// SPDX-License-Identifier: GPL-2.0+ /* Copyright (c) 2020 Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define EBU_CLC 0x000 #define EBU_CLC_RST 0x00000000u #define EBU_ADDR_SEL(n) (0x020 + (n) * 4) /* 5 bits 26:22 included for comparison in the ADDR_SELx */ #define EBU_ADDR_MASK(x) ((x) << 4) #define EBU_ADDR_SEL_REGEN 0x1 #define EBU_BUSCON(n) (0x060 + (n) * 4) #define EBU_BUSCON_CMULT_V4 0x1 #define EBU_BUSCON_RECOVC(n) ((n) << 2) #define EBU_BUSCON_HOLDC(n) ((n) << 4) #define EBU_BUSCON_WAITRDC(n) ((n) << 6) #define EBU_BUSCON_WAITWRC(n) ((n) << 8) #define EBU_BUSCON_BCGEN_CS 0x0 #define EBU_BUSCON_SETUP_EN BIT(22) #define EBU_BUSCON_ALEC 0xC000 #define EBU_CON 0x0B0 #define EBU_CON_NANDM_EN BIT(0) #define EBU_CON_NANDM_DIS 0x0 #define EBU_CON_CSMUX_E_EN BIT(1) #define EBU_CON_ALE_P_LOW BIT(2) #define EBU_CON_CLE_P_LOW BIT(3) #define EBU_CON_CS_P_LOW BIT(4) #define EBU_CON_SE_P_LOW BIT(5) #define EBU_CON_WP_P_LOW BIT(6) #define EBU_CON_PRE_P_LOW BIT(7) #define EBU_CON_IN_CS_S(n) ((n) << 8) #define EBU_CON_OUT_CS_S(n) ((n) << 10) #define EBU_CON_LAT_EN_CS_P ((0x3D) << 18) #define EBU_WAIT 0x0B4 #define EBU_WAIT_RDBY BIT(0) #define EBU_WAIT_WR_C BIT(3) #define HSNAND_CTL1 0x110 #define HSNAND_CTL1_ADDR_SHIFT 24 #define HSNAND_CTL2 0x114 #define HSNAND_CTL2_ADDR_SHIFT 8 #define HSNAND_CTL2_CYC_N_V5 (0x2 << 16) #define HSNAND_INT_MSK_CTL 0x124 #define HSNAND_INT_MSK_CTL_WR_C BIT(4) #define HSNAND_INT_STA 0x128 #define HSNAND_INT_STA_WR_C BIT(4) #define HSNAND_CTL 0x130 #define HSNAND_CTL_ENABLE_ECC BIT(0) #define HSNAND_CTL_GO BIT(2) #define HSNAND_CTL_CE_SEL_CS(n) BIT(3 + (n)) #define HSNAND_CTL_RW_READ 0x0 #define HSNAND_CTL_RW_WRITE BIT(10) #define HSNAND_CTL_ECC_OFF_V8TH BIT(11) #define HSNAND_CTL_CKFF_EN 0x0 #define HSNAND_CTL_MSG_EN BIT(17) #define HSNAND_PARA0 0x13c #define HSNAND_PARA0_PAGE_V8192 0x3 #define HSNAND_PARA0_PIB_V256 (0x3 << 4) #define HSNAND_PARA0_BYP_EN_NP 0x0 #define HSNAND_PARA0_BYP_DEC_NP 0x0 #define HSNAND_PARA0_TYPE_ONFI BIT(18) #define HSNAND_PARA0_ADEP_EN BIT(21) #define HSNAND_CMSG_0 0x150 #define HSNAND_CMSG_1 0x154 #define HSNAND_ALE_OFFS BIT(2) #define HSNAND_CLE_OFFS BIT(3) #define HSNAND_CS_OFFS BIT(4) #define HSNAND_ECC_OFFSET 0x008 #define MAX_CS 2 #define USEC_PER_SEC 1000000L struct ebu_nand_cs { void __iomem *chipaddr; u32 addr_sel; }; struct ebu_nand_controller { struct nand_controller controller; struct nand_chip chip; struct device *dev; void __iomem *ebu; void __iomem *hsnand; struct dma_chan *dma_tx; struct dma_chan *dma_rx; struct completion dma_access_complete; struct clk *clk; u32 nd_para0; u8 cs_num; struct ebu_nand_cs cs[MAX_CS]; }; static inline struct ebu_nand_controller *nand_to_ebu(struct nand_chip *chip) { return container_of(chip, struct ebu_nand_controller, chip); } static int ebu_nand_waitrdy(struct nand_chip *chip, int timeout_ms) { struct ebu_nand_controller *ctrl = nand_to_ebu(chip); u32 status; return readl_poll_timeout(ctrl->ebu + EBU_WAIT, status, (status & EBU_WAIT_RDBY) || (status & EBU_WAIT_WR_C), 20, timeout_ms); } static u8 ebu_nand_readb(struct nand_chip *chip) { struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); u8 cs_num = ebu_host->cs_num; u8 val; val = readb(ebu_host->cs[cs_num].chipaddr + HSNAND_CS_OFFS); ebu_nand_waitrdy(chip, 1000); return val; } static void ebu_nand_writeb(struct nand_chip *chip, u32 offset, u8 value) { struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); u8 cs_num = ebu_host->cs_num; writeb(value, ebu_host->cs[cs_num].chipaddr + offset); ebu_nand_waitrdy(chip, 1000); } static void ebu_read_buf(struct nand_chip *chip, u_char *buf, unsigned int len) { int i; for (i = 0; i < len; i++) buf[i] = ebu_nand_readb(chip); } static void ebu_write_buf(struct nand_chip *chip, const u_char *buf, int len) { int i; for (i = 0; i < len; i++) ebu_nand_writeb(chip, HSNAND_CS_OFFS, buf[i]); } static void ebu_nand_disable(struct nand_chip *chip) { struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); writel(0, ebu_host->ebu + EBU_CON); } static void ebu_select_chip(struct nand_chip *chip) { struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); void __iomem *nand_con = ebu_host->ebu + EBU_CON; u32 cs = ebu_host->cs_num; writel(EBU_CON_NANDM_EN | EBU_CON_CSMUX_E_EN | EBU_CON_CS_P_LOW | EBU_CON_SE_P_LOW | EBU_CON_WP_P_LOW | EBU_CON_PRE_P_LOW | EBU_CON_IN_CS_S(cs) | EBU_CON_OUT_CS_S(cs) | EBU_CON_LAT_EN_CS_P, nand_con); } static int ebu_nand_set_timings(struct nand_chip *chip, int csline, const struct nand_interface_config *conf) { struct ebu_nand_controller *ctrl = nand_to_ebu(chip); unsigned int rate = clk_get_rate(ctrl->clk) / HZ_PER_MHZ; unsigned int period = DIV_ROUND_UP(USEC_PER_SEC, rate); const struct nand_sdr_timings *timings; u32 trecov, thold, twrwait, trdwait; u32 reg = 0; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return PTR_ERR(timings); if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; trecov = DIV_ROUND_UP(max(timings->tREA_max, timings->tREH_min), period); reg |= EBU_BUSCON_RECOVC(trecov); thold = DIV_ROUND_UP(max(timings->tDH_min, timings->tDS_min), period); reg |= EBU_BUSCON_HOLDC(thold); trdwait = DIV_ROUND_UP(max(timings->tRC_min, timings->tREH_min), period); reg |= EBU_BUSCON_WAITRDC(trdwait); twrwait = DIV_ROUND_UP(max(timings->tWC_min, timings->tWH_min), period); reg |= EBU_BUSCON_WAITWRC(twrwait); reg |= EBU_BUSCON_CMULT_V4 | EBU_BUSCON_BCGEN_CS | EBU_BUSCON_ALEC | EBU_BUSCON_SETUP_EN; writel(reg, ctrl->ebu + EBU_BUSCON(ctrl->cs_num)); return 0; } static int ebu_nand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section) return -ERANGE; oobregion->offset = HSNAND_ECC_OFFSET; oobregion->length = chip->ecc.total; return 0; } static int ebu_nand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section) return -ERANGE; oobregion->offset = chip->ecc.total + HSNAND_ECC_OFFSET; oobregion->length = mtd->oobsize - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops ebu_nand_ooblayout_ops = { .ecc = ebu_nand_ooblayout_ecc, .free = ebu_nand_ooblayout_free, }; static void ebu_dma_rx_callback(void *cookie) { struct ebu_nand_controller *ebu_host = cookie; dmaengine_terminate_async(ebu_host->dma_rx); complete(&ebu_host->dma_access_complete); } static void ebu_dma_tx_callback(void *cookie) { struct ebu_nand_controller *ebu_host = cookie; dmaengine_terminate_async(ebu_host->dma_tx); complete(&ebu_host->dma_access_complete); } static int ebu_dma_start(struct ebu_nand_controller *ebu_host, u32 dir, const u8 *buf, u32 len) { struct dma_async_tx_descriptor *tx; struct completion *dma_completion; dma_async_tx_callback callback; struct dma_chan *chan; dma_cookie_t cookie; unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; dma_addr_t buf_dma; int ret; u32 timeout; if (dir == DMA_DEV_TO_MEM) { chan = ebu_host->dma_rx; dma_completion = &ebu_host->dma_access_complete; callback = ebu_dma_rx_callback; } else { chan = ebu_host->dma_tx; dma_completion = &ebu_host->dma_access_complete; callback = ebu_dma_tx_callback; } buf_dma = dma_map_single(chan->device->dev, (void *)buf, len, dir); if (dma_mapping_error(chan->device->dev, buf_dma)) { dev_err(ebu_host->dev, "Failed to map DMA buffer\n"); ret = -EIO; goto err_unmap; } tx = dmaengine_prep_slave_single(chan, buf_dma, len, dir, flags); if (!tx) { ret = -ENXIO; goto err_unmap; } tx->callback = callback; tx->callback_param = ebu_host; cookie = tx->tx_submit(tx); ret = dma_submit_error(cookie); if (ret) { dev_err(ebu_host->dev, "dma_submit_error %d\n", cookie); ret = -EIO; goto err_unmap; } init_completion(dma_completion); dma_async_issue_pending(chan); /* Wait DMA to finish the data transfer.*/ timeout = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); if (!timeout) { dev_err(ebu_host->dev, "I/O Error in DMA RX (status %d)\n", dmaengine_tx_status(chan, cookie, NULL)); dmaengine_terminate_sync(chan); ret = -ETIMEDOUT; goto err_unmap; } return 0; err_unmap: dma_unmap_single(ebu_host->dev, buf_dma, len, dir); return ret; } static void ebu_nand_trigger(struct ebu_nand_controller *ebu_host, int page, u32 cmd) { unsigned int val; val = cmd | (page & 0xFF) << HSNAND_CTL1_ADDR_SHIFT; writel(val, ebu_host->hsnand + HSNAND_CTL1); val = (page & 0xFFFF00) >> 8 | HSNAND_CTL2_CYC_N_V5; writel(val, ebu_host->hsnand + HSNAND_CTL2); writel(ebu_host->nd_para0, ebu_host->hsnand + HSNAND_PARA0); /* clear first, will update later */ writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_0); writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_1); writel(HSNAND_INT_MSK_CTL_WR_C, ebu_host->hsnand + HSNAND_INT_MSK_CTL); if (!cmd) val = HSNAND_CTL_RW_READ; else val = HSNAND_CTL_RW_WRITE; writel(HSNAND_CTL_MSG_EN | HSNAND_CTL_CKFF_EN | HSNAND_CTL_ECC_OFF_V8TH | HSNAND_CTL_CE_SEL_CS(ebu_host->cs_num) | HSNAND_CTL_ENABLE_ECC | HSNAND_CTL_GO | val, ebu_host->hsnand + HSNAND_CTL); } static int ebu_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); int ret, reg_data; ebu_nand_trigger(ebu_host, page, NAND_CMD_READ0); ret = ebu_dma_start(ebu_host, DMA_DEV_TO_MEM, buf, mtd->writesize); if (ret) return ret; if (oob_required) chip->ecc.read_oob(chip, page); reg_data = readl(ebu_host->hsnand + HSNAND_CTL); reg_data &= ~HSNAND_CTL_GO; writel(reg_data, ebu_host->hsnand + HSNAND_CTL); return 0; } static int ebu_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); void __iomem *int_sta = ebu_host->hsnand + HSNAND_INT_STA; int reg_data, ret, val; u32 reg; ebu_nand_trigger(ebu_host, page, NAND_CMD_SEQIN); ret = ebu_dma_start(ebu_host, DMA_MEM_TO_DEV, buf, mtd->writesize); if (ret) return ret; if (oob_required) { reg = get_unaligned_le32(chip->oob_poi); writel(reg, ebu_host->hsnand + HSNAND_CMSG_0); reg = get_unaligned_le32(chip->oob_poi + 4); writel(reg, ebu_host->hsnand + HSNAND_CMSG_1); } ret = readl_poll_timeout_atomic(int_sta, val, !(val & HSNAND_INT_STA_WR_C), 10, 1000); if (ret) return ret; reg_data = readl(ebu_host->hsnand + HSNAND_CTL); reg_data &= ~HSNAND_CTL_GO; writel(reg_data, ebu_host->hsnand + HSNAND_CTL); return 0; } static const u8 ecc_strength[] = { 1, 1, 4, 8, 24, 32, 40, 60, }; static int ebu_nand_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip); u32 ecc_steps, ecc_bytes, ecc_total, pagesize, pg_per_blk; u32 ecc_strength_ds = chip->ecc.strength; u32 ecc_size = chip->ecc.size; u32 writesize = mtd->writesize; u32 blocksize = mtd->erasesize; int bch_algo, start, val; /* Default to an ECC size of 512 */ if (!chip->ecc.size) chip->ecc.size = 512; switch (ecc_size) { case 512: start = 1; if (!ecc_strength_ds) ecc_strength_ds = 4; break; case 1024: start = 4; if (!ecc_strength_ds) ecc_strength_ds = 32; break; default: return -EINVAL; } /* BCH ECC algorithm Settings for number of bits per 512B/1024B */ bch_algo = round_up(start + 1, 4); for (val = start; val < bch_algo; val++) { if (ecc_strength_ds == ecc_strength[val]) break; } if (val == bch_algo) return -EINVAL; if (ecc_strength_ds == 8) ecc_bytes = 14; else ecc_bytes = DIV_ROUND_UP(ecc_strength_ds * fls(8 * ecc_size), 8); ecc_steps = writesize / ecc_size; ecc_total = ecc_steps * ecc_bytes; if ((ecc_total + 8) > mtd->oobsize) return -ERANGE; chip->ecc.total = ecc_total; pagesize = fls(writesize >> 11); if (pagesize > HSNAND_PARA0_PAGE_V8192) return -ERANGE; pg_per_blk = fls((blocksize / writesize) >> 6) / 8; if (pg_per_blk > HSNAND_PARA0_PIB_V256) return -ERANGE; ebu_host->nd_para0 = pagesize | pg_per_blk | HSNAND_PARA0_BYP_EN_NP | HSNAND_PARA0_BYP_DEC_NP | HSNAND_PARA0_ADEP_EN | HSNAND_PARA0_TYPE_ONFI | (val << 29); mtd_set_ooblayout(mtd, &ebu_nand_ooblayout_ops); chip->ecc.read_page = ebu_nand_read_page_hwecc; chip->ecc.write_page = ebu_nand_write_page_hwecc; return 0; } static int ebu_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { const struct nand_op_instr *instr = NULL; unsigned int op_id; int i, timeout_ms, ret = 0; if (check_only) return 0; ebu_select_chip(chip); for (op_id = 0; op_id < op->ninstrs; op_id++) { instr = &op->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: ebu_nand_writeb(chip, HSNAND_CLE_OFFS | HSNAND_CS_OFFS, instr->ctx.cmd.opcode); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) ebu_nand_writeb(chip, HSNAND_ALE_OFFS | HSNAND_CS_OFFS, instr->ctx.addr.addrs[i]); break; case NAND_OP_DATA_IN_INSTR: ebu_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: ebu_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len); break; case NAND_OP_WAITRDY_INSTR: timeout_ms = instr->ctx.waitrdy.timeout_ms * 1000; ret = ebu_nand_waitrdy(chip, timeout_ms); break; } } return ret; } static const struct nand_controller_ops ebu_nand_controller_ops = { .attach_chip = ebu_nand_attach_chip, .setup_interface = ebu_nand_set_timings, .exec_op = ebu_nand_exec_op, }; static void ebu_dma_cleanup(struct ebu_nand_controller *ebu_host) { if (ebu_host->dma_rx) dma_release_channel(ebu_host->dma_rx); if (ebu_host->dma_tx) dma_release_channel(ebu_host->dma_tx); } static int ebu_nand_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ebu_nand_controller *ebu_host; struct device_node *chip_np; struct nand_chip *nand; struct mtd_info *mtd; struct resource *res; char *resname; int ret; u32 cs; ebu_host = devm_kzalloc(dev, sizeof(*ebu_host), GFP_KERNEL); if (!ebu_host) return -ENOMEM; ebu_host->dev = dev; nand_controller_init(&ebu_host->controller); ebu_host->ebu = devm_platform_ioremap_resource_byname(pdev, "ebunand"); if (IS_ERR(ebu_host->ebu)) return PTR_ERR(ebu_host->ebu); ebu_host->hsnand = devm_platform_ioremap_resource_byname(pdev, "hsnand"); if (IS_ERR(ebu_host->hsnand)) return PTR_ERR(ebu_host->hsnand); chip_np = of_get_next_child(dev->of_node, NULL); if (!chip_np) return dev_err_probe(dev, -EINVAL, "Could not find child node for the NAND chip\n"); ret = of_property_read_u32(chip_np, "reg", &cs); if (ret) { dev_err(dev, "failed to get chip select: %d\n", ret); goto err_of_node_put; } if (cs >= MAX_CS) { dev_err(dev, "got invalid chip select: %d\n", cs); ret = -EINVAL; goto err_of_node_put; } ebu_host->cs_num = cs; resname = devm_kasprintf(dev, GFP_KERNEL, "nand_cs%d", cs); ebu_host->cs[cs].chipaddr = devm_platform_ioremap_resource_byname(pdev, resname); if (IS_ERR(ebu_host->cs[cs].chipaddr)) { ret = PTR_ERR(ebu_host->cs[cs].chipaddr); goto err_of_node_put; } ebu_host->clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(ebu_host->clk)) { ret = dev_err_probe(dev, PTR_ERR(ebu_host->clk), "failed to get and enable clock\n"); goto err_of_node_put; } ebu_host->dma_tx = dma_request_chan(dev, "tx"); if (IS_ERR(ebu_host->dma_tx)) { ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_tx), "failed to request DMA tx chan!.\n"); goto err_of_node_put; } ebu_host->dma_rx = dma_request_chan(dev, "rx"); if (IS_ERR(ebu_host->dma_rx)) { ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_rx), "failed to request DMA rx chan!.\n"); ebu_host->dma_rx = NULL; goto err_cleanup_dma; } resname = devm_kasprintf(dev, GFP_KERNEL, "addr_sel%d", cs); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname); if (!res) { ret = -EINVAL; goto err_cleanup_dma; } ebu_host->cs[cs].addr_sel = res->start; writel(ebu_host->cs[cs].addr_sel | EBU_ADDR_MASK(5) | EBU_ADDR_SEL_REGEN, ebu_host->ebu + EBU_ADDR_SEL(cs)); nand_set_flash_node(&ebu_host->chip, chip_np); mtd = nand_to_mtd(&ebu_host->chip); if (!mtd->name) { dev_err(ebu_host->dev, "NAND label property is mandatory\n"); ret = -EINVAL; goto err_cleanup_dma; } mtd->dev.parent = dev; ebu_host->dev = dev; platform_set_drvdata(pdev, ebu_host); nand_set_controller_data(&ebu_host->chip, ebu_host); nand = &ebu_host->chip; nand->controller = &ebu_host->controller; nand->controller->ops = &ebu_nand_controller_ops; /* Scan to find existence of the device */ ret = nand_scan(&ebu_host->chip, 1); if (ret) goto err_cleanup_dma; ret = mtd_device_register(mtd, NULL, 0); if (ret) goto err_clean_nand; return 0; err_clean_nand: nand_cleanup(&ebu_host->chip); err_cleanup_dma: ebu_dma_cleanup(ebu_host); err_of_node_put: of_node_put(chip_np); return ret; } static void ebu_nand_remove(struct platform_device *pdev) { struct ebu_nand_controller *ebu_host = platform_get_drvdata(pdev); int ret; ret = mtd_device_unregister(nand_to_mtd(&ebu_host->chip)); WARN_ON(ret); nand_cleanup(&ebu_host->chip); ebu_nand_disable(&ebu_host->chip); ebu_dma_cleanup(ebu_host); } static const struct of_device_id ebu_nand_match[] = { { .compatible = "intel,lgm-ebunand" }, {} }; MODULE_DEVICE_TABLE(of, ebu_nand_match); static struct platform_driver ebu_nand_driver = { .probe = ebu_nand_probe, .remove_new = ebu_nand_remove, .driver = { .name = "intel-nand-controller", .of_match_table = ebu_nand_match, }, }; module_platform_driver(ebu_nand_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Vadivel Murugan R "); MODULE_DESCRIPTION("Intel's LGM External Bus NAND Controller driver");