = rtl_hw_start_8168h_1, [RTL_GIGA_MAC_VER_48] = rtl_hw_start_8168h_1, [RTL_GIGA_MAC_VER_49] = rtl_hw_start_8168ep_1, [RTL_GIGA_MAC_VER_50] = rtl_hw_start_8168ep_2, [RTL_GIGA_MAC_VER_51] = rtl_hw_start_8168ep_3, [RTL_GIGA_MAC_VER_52] = rtl_hw_start_8117, [RTL_GIGA_MAC_VER_60] = rtl_hw_start_8125_1, [RTL_GIGA_MAC_VER_61] = rtl_hw_start_8125_2, }; if (hw_configs[tp->mac_version]) hw_configs[tp->mac_version](tp); } static void rtl_hw_start_8125(struct rtl8169_private *tp) { int i; /* disable interrupt coalescing */ for (i = 0xa00; i < 0xb00; i += 4) RTL_W32(tp, i, 0); rtl_hw_config(tp); } static void rtl_hw_start_8168(struct rtl8169_private *tp) { if (rtl_is_8168evl_up(tp)) RTL_W8(tp, MaxTxPacketSize, EarlySize); else RTL_W8(tp, MaxTxPacketSize, TxPacketMax); rtl_hw_config(tp); /* disable interrupt coalescing */ RTL_W16(tp, IntrMitigate, 0x0000); } static void rtl_hw_start_8169(struct rtl8169_private *tp) { RTL_W8(tp, EarlyTxThres, NoEarlyTx); tp->cp_cmd |= PCIMulRW; if (tp->mac_version == RTL_GIGA_MAC_VER_02 || tp->mac_version == RTL_GIGA_MAC_VER_03) tp->cp_cmd |= EnAnaPLL; RTL_W16(tp, CPlusCmd, tp->cp_cmd); rtl8169_set_magic_reg(tp, tp->mac_version); RTL_W32(tp, RxMissed, 0); /* disable interrupt coalescing */ RTL_W16(tp, IntrMitigate, 0x0000); } static void rtl_hw_start(struct rtl8169_private *tp) { rtl_unlock_config_regs(tp); tp->cp_cmd &= CPCMD_MASK; RTL_W16(tp, CPlusCmd, tp->cp_cmd); if (tp->mac_version <= RTL_GIGA_MAC_VER_06) rtl_hw_start_8169(tp); else if (rtl_is_8125(tp)) rtl_hw_start_8125(tp); else rtl_hw_start_8168(tp); rtl_set_rx_max_size(tp); rtl_set_rx_tx_desc_registers(tp); rtl_lock_config_regs(tp); rtl_jumbo_config(tp, tp->dev->mtu); /* Initially a 10 us delay. Turned it into a PCI commit. - FR */ rtl_pci_commit(tp); RTL_W8(tp, ChipCmd, CmdTxEnb | CmdRxEnb); rtl_init_rxcfg(tp); rtl_set_tx_config_registers(tp); rtl_set_rx_mode(tp->dev); rtl_irq_enable(tp); } static int rtl8169_change_mtu(struct net_device *dev, int new_mtu) { struct rtl8169_private *tp = netdev_priv(dev); rtl_jumbo_config(tp, new_mtu); dev->mtu = new_mtu; netdev_update_features(dev); return 0; } static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc) { desc->addr = cpu_to_le64(0x0badbadbadbadbadull); desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask); } static inline void rtl8169_mark_to_asic(struct RxDesc *desc) { u32 eor = le32_to_cpu(desc->opts1) & RingEnd; /* Force memory writes to complete before releasing descriptor */ dma_wmb(); desc->opts1 = cpu_to_le32(DescOwn | eor | R8169_RX_BUF_SIZE); } static struct page *rtl8169_alloc_rx_data(struct rtl8169_private *tp, struct RxDesc *desc) { struct device *d = tp_to_dev(tp); int node = dev_to_node(d); dma_addr_t mapping; struct page *data; data = alloc_pages_node(node, GFP_KERNEL, get_order(R8169_RX_BUF_SIZE)); if (!data) return NULL; mapping = dma_map_page(d, data, 0, R8169_RX_BUF_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, tp->dev, "Failed to map RX DMA!\n"); __free_pages(data, get_order(R8169_RX_BUF_SIZE)); return NULL; } desc->addr = cpu_to_le64(mapping); rtl8169_mark_to_asic(desc); return data; } static void rtl8169_rx_clear(struct rtl8169_private *tp) { unsigned int i; for (i = 0; i < NUM_RX_DESC && tp->Rx_databuff[i]; i++) { dma_unmap_page(tp_to_dev(tp), le64_to_cpu(tp->RxDescArray[i].addr), R8169_RX_BUF_SIZE, DMA_FROM_DEVICE); __free_pages(tp->Rx_databuff[i], get_order(R8169_RX_BUF_SIZE)); tp->Rx_databuff[i] = NULL; rtl8169_make_unusable_by_asic(tp->RxDescArray + i); } } static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc) { desc->opts1 |= cpu_to_le32(RingEnd); } static int rtl8169_rx_fill(struct rtl8169_private *tp) { unsigned int i; for (i = 0; i < NUM_RX_DESC; i++) { struct page *data; data = rtl8169_alloc_rx_data(tp, tp->RxDescArray + i); if (!data) { rtl8169_rx_clear(tp); return -ENOMEM; } tp->Rx_databuff[i] = data; } rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1); return 0; } static int rtl8169_init_ring(struct rtl8169_private *tp) { rtl8169_init_ring_indexes(tp); memset(tp->tx_skb, 0, sizeof(tp->tx_skb)); memset(tp->Rx_databuff, 0, sizeof(tp->Rx_databuff)); return rtl8169_rx_fill(tp); } static void rtl8169_unmap_tx_skb(struct device *d, struct ring_info *tx_skb, struct TxDesc *desc) { unsigned int len = tx_skb->len; dma_unmap_single(d, le64_to_cpu(desc->addr), len, DMA_TO_DEVICE); desc->opts1 = 0x00; desc->opts2 = 0x00; desc->addr = 0x00; tx_skb->len = 0; } static void rtl8169_tx_clear_range(struct rtl8169_private *tp, u32 start, unsigned int n) { unsigned int i; for (i = 0; i < n; i++) { unsigned int entry = (start + i) % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; unsigned int len = tx_skb->len; if (len) { struct sk_buff *skb = tx_skb->skb; rtl8169_unmap_tx_skb(tp_to_dev(tp), tx_skb, tp->TxDescArray + entry); if (skb) { dev_consume_skb_any(skb); tx_skb->skb = NULL; } } } } static void rtl8169_tx_clear(struct rtl8169_private *tp) { rtl8169_tx_clear_range(tp, tp->dirty_tx, NUM_TX_DESC); tp->cur_tx = tp->dirty_tx = 0; netdev_reset_queue(tp->dev); } static void rtl_reset_work(struct rtl8169_private *tp) { struct net_device *dev = tp->dev; int i; napi_disable(&tp->napi); netif_stop_queue(dev); synchronize_rcu(); rtl8169_hw_reset(tp); for (i = 0; i < NUM_RX_DESC; i++) rtl8169_mark_to_asic(tp->RxDescArray + i); rtl8169_tx_clear(tp); rtl8169_init_ring_indexes(tp); napi_enable(&tp->napi); rtl_hw_start(tp); netif_wake_queue(dev); } static void rtl8169_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct rtl8169_private *tp = netdev_priv(dev); rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING); } static __le32 rtl8169_get_txd_opts1(u32 opts0, u32 len, unsigned int entry) { u32 status = opts0 | len; if (entry == NUM_TX_DESC - 1) status |= RingEnd; return cpu_to_le32(status); } static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb, u32 *opts) { struct skb_shared_info *info = skb_shinfo(skb); unsigned int cur_frag, entry; struct TxDesc *uninitialized_var(txd); struct device *d = tp_to_dev(tp); entry = tp->cur_tx; for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) { const skb_frag_t *frag = info->frags + cur_frag; dma_addr_t mapping; u32 len; void *addr; entry = (entry + 1) % NUM_TX_DESC; txd = tp->TxDescArray + entry; len = skb_frag_size(frag); addr = skb_frag_address(frag); mapping = dma_map_single(d, addr, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, tp->dev, "Failed to map TX fragments DMA!\n"); goto err_out; } txd->opts1 = rtl8169_get_txd_opts1(opts[0], len, entry); txd->opts2 = cpu_to_le32(opts[1]); txd->addr = cpu_to_le64(mapping); tp->tx_skb[entry].len = len; } if (cur_frag) { tp->tx_skb[entry].skb = skb; txd->opts1 |= cpu_to_le32(LastFrag); } return cur_frag; err_out: rtl8169_tx_clear_range(tp, tp->cur_tx + 1, cur_frag); return -EIO; } static bool rtl_test_hw_pad_bug(struct rtl8169_private *tp, struct sk_buff *skb) { return skb->len < ETH_ZLEN && tp->mac_version == RTL_GIGA_MAC_VER_34; } /* msdn_giant_send_check() * According to the document of microsoft, the TCP Pseudo Header excludes the * packet length for IPv6 TCP large packets. */ static int msdn_giant_send_check(struct sk_buff *skb) { const struct ipv6hdr *ipv6h; struct tcphdr *th; int ret; ret = skb_cow_head(skb, 0); if (ret) return ret; ipv6h = ipv6_hdr(skb); th = tcp_hdr(skb); th->check = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); return ret; } static void rtl8169_tso_csum_v1(struct sk_buff *skb, u32 *opts) { u32 mss = skb_shinfo(skb)->gso_size; if (mss) { opts[0] |= TD_LSO; opts[0] |= min(mss, TD_MSS_MAX) << TD0_MSS_SHIFT; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { const struct iphdr *ip = ip_hdr(skb); if (ip->protocol == IPPROTO_TCP) opts[0] |= TD0_IP_CS | TD0_TCP_CS; else if (ip->protocol == IPPROTO_UDP) opts[0] |= TD0_IP_CS | TD0_UDP_CS; else WARN_ON_ONCE(1); } } static bool rtl8169_tso_csum_v2(struct rtl8169_private *tp, struct sk_buff *skb, u32 *opts) { u32 transport_offset = (u32)skb_transport_offset(skb); u32 mss = skb_shinfo(skb)->gso_size; if (mss) { switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts[0] |= TD1_GTSENV4; break; case htons(ETH_P_IPV6): if (msdn_giant_send_check(skb)) return false; opts[0] |= TD1_GTSENV6; break; default: WARN_ON_ONCE(1); break; } opts[0] |= transport_offset << GTTCPHO_SHIFT; opts[1] |= min(mss, TD_MSS_MAX) << TD1_MSS_SHIFT; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { u8 ip_protocol; switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts[1] |= TD1_IPv4_CS; ip_protocol = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): opts[1] |= TD1_IPv6_CS; ip_protocol = ipv6_hdr(skb)->nexthdr; break; default: ip_protocol = IPPROTO_RAW; break; } if (ip_protocol == IPPROTO_TCP) opts[1] |= TD1_TCP_CS; else if (ip_protocol == IPPROTO_UDP) opts[1] |= TD1_UDP_CS; else WARN_ON_ONCE(1); opts[1] |= transport_offset << TCPHO_SHIFT; } else { if (unlikely(rtl_test_hw_pad_bug(tp, skb))) return !eth_skb_pad(skb); } return true; } static bool rtl_tx_slots_avail(struct rtl8169_private *tp, unsigned int nr_frags) { unsigned int slots_avail = tp->dirty_tx + NUM_TX_DESC - tp->cur_tx; /* A skbuff with nr_frags needs nr_frags+1 entries in the tx queue */ return slots_avail > nr_frags; } /* Versions RTL8102e and from RTL8168c onwards support csum_v2 */ static bool rtl_chip_supports_csum_v2(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06: case RTL_GIGA_MAC_VER_10 ... RTL_GIGA_MAC_VER_17: return false; default: return true; } } static void rtl8169_doorbell(struct rtl8169_private *tp) { if (rtl_is_8125(tp)) RTL_W16(tp, TxPoll_8125, BIT(0)); else RTL_W8(tp, TxPoll, NPQ); } static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); unsigned int entry = tp->cur_tx % NUM_TX_DESC; struct TxDesc *txd = tp->TxDescArray + entry; struct device *d = tp_to_dev(tp); dma_addr_t mapping; u32 opts[2], len; bool stop_queue; bool door_bell; int frags; if (unlikely(!rtl_tx_slots_avail(tp, skb_shinfo(skb)->nr_frags))) { netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n"); goto err_stop_0; } if (unlikely(le32_to_cpu(txd->opts1) & DescOwn)) goto err_stop_0; opts[1] = rtl8169_tx_vlan_tag(skb); opts[0] = DescOwn; if (rtl_chip_supports_csum_v2(tp)) { if (!rtl8169_tso_csum_v2(tp, skb, opts)) goto err_dma_0; } else { rtl8169_tso_csum_v1(skb, opts); } len = skb_headlen(skb); mapping = dma_map_single(d, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(d, mapping))) { if (net_ratelimit()) netif_err(tp, drv, dev, "Failed to map TX DMA!\n"); goto err_dma_0; } tp->tx_skb[entry].len = len; txd->addr = cpu_to_le64(mapping); frags = rtl8169_xmit_frags(tp, skb, opts); if (frags < 0) goto err_dma_1; else if (frags) opts[0] |= FirstFrag; else { opts[0] |= FirstFrag | LastFrag; tp->tx_skb[entry].skb = skb; } txd->opts2 = cpu_to_le32(opts[1]); skb_tx_timestamp(skb); /* Force memory writes to complete before releasing descriptor */ dma_wmb(); door_bell = __netdev_sent_queue(dev, skb->len, netdev_xmit_more()); txd->opts1 = rtl8169_get_txd_opts1(opts[0], len, entry); /* Force all memory writes to complete before notifying device */ wmb(); tp->cur_tx += frags + 1; stop_queue = !rtl_tx_slots_avail(tp, MAX_SKB_FRAGS); if (unlikely(stop_queue)) { /* Avoid wrongly optimistic queue wake-up: rtl_tx thread must * not miss a ring update when it notices a stopped queue. */ smp_wmb(); netif_stop_queue(dev); door_bell = true; } if (door_bell) rtl8169_doorbell(tp); if (unlikely(stop_queue)) { /* Sync with rtl_tx: * - publish queue status and cur_tx ring index (write barrier) * - refresh dirty_tx ring index (read barrier). * May the current thread have a pessimistic view of the ring * status and forget to wake up queue, a racing rtl_tx thread * can't. */ smp_mb(); if (rtl_tx_slots_avail(tp, MAX_SKB_FRAGS)) netif_start_queue(dev); } return NETDEV_TX_OK; err_dma_1: rtl8169_unmap_tx_skb(d, tp->tx_skb + entry, txd); err_dma_0: dev_kfree_skb_any(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; err_stop_0: netif_stop_queue(dev); dev->stats.tx_dropped++; return NETDEV_TX_BUSY; } static netdev_features_t rtl8169_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { int transport_offset = skb_transport_offset(skb); struct rtl8169_private *tp = netdev_priv(dev); if (skb_is_gso(skb)) { if (transport_offset > GTTCPHO_MAX && rtl_chip_supports_csum_v2(tp)) features &= ~NETIF_F_ALL_TSO; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { if (skb->len < ETH_ZLEN) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: case RTL_GIGA_MAC_VER_34: features &= ~NETIF_F_CSUM_MASK; break; default: break; } } if (transport_offset > TCPHO_MAX && rtl_chip_supports_csum_v2(tp)) features &= ~NETIF_F_CSUM_MASK; } return vlan_features_check(skb, features); } static void rtl8169_pcierr_interrupt(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; u16 pci_status, pci_cmd; pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_read_config_word(pdev, PCI_STATUS, &pci_status); netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n", pci_cmd, pci_status); /* * The recovery sequence below admits a very elaborated explanation: * - it seems to work; * - I did not see what else could be done; * - it makes iop3xx happy. * * Feel free to adjust to your needs. */ if (pdev->broken_parity_status) pci_cmd &= ~PCI_COMMAND_PARITY; else pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY; pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); pci_write_config_word(pdev, PCI_STATUS, pci_status & (PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT)); rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING); } static void rtl_tx(struct net_device *dev, struct rtl8169_private *tp, int budget) { unsigned int dirty_tx, tx_left, bytes_compl = 0, pkts_compl = 0; dirty_tx = tp->dirty_tx; smp_rmb(); tx_left = tp->cur_tx - dirty_tx; while (tx_left > 0) { unsigned int entry = dirty_tx % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; u32 status; status = le32_to_cpu(tp->TxDescArray[entry].opts1); if (status & DescOwn) break; /* This barrier is needed to keep us from reading * any other fields out of the Tx descriptor until * we know the status of DescOwn */ dma_rmb(); rtl8169_unmap_tx_skb(tp_to_dev(tp), tx_skb, tp->TxDescArray + entry); if (tx_skb->skb) { pkts_compl++; bytes_compl += tx_skb->skb->len; napi_consume_skb(tx_skb->skb, budget); tx_skb->skb = NULL; } dirty_tx++; tx_left--; } if (tp->dirty_tx != dirty_tx) { netdev_completed_queue(dev, pkts_compl, bytes_compl); u64_stats_update_begin(&tp->tx_stats.syncp); tp->tx_stats.packets += pkts_compl; tp->tx_stats.bytes += bytes_compl; u64_stats_update_end(&tp->tx_stats.syncp); tp->dirty_tx = dirty_tx; /* Sync with rtl8169_start_xmit: * - publish dirty_tx ring index (write barrier) * - refresh cur_tx ring index and queue status (read barrier) * May the current thread miss the stopped queue condition, * a racing xmit thread can only have a right view of the * ring status. */ smp_mb(); if (netif_queue_stopped(dev) && rtl_tx_slots_avail(tp, MAX_SKB_FRAGS)) { netif_wake_queue(dev); } /* * 8168 hack: TxPoll requests are lost when the Tx packets are * too close. Let's kick an extra TxPoll request when a burst * of start_xmit activity is detected (if it is not detected, * it is slow enough). -- FR */ if (tp->cur_tx != dirty_tx) rtl8169_doorbell(tp); } } static inline int rtl8169_fragmented_frame(u32 status) { return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag); } static inline void rtl8169_rx_csum(struct sk_buff *skb, u32 opts1) { u32 status = opts1 & RxProtoMask; if (((status == RxProtoTCP) && !(opts1 & TCPFail)) || ((status == RxProtoUDP) && !(opts1 & UDPFail))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); } static int rtl_rx(struct net_device *dev, struct rtl8169_private *tp, u32 budget) { unsigned int cur_rx, rx_left; unsigned int count; cur_rx = tp->cur_rx; for (rx_left = min(budget, NUM_RX_DESC); rx_left > 0; rx_left--, cur_rx++) { unsigned int entry = cur_rx % NUM_RX_DESC; const void *rx_buf = page_address(tp->Rx_databuff[entry]); struct RxDesc *desc = tp->RxDescArray + entry; u32 status; status = le32_to_cpu(desc->opts1); if (status & DescOwn) break; /* This barrier is needed to keep us from reading * any other fields out of the Rx descriptor until * we know the status of DescOwn */ dma_rmb(); if (unlikely(status & RxRES)) { netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n", status); dev->stats.rx_errors++; if (status & (RxRWT | RxRUNT)) dev->stats.rx_length_errors++; if (status & RxCRC) dev->stats.rx_crc_errors++; if (status & (RxRUNT | RxCRC) && !(status & RxRWT) && dev->features & NETIF_F_RXALL) { goto process_pkt; } } else { unsigned int pkt_size; struct sk_buff *skb; process_pkt: pkt_size = status & GENMASK(13, 0); if (likely(!(dev->features & NETIF_F_RXFCS))) pkt_size -= ETH_FCS_LEN; /* * The driver does not support incoming fragmented * frames. They are seen as a symptom of over-mtu * sized frames. */ if (unlikely(rtl8169_fragmented_frame(status))) { dev->stats.rx_dropped++; dev->stats.rx_length_errors++; goto release_descriptor; } skb = napi_alloc_skb(&tp->napi, pkt_size); if (unlikely(!skb)) { dev->stats.rx_dropped++; goto release_descriptor; } dma_sync_single_for_cpu(tp_to_dev(tp), le64_to_cpu(desc->addr), pkt_size, DMA_FROM_DEVICE); prefetch(rx_buf); skb_copy_to_linear_data(skb, rx_buf, pkt_size); skb->tail += pkt_size; skb->len = pkt_size; dma_sync_single_for_device(tp_to_dev(tp), le64_to_cpu(desc->addr), pkt_size, DMA_FROM_DEVICE); rtl8169_rx_csum(skb, status); skb->protocol = eth_type_trans(skb, dev); rtl8169_rx_vlan_tag(desc, skb); if (skb->pkt_type == PACKET_MULTICAST) dev->stats.multicast++; napi_gro_receive(&tp->napi, skb); u64_stats_update_begin(&tp->rx_stats.syncp); tp->rx_stats.packets++; tp->rx_stats.bytes += pkt_size; u64_stats_update_end(&tp->rx_stats.syncp); } release_descriptor: desc->opts2 = 0; rtl8169_mark_to_asic(desc); } count = cur_rx - tp->cur_rx; tp->cur_rx = cur_rx; return count; } static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance) { struct rtl8169_private *tp = dev_instance; u32 status = rtl_get_events(tp); if (!tp->irq_enabled || (status & 0xffff) == 0xffff || !(status & tp->irq_mask)) return IRQ_NONE; if (unlikely(status & SYSErr)) { rtl8169_pcierr_interrupt(tp->dev); goto out; } if (status & LinkChg) phy_mac_interrupt(tp->phydev); if (unlikely(status & RxFIFOOver && tp->mac_version == RTL_GIGA_MAC_VER_11)) { netif_stop_queue(tp->dev); /* XXX - Hack alert. See rtl_task(). */ set_bit(RTL_FLAG_TASK_RESET_PENDING, tp->wk.flags); } rtl_irq_disable(tp); napi_schedule_irqoff(&tp->napi); out: rtl_ack_events(tp, status); return IRQ_HANDLED; } static void rtl_task(struct work_struct *work) { static const struct { int bitnr; void (*action)(struct rtl8169_private *); } rtl_work[] = { { RTL_FLAG_TASK_RESET_PENDING, rtl_reset_work }, }; struct rtl8169_private *tp = container_of(work, struct rtl8169_private, wk.work); struct net_device *dev = tp->dev; int i; rtl_lock_work(tp); if (!netif_running(dev) || !test_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags)) goto out_unlock; for (i = 0; i < ARRAY_SIZE(rtl_work); i++) { bool pending; pending = test_and_clear_bit(rtl_work[i].bitnr, tp->wk.flags); if (pending) rtl_work[i].action(tp); } out_unlock: rtl_unlock_work(tp); } static int rtl8169_poll(struct napi_struct *napi, int budget) { struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi); struct net_device *dev = tp->dev; int work_done; work_done = rtl_rx(dev, tp, (u32) budget); rtl_tx(dev, tp, budget); if (work_done < budget) { napi_complete_done(napi, work_done); rtl_irq_enable(tp); } return work_done; } static void rtl8169_rx_missed(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); if (tp->mac_version > RTL_GIGA_MAC_VER_06) return; dev->stats.rx_missed_errors += RTL_R32(tp, RxMissed) & 0xffffff; RTL_W32(tp, RxMissed, 0); } static void r8169_phylink_handler(struct net_device *ndev) { struct rtl8169_private *tp = netdev_priv(ndev); if (netif_carrier_ok(ndev)) { rtl_link_chg_patch(tp); pm_request_resume(&tp->pci_dev->dev); } else { pm_runtime_idle(&tp->pci_dev->dev); } if (net_ratelimit()) phy_print_status(tp->phydev); } static int r8169_phy_connect(struct rtl8169_private *tp) { struct phy_device *phydev = tp->phydev; phy_interface_t phy_mode; int ret; phy_mode = tp->supports_gmii ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII; ret = phy_connect_direct(tp->dev, phydev, r8169_phylink_handler, phy_mode); if (ret) return ret; if (!tp->supports_gmii) phy_set_max_speed(phydev, SPEED_100); phy_support_asym_pause(phydev); phy_attached_info(phydev); return 0; } static void rtl8169_down(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); phy_stop(tp->phydev); napi_disable(&tp->napi); netif_stop_queue(dev); rtl8169_hw_reset(tp); /* * At this point device interrupts can not be enabled in any function, * as netif_running is not true (rtl8169_interrupt, rtl8169_reset_task) * and napi is disabled (rtl8169_poll). */ rtl8169_rx_missed(dev); /* Give a racing hard_start_xmit a few cycles to complete. */ synchronize_rcu(); rtl8169_tx_clear(tp); rtl8169_rx_clear(tp); rtl_pll_power_down(tp); } static int rtl8169_close(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; pm_runtime_get_sync(&pdev->dev); /* Update counters before going down */ rtl8169_update_counters(tp); rtl_lock_work(tp); /* Clear all task flags */ bitmap_zero(tp->wk.flags, RTL_FLAG_MAX); rtl8169_down(dev); rtl_unlock_work(tp); cancel_work_sync(&tp->wk.work); phy_disconnect(tp->phydev); pci_free_irq(pdev, 0, tp); dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; tp->RxDescArray = NULL; pm_runtime_put_sync(&pdev->dev); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void rtl8169_netpoll(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_interrupt(pci_irq_vector(tp->pci_dev, 0), tp); } #endif static int rtl_open(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; int retval = -ENOMEM; pm_runtime_get_sync(&pdev->dev); /* * Rx and Tx descriptors needs 256 bytes alignment. * dma_alloc_coherent provides more. */ tp->TxDescArray = dma_alloc_coherent(&pdev->dev, R8169_TX_RING_BYTES, &tp->TxPhyAddr, GFP_KERNEL); if (!tp->TxDescArray) goto err_pm_runtime_put; tp->RxDescArray = dma_alloc_coherent(&pdev->dev, R8169_RX_RING_BYTES, &tp->RxPhyAddr, GFP_KERNEL); if (!tp->RxDescArray) goto err_free_tx_0; retval = rtl8169_init_ring(tp); if (retval < 0) goto err_free_rx_1; rtl_request_firmware(tp); retval = pci_request_irq(pdev, 0, rtl8169_interrupt, NULL, tp, dev->name); if (retval < 0) goto err_release_fw_2; retval = r8169_phy_connect(tp); if (retval) goto err_free_irq; rtl_lock_work(tp); set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags); napi_enable(&tp->napi); rtl8169_init_phy(tp); rtl_pll_power_up(tp); rtl_hw_start(tp); if (!rtl8169_init_counter_offsets(tp)) netif_warn(tp, hw, dev, "counter reset/update failed\n"); phy_start(tp->phydev); netif_start_queue(dev); rtl_unlock_work(tp); pm_runtime_put_sync(&pdev->dev); out: return retval; err_free_irq: pci_free_irq(pdev, 0, tp); err_release_fw_2: rtl_release_firmware(tp); rtl8169_rx_clear(tp); err_free_rx_1: dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); tp->RxDescArray = NULL; err_free_tx_0: dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; err_pm_runtime_put: pm_runtime_put_noidle(&pdev->dev); goto out; } static void rtl8169_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; struct rtl8169_counters *counters = tp->counters; unsigned int start; pm_runtime_get_noresume(&pdev->dev); if (netif_running(dev) && pm_runtime_active(&pdev->dev)) rtl8169_rx_missed(dev); do { start = u64_stats_fetch_begin_irq(&tp->rx_stats.syncp); stats->rx_packets = tp->rx_stats.packets; stats->rx_bytes = tp->rx_stats.bytes; } while (u64_stats_fetch_retry_irq(&tp->rx_stats.syncp, start)); do { start = u64_stats_fetch_begin_irq(&tp->tx_stats.syncp); stats->tx_packets = tp->tx_stats.packets; stats->tx_bytes = tp->tx_stats.bytes; } while (u64_stats_fetch_retry_irq(&tp->tx_stats.syncp, start)); stats->rx_dropped = dev->stats.rx_dropped; stats->tx_dropped = dev->stats.tx_dropped; stats->rx_length_errors = dev->stats.rx_length_errors; stats->rx_errors = dev->stats.rx_errors; stats->rx_crc_errors = dev->stats.rx_crc_errors; stats->rx_fifo_errors = dev->stats.rx_fifo_errors; stats->rx_missed_errors = dev->stats.rx_missed_errors; stats->multicast = dev->stats.multicast; /* * Fetch additional counter values missing in stats collected by driver * from tally counters. */ if (pm_runtime_active(&pdev->dev)) rtl8169_update_counters(tp); /* * Subtract values fetched during initalization. * See rtl8169_init_counter_offsets for a description why we do that. */ stats->tx_errors = le64_to_cpu(counters->tx_errors) - le64_to_cpu(tp->tc_offset.tx_errors); stats->collisions = le32_to_cpu(counters->tx_multi_collision) - le32_to_cpu(tp->tc_offset.tx_multi_collision); stats->tx_aborted_errors = le16_to_cpu(counters->tx_aborted) - le16_to_cpu(tp->tc_offset.tx_aborted); pm_runtime_put_noidle(&pdev->dev); } static void rtl8169_net_suspend(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); if (!netif_running(dev)) return; phy_stop(tp->phydev); netif_device_detach(dev); rtl_lock_work(tp); napi_disable(&tp->napi); /* Clear all task flags */ bitmap_zero(tp->wk.flags, RTL_FLAG_MAX); rtl_unlock_work(tp); rtl_pll_power_down(tp); } #ifdef CONFIG_PM static int rtl8169_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtl8169_private *tp = netdev_priv(dev); rtl8169_net_suspend(dev); clk_disable_unprepare(tp->clk); return 0; } static void __rtl8169_resume(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); netif_device_attach(dev); rtl_pll_power_up(tp); rtl8169_init_phy(tp); phy_start(tp->phydev); rtl_lock_work(tp); napi_enable(&tp->napi); set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags); rtl_reset_work(tp); rtl_unlock_work(tp); } static int rtl8169_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtl8169_private *tp = netdev_priv(dev); rtl_rar_set(tp, dev->dev_addr); clk_prepare_enable(tp->clk); if (netif_running(dev)) __rtl8169_resume(dev); return 0; } static int rtl8169_runtime_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtl8169_private *tp = netdev_priv(dev); if (!tp->TxDescArray) return 0; rtl_lock_work(tp); __rtl8169_set_wol(tp, WAKE_ANY); rtl_unlock_work(tp); rtl8169_net_suspend(dev); /* Update counters before going runtime suspend */ rtl8169_rx_missed(dev); rtl8169_update_counters(tp); return 0; } static int rtl8169_runtime_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct rtl8169_private *tp = netdev_priv(dev); rtl_rar_set(tp, dev->dev_addr); if (!tp->TxDescArray) return 0; rtl_lock_work(tp); __rtl8169_set_wol(tp, tp->saved_wolopts); rtl_unlock_work(tp); __rtl8169_resume(dev); return 0; } static int rtl8169_runtime_idle(struct device *device) { struct net_device *dev = dev_get_drvdata(device); if (!netif_running(dev) || !netif_carrier_ok(dev)) pm_schedule_suspend(device, 10000); return -EBUSY; } static const struct dev_pm_ops rtl8169_pm_ops = { .suspend = rtl8169_suspend, .resume = rtl8169_resume, .freeze = rtl8169_suspend, .thaw = rtl8169_resume, .poweroff = rtl8169_suspend, .restore = rtl8169_resume, .runtime_suspend = rtl8169_runtime_suspend, .runtime_resume = rtl8169_runtime_resume, .runtime_idle = rtl8169_runtime_idle, }; #define RTL8169_PM_OPS (&rtl8169_pm_ops) #else /* !CONFIG_PM */ #define RTL8169_PM_OPS NULL #endif /* !CONFIG_PM */ static void rtl_wol_shutdown_quirk(struct rtl8169_private *tp) { /* WoL fails with 8168b when the receiver is disabled. */ switch (tp->mac_version) { case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: pci_clear_master(tp->pci_dev); RTL_W8(tp, ChipCmd, CmdRxEnb); rtl_pci_commit(tp); break; default: break; } } static void rtl_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); rtl8169_net_suspend(dev); /* Restore original MAC address */ rtl_rar_set(tp, dev->perm_addr); rtl8169_hw_reset(tp); if (system_state == SYSTEM_POWER_OFF) { if (tp->saved_wolopts) { rtl_wol_suspend_quirk(tp); rtl_wol_shutdown_quirk(tp); } pci_wake_from_d3(pdev, true); pci_set_power_state(pdev, PCI_D3hot); } } static void rtl_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); if (r8168_check_dash(tp)) rtl8168_driver_stop(tp); netif_napi_del(&tp->napi); unregister_netdev(dev); mdiobus_unregister(tp->phydev->mdio.bus); rtl_release_firmware(tp); if (pci_dev_run_wake(pdev)) pm_runtime_get_noresume(&pdev->dev); /* restore original MAC address */ rtl_rar_set(tp, dev->perm_addr); } static const struct net_device_ops rtl_netdev_ops = { .ndo_open = rtl_open, .ndo_stop = rtl8169_close, .ndo_get_stats64 = rtl8169_get_stats64, .ndo_start_xmit = rtl8169_start_xmit, .ndo_features_check = rtl8169_features_check, .ndo_tx_timeout = rtl8169_tx_timeout, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = rtl8169_change_mtu, .ndo_fix_features = rtl8169_fix_features, .ndo_set_features = rtl8169_set_features, .ndo_set_mac_address = rtl_set_mac_address, .ndo_do_ioctl = phy_do_ioctl_running, .ndo_set_rx_mode = rtl_set_rx_mode, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = rtl8169_netpoll, #endif }; static void rtl_set_irq_mask(struct rtl8169_private *tp) { tp->irq_mask = RTL_EVENT_NAPI | LinkChg; if (tp->mac_version <= RTL_GIGA_MAC_VER_06) tp->irq_mask |= SYSErr | RxOverflow | RxFIFOOver; else if (tp->mac_version == RTL_GIGA_MAC_VER_11) /* special workaround needed */ tp->irq_mask |= RxFIFOOver; else tp->irq_mask |= RxOverflow; } static int rtl_alloc_irq(struct rtl8169_private *tp) { unsigned int flags; switch (tp->mac_version) { case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06: rtl_unlock_config_regs(tp); RTL_W8(tp, Config2, RTL_R8(tp, Config2) & ~MSIEnable); rtl_lock_config_regs(tp); /* fall through */ case RTL_GIGA_MAC_VER_07 ... RTL_GIGA_MAC_VER_24: flags = PCI_IRQ_LEGACY; break; default: flags = PCI_IRQ_ALL_TYPES; break; } return pci_alloc_irq_vectors(tp->pci_dev, 1, 1, flags); } static void rtl_read_mac_address(struct rtl8169_private *tp, u8 mac_addr[ETH_ALEN]) { /* Get MAC address */ if (rtl_is_8168evl_up(tp) && tp->mac_version != RTL_GIGA_MAC_VER_34) { u32 value = rtl_eri_read(tp, 0xe0); mac_addr[0] = (value >> 0) & 0xff; mac_addr[1] = (value >> 8) & 0xff; mac_addr[2] = (value >> 16) & 0xff; mac_addr[3] = (value >> 24) & 0xff; value = rtl_eri_read(tp, 0xe4); mac_addr[4] = (value >> 0) & 0xff; mac_addr[5] = (value >> 8) & 0xff; } else if (rtl_is_8125(tp)) { rtl_read_mac_from_reg(tp, mac_addr, MAC0_BKP); } } DECLARE_RTL_COND(rtl_link_list_ready_cond) { return RTL_R8(tp, MCU) & LINK_LIST_RDY; } DECLARE_RTL_COND(rtl_rxtx_empty_cond) { return (RTL_R8(tp, MCU) & RXTX_EMPTY) == RXTX_EMPTY; } static int r8169_mdio_read_reg(struct mii_bus *mii_bus, int phyaddr, int phyreg) { struct rtl8169_private *tp = mii_bus->priv; if (phyaddr > 0) return -ENODEV; return rtl_readphy(tp, phyreg); } static int r8169_mdio_write_reg(struct mii_bus *mii_bus, int phyaddr, int phyreg, u16 val) { struct rtl8169_private *tp = mii_bus->priv; if (phyaddr > 0) return -ENODEV; rtl_writephy(tp, phyreg, val); return 0; } static int r8169_mdio_register(struct rtl8169_private *tp) { struct pci_dev *pdev = tp->pci_dev; struct mii_bus *new_bus; int ret; new_bus = devm_mdiobus_alloc(&pdev->dev); if (!new_bus) return -ENOMEM; new_bus->name = "r8169"; new_bus->priv = tp; new_bus->parent = &pdev->dev; new_bus->irq[0] = PHY_IGNORE_INTERRUPT; snprintf(new_bus->id, MII_BUS_ID_SIZE, "r8169-%x", pci_dev_id(pdev)); new_bus->read = r8169_mdio_read_reg; new_bus->write = r8169_mdio_write_reg; ret = mdiobus_register(new_bus); if (ret) return ret; tp->phydev = mdiobus_get_phy(new_bus, 0); if (!tp->phydev) { mdiobus_unregister(new_bus); return -ENODEV; } /* PHY will be woken up in rtl_open() */ phy_suspend(tp->phydev); return 0; } static void rtl_hw_init_8168g(struct rtl8169_private *tp) { tp->ocp_base = OCP_STD_PHY_BASE; RTL_W32(tp, MISC, RTL_R32(tp, MISC) | RXDV_GATED_EN); if (!rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 42)) return; if (!rtl_udelay_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42)) return; RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) & ~(CmdTxEnb | CmdRxEnb)); msleep(1); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); r8168_mac_ocp_modify(tp, 0xe8de, BIT(14), 0); if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42)) return; r8168_mac_ocp_modify(tp, 0xe8de, 0, BIT(15)); rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42); } static void rtl_hw_init_8125(struct rtl8169_private *tp) { tp->ocp_base = OCP_STD_PHY_BASE; RTL_W32(tp, MISC, RTL_R32(tp, MISC) | RXDV_GATED_EN); if (!rtl_udelay_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42)) return; RTL_W8(tp, ChipCmd, RTL_R8(tp, ChipCmd) & ~(CmdTxEnb | CmdRxEnb)); msleep(1); RTL_W8(tp, MCU, RTL_R8(tp, MCU) & ~NOW_IS_OOB); r8168_mac_ocp_modify(tp, 0xe8de, BIT(14), 0); if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42)) return; r8168_mac_ocp_write(tp, 0xc0aa, 0x07d0); r8168_mac_ocp_write(tp, 0xc0a6, 0x0150); r8168_mac_ocp_write(tp, 0xc01e, 0x5555); rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42); } static void rtl_hw_initialize(struct rtl8169_private *tp) { switch (tp->mac_version) { case RTL_GIGA_MAC_VER_49 ... RTL_GIGA_MAC_VER_52: rtl8168ep_stop_cmac(tp); /* fall through */ case RTL_GIGA_MAC_VER_40 ... RTL_GIGA_MAC_VER_48: rtl_hw_init_8168g(tp); break; case RTL_GIGA_MAC_VER_60 ... RTL_GIGA_MAC_VER_61: rtl_hw_init_8125(tp); break; default: break; } } static int rtl_jumbo_max(struct rtl8169_private *tp) { /* Non-GBit versions don't support jumbo frames */ if (!tp->supports_gmii) return 0; switch (tp->mac_version) { /* RTL8169 */ case RTL_GIGA_MAC_VER_02 ... RTL_GIGA_MAC_VER_06: return JUMBO_7K; /* RTL8168b */ case RTL_GIGA_MAC_VER_11: case RTL_GIGA_MAC_VER_12: case RTL_GIGA_MAC_VER_17: return JUMBO_4K; /* RTL8168c */ case RTL_GIGA_MAC_VER_18 ... RTL_GIGA_MAC_VER_24: return JUMBO_6K; default: return JUMBO_9K; } } static void rtl_disable_clk(void *data) { clk_disable_unprepare(data); } static int rtl_get_ether_clk(struct rtl8169_private *tp) { struct device *d = tp_to_dev(tp); struct clk *clk; int rc; clk = devm_clk_get(d, "ether_clk"); if (IS_ERR(clk)) { rc = PTR_ERR(clk); if (rc == -ENOENT) /* clk-core allows NULL (for suspend / resume) */ rc = 0; else if (rc != -EPROBE_DEFER) dev_err(d, "failed to get clk: %d\n", rc); } else { tp->clk = clk; rc = clk_prepare_enable(clk); if (rc) dev_err(d, "failed to enable clk: %d\n", rc); else rc = devm_add_action_or_reset(d, rtl_disable_clk, clk); } return rc; } static void rtl_init_mac_address(struct rtl8169_private *tp) { struct net_device *dev = tp->dev; u8 *mac_addr = dev->dev_addr; int rc; rc = eth_platform_get_mac_address(tp_to_dev(tp), mac_addr); if (!rc) goto done; rtl_read_mac_address(tp, mac_addr); if (is_valid_ether_addr(mac_addr)) goto done; rtl_read_mac_from_reg(tp, mac_addr, MAC0); if (is_valid_ether_addr(mac_addr)) goto done; eth_hw_addr_random(dev); dev_warn(tp_to_dev(tp), "can't read MAC address, setting random one\n"); done: rtl_rar_set(tp, mac_addr); } static int rtl_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct rtl8169_private *tp; int jumbo_max, region, rc; enum mac_version chipset; struct net_device *dev; u16 xid; /* Some tools for creating an initramfs don't consider softdeps, then * r8169.ko may be in initramfs, but realtek.ko not. Then the generic * PHY driver is used that doesn't work with most chip versions. */ if (!driver_find("RTL8201CP Ethernet", &mdio_bus_type)) { dev_err(&pdev->dev, "realtek.ko not loaded, maybe it needs to be added to initramfs?\n"); return -ENOENT; } dev = devm_alloc_etherdev(&pdev->dev, sizeof (*tp)); if (!dev) return -ENOMEM; SET_NETDEV_DEV(dev, &pdev->dev); dev->netdev_ops = &rtl_netdev_ops; tp = netdev_priv(dev); tp->dev = dev; tp->pci_dev = pdev; tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT); tp->supports_gmii = ent->driver_data == RTL_CFG_NO_GBIT ? 0 : 1; tp->eee_adv = -1; /* Get the *optional* external "ether_clk" used on some boards */ rc = rtl_get_ether_clk(tp); if (rc) return rc; /* Disable ASPM completely as that cause random device stop working * problems as well as full system hangs for some PCIe devices users. */ rc = pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1); tp->aspm_manageable = !rc; /* enable device (incl. PCI PM wakeup and hotplug setup) */ rc = pcim_enable_device(pdev); if (rc < 0) { dev_err(&pdev->dev, "enable failure\n"); return rc; } if (pcim_set_mwi(pdev) < 0) dev_info(&pdev->dev, "Mem-Wr-Inval unavailable\n"); /* use first MMIO region */ region = ffs(pci_select_bars(pdev, IORESOURCE_MEM)) - 1; if (region < 0) { dev_err(&pdev->dev, "no MMIO resource found\n"); return -ENODEV; } /* check for weird/broken PCI region reporting */ if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) { dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n"); return -ENODEV; } rc = pcim_iomap_regions(pdev, BIT(region), MODULENAME); if (rc < 0) { dev_err(&pdev->dev, "cannot remap MMIO, aborting\n"); return rc; } tp->mmio_addr = pcim_iomap_table(pdev)[region]; xid = (RTL_R32(tp, TxConfig) >> 20) & 0xfcf; /* Identify chip attached to board */ chipset = rtl8169_get_mac_version(xid, tp->supports_gmii); if (chipset == RTL_GIGA_MAC_NONE) { dev_err(&pdev->dev, "unknown chip XID %03x\n", xid); return -ENODEV; } tp->mac_version = chipset; tp->cp_cmd = RTL_R16(tp, CPlusCmd); if (sizeof(dma_addr_t) > 4 && tp->mac_version >= RTL_GIGA_MAC_VER_18 && !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) dev->features |= NETIF_F_HIGHDMA; rtl_init_rxcfg(tp); rtl8169_irq_mask_and_ack(tp); rtl_hw_initialize(tp); rtl_hw_reset(tp); pci_set_master(pdev); rc = rtl_alloc_irq(tp); if (rc < 0) { dev_err(&pdev->dev, "Can't allocate interrupt\n"); return rc; } mutex_init(&tp->wk.mutex); INIT_WORK(&tp->wk.work, rtl_task); u64_stats_init(&tp->rx_stats.syncp); u64_stats_init(&tp->tx_stats.syncp); rtl_init_mac_address(tp); dev->ethtool_ops = &rtl8169_ethtool_ops; netif_napi_add(dev, &tp->napi, rtl8169_poll, NAPI_POLL_WEIGHT); dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_HIGHDMA; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; tp->cp_cmd |= RxChkSum; /* RTL8125 uses register RxConfig for VLAN offloading config */ if (!rtl_is_8125(tp)) tp->cp_cmd |= RxVlan; /* * Pretend we are using VLANs; This bypasses a nasty bug where * Interrupts stop flowing on high load on 8110SCd controllers. */ if (tp->mac_version == RTL_GIGA_MAC_VER_05) /* Disallow toggling */ dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_RX; if (rtl_chip_supports_csum_v2(tp)) { dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6; dev->gso_max_size = RTL_GSO_MAX_SIZE_V2; dev->gso_max_segs = RTL_GSO_MAX_SEGS_V2; } else { dev->gso_max_size = RTL_GSO_MAX_SIZE_V1; dev->gso_max_segs = RTL_GSO_MAX_SEGS_V1; } /* RTL8168e-vl and one RTL8168c variant are known to have a * HW issue with TSO. */ if (tp->mac_version == RTL_GIGA_MAC_VER_34 || tp->mac_version == RTL_GIGA_MAC_VER_22) { dev->vlan_features &= ~(NETIF_F_ALL_TSO | NETIF_F_SG); dev->hw_features &= ~(NETIF_F_ALL_TSO | NETIF_F_SG); } dev->features |= dev->hw_features; dev->hw_features |= NETIF_F_RXALL; dev->hw_features |= NETIF_F_RXFCS; jumbo_max = rtl_jumbo_max(tp); if (jumbo_max) dev->max_mtu = jumbo_max; rtl_set_irq_mask(tp); tp->fw_name = rtl_chip_infos[chipset].fw_name; tp->counters = dmam_alloc_coherent (&pdev->dev, sizeof(*tp->counters), &tp->counters_phys_addr, GFP_KERNEL); if (!tp->counters) return -ENOMEM; pci_set_drvdata(pdev, dev); rc = r8169_mdio_register(tp); if (rc) return rc; /* chip gets powered up in rtl_open() */ rtl_pll_power_down(tp); rc = register_netdev(dev); if (rc) goto err_mdio_unregister; netif_info(tp, probe, dev, "%s, %pM, XID %03x, IRQ %d\n", rtl_chip_infos[chipset].name, dev->dev_addr, xid, pci_irq_vector(pdev, 0)); if (jumbo_max) netif_info(tp, probe, dev, "jumbo features [frames: %d bytes, tx checksumming: %s]\n", jumbo_max, tp->mac_version <= RTL_GIGA_MAC_VER_06 ? "ok" : "ko"); if (r8168_check_dash(tp)) rtl8168_driver_start(tp); if (pci_dev_run_wake(pdev)) pm_runtime_put_sync(&pdev->dev); return 0; err_mdio_unregister: mdiobus_unregister(tp->phydev->mdio.bus); return rc; } static struct pci_driver rtl8169_pci_driver = { .name = MODULENAME, .id_table = rtl8169_pci_tbl, .probe = rtl_init_one, .remove = rtl_remove_one, .shutdown = rtl_shutdown, .driver.pm = RTL8169_PM_OPS, }; module_pci_driver(rtl8169_pci_driver);