// SPDX-License-Identifier: GPL-2.0 /* * Xilinx SDFEC * * Copyright (C) 2019 Xilinx, Inc. * * Description: * This driver is developed for SDFEC16 (Soft Decision FEC 16nm) * IP. It exposes a char device which supports file operations * like open(), close() and ioctl(). */ #include #include #include #include #include #include #include #include #include #include #include #include #define DEV_NAME_LEN 12 static DEFINE_IDA(dev_nrs); /* Xilinx SDFEC Register Map */ /* CODE_WRI_PROTECT Register */ #define XSDFEC_CODE_WR_PROTECT_ADDR (0x4) /* ACTIVE Register */ #define XSDFEC_ACTIVE_ADDR (0x8) #define XSDFEC_IS_ACTIVITY_SET (0x1) /* AXIS_WIDTH Register */ #define XSDFEC_AXIS_WIDTH_ADDR (0xC) #define XSDFEC_AXIS_DOUT_WORDS_LSB (5) #define XSDFEC_AXIS_DOUT_WIDTH_LSB (3) #define XSDFEC_AXIS_DIN_WORDS_LSB (2) #define XSDFEC_AXIS_DIN_WIDTH_LSB (0) /* AXIS_ENABLE Register */ #define XSDFEC_AXIS_ENABLE_ADDR (0x10) #define XSDFEC_AXIS_OUT_ENABLE_MASK (0x38) #define XSDFEC_AXIS_IN_ENABLE_MASK (0x7) #define XSDFEC_AXIS_ENABLE_MASK \ (XSDFEC_AXIS_OUT_ENABLE_MASK | XSDFEC_AXIS_IN_ENABLE_MASK) /* FEC_CODE Register */ #define XSDFEC_FEC_CODE_ADDR (0x14) /* ORDER Register Map */ #define XSDFEC_ORDER_ADDR (0x18) /* Interrupt Status Register */ #define XSDFEC_ISR_ADDR (0x1C) /* Interrupt Status Register Bit Mask */ #define XSDFEC_ISR_MASK (0x3F) /* Write Only - Interrupt Enable Register */ #define XSDFEC_IER_ADDR (0x20) /* Write Only - Interrupt Disable Register */ #define XSDFEC_IDR_ADDR (0x24) /* Read Only - Interrupt Mask Register */ #define XSDFEC_IMR_ADDR (0x28) /* ECC Interrupt Status Register */ #define XSDFEC_ECC_ISR_ADDR (0x2C) /* Single Bit Errors */ #define XSDFEC_ECC_ISR_SBE_MASK (0x7FF) /* PL Initialize Single Bit Errors */ #define XSDFEC_PL_INIT_ECC_ISR_SBE_MASK (0x3C00000) /* Multi Bit Errors */ #define XSDFEC_ECC_ISR_MBE_MASK (0x3FF800) /* PL Initialize Multi Bit Errors */ #define XSDFEC_PL_INIT_ECC_ISR_MBE_MASK (0x3C000000) /* Multi Bit Error to Event Shift */ #define XSDFEC_ECC_ISR_MBE_TO_EVENT_SHIFT (11) /* PL Initialize Multi Bit Error to Event Shift */ #define XSDFEC_PL_INIT_ECC_ISR_MBE_TO_EVENT_SHIFT (4) /* ECC Interrupt Status Bit Mask */ #define XSDFEC_ECC_ISR_MASK (XSDFEC_ECC_ISR_SBE_MASK | XSDFEC_ECC_ISR_MBE_MASK) /* ECC Interrupt Status PL Initialize Bit Mask */ #define XSDFEC_PL_INIT_ECC_ISR_MASK \ (XSDFEC_PL_INIT_ECC_ISR_SBE_MASK | XSDFEC_PL_INIT_ECC_ISR_MBE_MASK) /* ECC Interrupt Status All Bit Mask */ #define XSDFEC_ALL_ECC_ISR_MASK \ (XSDFEC_ECC_ISR_MASK | XSDFEC_PL_INIT_ECC_ISR_MASK) /* ECC Interrupt Status Single Bit Errors Mask */ #define XSDFEC_ALL_ECC_ISR_SBE_MASK \ (XSDFEC_ECC_ISR_SBE_MASK | XSDFEC_PL_INIT_ECC_ISR_SBE_MASK) /* ECC Interrupt Status Multi Bit Errors Mask */ #define XSDFEC_ALL_ECC_ISR_MBE_MASK \ (XSDFEC_ECC_ISR_MBE_MASK | XSDFEC_PL_INIT_ECC_ISR_MBE_MASK) /* Write Only - ECC Interrupt Enable Register */ #define XSDFEC_ECC_IER_ADDR (0x30) /* Write Only - ECC Interrupt Disable Register */ #define XSDFEC_ECC_IDR_ADDR (0x34) /* Read Only - ECC Interrupt Mask Register */ #define XSDFEC_ECC_IMR_ADDR (0x38) /* BYPASS Register */ #define XSDFEC_BYPASS_ADDR (0x3C) /* Turbo Code Register */ #define XSDFEC_TURBO_ADDR (0x100) #define XSDFEC_TURBO_SCALE_MASK (0xFFF) #define XSDFEC_TURBO_SCALE_BIT_POS (8) #define XSDFEC_TURBO_SCALE_MAX (15) /* REG0 Register */ #define XSDFEC_LDPC_CODE_REG0_ADDR_BASE (0x2000) #define XSDFEC_LDPC_CODE_REG0_ADDR_HIGH (0x27F0) #define XSDFEC_REG0_N_MIN (4) #define XSDFEC_REG0_N_MAX (32768) #define XSDFEC_REG0_N_MUL_P (256) #define XSDFEC_REG0_N_LSB (0) #define XSDFEC_REG0_K_MIN (2) #define XSDFEC_REG0_K_MAX (32766) #define XSDFEC_REG0_K_MUL_P (256) #define XSDFEC_REG0_K_LSB (16) /* REG1 Register */ #define XSDFEC_LDPC_CODE_REG1_ADDR_BASE (0x2004) #define XSDFEC_LDPC_CODE_REG1_ADDR_HIGH (0x27f4) #define XSDFEC_REG1_PSIZE_MIN (2) #define XSDFEC_REG1_PSIZE_MAX (512) #define XSDFEC_REG1_NO_PACKING_MASK (0x400) #define XSDFEC_REG1_NO_PACKING_LSB (10) #define XSDFEC_REG1_NM_MASK (0xFF800) #define XSDFEC_REG1_NM_LSB (11) #define XSDFEC_REG1_BYPASS_MASK (0x100000) /* REG2 Register */ #define XSDFEC_LDPC_CODE_REG2_ADDR_BASE (0x2008) #define XSDFEC_LDPC_CODE_REG2_ADDR_HIGH (0x27f8) #define XSDFEC_REG2_NLAYERS_MIN (1) #define XSDFEC_REG2_NLAYERS_MAX (256) #define XSDFEC_REG2_NNMQC_MASK (0xFFE00) #define XSDFEC_REG2_NMQC_LSB (9) #define XSDFEC_REG2_NORM_TYPE_MASK (0x100000) #define XSDFEC_REG2_NORM_TYPE_LSB (20) #define XSDFEC_REG2_SPECIAL_QC_MASK (0x200000) #define XSDFEC_REG2_SPEICAL_QC_LSB (21) #define XSDFEC_REG2_NO_FINAL_PARITY_MASK (0x400000) #define XSDFEC_REG2_NO_FINAL_PARITY_LSB (22) #define XSDFEC_REG2_MAX_SCHEDULE_MASK (0x1800000) #define XSDFEC_REG2_MAX_SCHEDULE_LSB (23) /* REG3 Register */ #define XSDFEC_LDPC_CODE_REG3_ADDR_BASE (0x200C) #define XSDFEC_LDPC_CODE_REG3_ADDR_HIGH (0x27FC) #define XSDFEC_REG3_LA_OFF_LSB (8) #define XSDFEC_REG3_QC_OFF_LSB (16) #define XSDFEC_LDPC_REG_JUMP (0x10) #define XSDFEC_REG_WIDTH_JUMP (4) /* The maximum number of pinned pages */ #define MAX_NUM_PAGES ((XSDFEC_QC_TABLE_DEPTH / PAGE_SIZE) + 1) /** * struct xsdfec_clks - For managing SD-FEC clocks * @core_clk: Main processing clock for core * @axi_clk: AXI4-Lite memory-mapped clock * @din_words_clk: DIN Words AXI4-Stream Slave clock * @din_clk: DIN AXI4-Stream Slave clock * @dout_clk: DOUT Words AXI4-Stream Slave clock * @dout_words_clk: DOUT AXI4-Stream Slave clock * @ctrl_clk: Control AXI4-Stream Slave clock * @status_clk: Status AXI4-Stream Slave clock */ struct xsdfec_clks { struct clk *core_clk; struct clk *axi_clk; struct clk *din_words_clk; struct clk *din_clk; struct clk *dout_clk; struct clk *dout_words_clk; struct clk *ctrl_clk; struct clk *status_clk; }; /** * struct xsdfec_dev - Driver data for SDFEC * @miscdev: Misc device handle * @clks: Clocks managed by the SDFEC driver * @waitq: Driver wait queue * @config: Configuration of the SDFEC device * @dev_name: Device name * @flags: spinlock flags * @regs: device physical base address * @dev: pointer to device struct * @state: State of the SDFEC device * @error_data_lock: Error counter and states spinlock * @dev_id: Device ID * @isr_err_count: Count of ISR errors * @cecc_count: Count of Correctable ECC errors (SBE) * @uecc_count: Count of Uncorrectable ECC errors (MBE) * @irq: IRQ number * @state_updated: indicates State updated by interrupt handler * @stats_updated: indicates Stats updated by interrupt handler * @intr_enabled: indicates IRQ enabled * * This structure contains necessary state for SDFEC driver to operate */ struct xsdfec_dev { struct miscdevice miscdev; struct xsdfec_clks clks; wait_queue_head_t waitq; struct xsdfec_config config; char dev_name[DEV_NAME_LEN]; unsigned long flags; void __iomem *regs; struct device *dev; enum xsdfec_state state; /* Spinlock to protect state_updated and stats_updated */ spinlock_t error_data_lock; int dev_id; u32 isr_err_count; u32 cecc_count; u32 uecc_count; int irq; bool state_updated; bool stats_updated; bool intr_enabled; }; static inline void xsdfec_regwrite(struct xsdfec_dev *xsdfec, u32 addr, u32 value) { dev_dbg(xsdfec->dev, "Writing 0x%x to offset 0x%x", value, addr); iowrite32(value, xsdfec->regs + addr); } static inline u32 xsdfec_regread(struct xsdfec_dev *xsdfec, u32 addr) { u32 rval; rval = ioread32(xsdfec->regs + addr); dev_dbg(xsdfec->dev, "Read value = 0x%x from offset 0x%x", rval, addr); return rval; } static void update_bool_config_from_reg(struct xsdfec_dev *xsdfec, u32 reg_offset, u32 bit_num, char *config_value) { u32 reg_val; u32 bit_mask = 1 << bit_num; reg_val = xsdfec_regread(xsdfec, reg_offset); *config_value = (reg_val & bit_mask) > 0; } static void update_config_from_hw(struct xsdfec_dev *xsdfec) { u32 reg_value; bool sdfec_started; /* Update the Order */ reg_value = xsdfec_regread(xsdfec, XSDFEC_ORDER_ADDR); xsdfec->config.order = reg_value; update_bool_config_from_reg(xsdfec, XSDFEC_BYPASS_ADDR, 0, /* Bit Number, maybe change to mask */ &xsdfec->config.bypass); update_bool_config_from_reg(xsdfec, XSDFEC_CODE_WR_PROTECT_ADDR, 0, /* Bit Number */ &xsdfec->config.code_wr_protect); reg_value = xsdfec_regread(xsdfec, XSDFEC_IMR_ADDR); xsdfec->config.irq.enable_isr = (reg_value & XSDFEC_ISR_MASK) > 0; reg_value = xsdfec_regread(xsdfec, XSDFEC_ECC_IMR_ADDR); xsdfec->config.irq.enable_ecc_isr = (reg_value & XSDFEC_ECC_ISR_MASK) > 0; reg_value = xsdfec_regread(xsdfec, XSDFEC_AXIS_ENABLE_ADDR); sdfec_started = (reg_value & XSDFEC_AXIS_IN_ENABLE_MASK) > 0; if (sdfec_started) xsdfec->state = XSDFEC_STARTED; else xsdfec->state = XSDFEC_STOPPED; } static int xsdfec_get_status(struct xsdfec_dev *xsdfec, void __user *arg) { struct xsdfec_status status; int err; memset(&status, 0, sizeof(status)); spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags); status.state = xsdfec->state; xsdfec->state_updated = false; spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags); status.activity = (xsdfec_regread(xsdfec, XSDFEC_ACTIVE_ADDR) & XSDFEC_IS_ACTIVITY_SET); err = copy_to_user(arg, &status, sizeof(status)); if (err) err = -EFAULT; return err; } static int xsdfec_get_config(struct xsdfec_dev *xsdfec, void __user *arg) { int err; err = copy_to_user(arg, &xsdfec->config, sizeof(xsdfec->config)); if (err) err = -EFAULT; return err; } static int xsdfec_isr_enable(struct xsdfec_dev *xsdfec, bool enable) { u32 mask_read; if (enable) { /* Enable */ xsdfec_regwrite(xsdfec, XSDFEC_IER_ADDR, XSDFEC_ISR_MASK); mask_read = xsdfec_regread(xsdfec, XSDFEC_IMR_ADDR); if (mask_read & XSDFEC_ISR_MASK) { dev_dbg(xsdfec->dev, "SDFEC enabling irq with IER failed"); return -EIO; } } else { /* Disable */ xsdfec_regwrite(xsdfec, XSDFEC_IDR_ADDR, XSDFEC_ISR_MASK); mask_read = xsdfec_regread(xsdfec, XSDFEC_IMR_ADDR); if ((mask_read & XSDFEC_ISR_MASK) != XSDFEC_ISR_MASK) { dev_dbg(xsdfec->dev, "SDFEC disabling irq with IDR failed"); return -EIO; } } return 0; } static int xsdfec_ecc_isr_enable(struct xsdfec_dev *xsdfec, bool enable) { u32 mask_read; if (enable) { /* Enable */ xsdfec_regwrite(xsdfec, XSDFEC_ECC_IER_ADDR, XSDFEC_ALL_ECC_ISR_MASK); mask_read = xsdfec_regread(xsdfec, XSDFEC_ECC_IMR_ADDR); if (mask_read & XSDFEC_ALL_ECC_ISR_MASK) { dev_dbg(xsdfec->dev, "SDFEC enabling ECC irq with ECC IER failed"); return -EIO; } } else { /* Disable */ xsdfec_regwrite(xsdfec, XSDFEC_ECC_IDR_ADDR, XSDFEC_ALL_ECC_ISR_MASK); mask_read = xsdfec_regread(xsdfec, XSDFEC_ECC_IMR_ADDR); if (!(((mask_read & XSDFEC_ALL_ECC_ISR_MASK) == XSDFEC_ECC_ISR_MASK) || ((mask_read & XSDFEC_ALL_ECC_ISR_MASK) == XSDFEC_PL_INIT_ECC_ISR_MASK))) { dev_dbg(xsdfec->dev, "SDFEC disable ECC irq with ECC IDR failed"); return -EIO; } } return 0; } static int xsdfec_set_irq(struct xsdfec_dev *xsdfec, void __user *arg) { struct xsdfec_irq irq; int err; int isr_err; int ecc_err; err = copy_from_user(&irq, arg, sizeof(irq)); if (err) return -EFAULT; /* Setup tlast related IRQ */ isr_err = xsdfec_isr_enable(xsdfec, irq.enable_isr); if (!isr_err) xsdfec->config.irq.enable_isr = irq.enable_isr; /* Setup ECC related IRQ */ ecc_err = xsdfec_ecc_isr_enable(xsdfec, irq.enable_ecc_isr); if (!ecc_err) xsdfec->config.irq.enable_ecc_isr = irq.enable_ecc_isr; if (isr_err < 0 || ecc_err < 0) err = -EIO; return err; } static int xsdfec_set_turbo(struct xsdfec_dev *xsdfec, void __user *arg) { struct xsdfec_turbo turbo; int err; u32 turbo_write; err = copy_from_user(&turbo, arg, sizeof(turbo)); if (err) return -EFAULT; if (turbo.alg >= XSDFEC_TURBO_ALG_MAX) return -EINVAL; if (turbo.scale > XSDFEC_TURBO_SCALE_MAX) return -EINVAL; /* Check to see what device tree says about the FEC codes */ if (xsdfec->config.code == XSDFEC_LDPC_CODE) return -EIO; turbo_write = ((turbo.scale & XSDFEC_TURBO_SCALE_MASK) << XSDFEC_TURBO_SCALE_BIT_POS) | turbo.alg; xsdfec_regwrite(xsdfec, XSDFEC_TURBO_ADDR, turbo_write); return err; } static int xsdfec_get_turbo(struct xsdfec_dev *xsdfec, void __user *arg) { u32 reg_value; struct xsdfec_turbo turbo_params; int err; if (xsdfec->config.code == XSDFEC_LDPC_CODE) return -EIO; memset(&turbo_params, 0, sizeof(turbo_params)); reg_value = xsdfec_regread(xsdfec, XSDFEC_TURBO_ADDR); turbo_params.scale = (reg_value & XSDFEC_TURBO_SCALE_MASK) >> XSDFEC_TURBO_SCALE_BIT_POS; turbo_params.alg = reg_value & 0x1; err = copy_to_user(arg, &turbo_params, sizeof(turbo_params)); if (err) err = -EFAULT; return err; } static int xsdfec_reg0_write(struct xsdfec_dev *xsdfec, u32 n, u32 k, u32 psize, u32 offset) { u32 wdata; if (n < XSDFEC_REG0_N_MIN || n > XSDFEC_REG0_N_MAX || psize == 0 || (n > XSDFEC_REG0_N_MUL_P * psize) || n <= k || ((n % psize) != 0)) { dev_dbg(xsdfec->dev, "N value is not in range"); return -EINVAL; } n <<= XSDFEC_REG0_N_LSB; if (k < XSDFEC_REG0_K_MIN || k > XSDFEC_REG0_K_MAX || (k > XSDFEC_REG0_K_MUL_P * psize) || ((k % psize) != 0)) { dev_dbg(xsdfec->dev, "K value is not in range"); return -EINVAL; } k = k << XSDFEC_REG0_K_LSB; wdata = k | n; if (XSDFEC_LDPC_CODE_REG0_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP) > XSDFEC_LDPC_CODE_REG0_ADDR_HIGH) { dev_dbg(xsdfec->dev, "Writing outside of LDPC reg0 space 0x%x", XSDFEC_LDPC_CODE_REG0_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP)); return -EINVAL; } xsdfec_regwrite(xsdfec, XSDFEC_LDPC_CODE_REG0_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP), wdata); return 0; } static int xsdfec_reg1_write(struct xsdfec_dev *xsdfec, u32 psize, u32 no_packing, u32 nm, u32 offset) { u32 wdata; if (psize < XSDFEC_REG1_PSIZE_MIN || psize > XSDFEC_REG1_PSIZE_MAX) { dev_dbg(xsdfec->dev, "Psize is not in range"); return -EINVAL; } if (no_packing != 0 && no_packing != 1) dev_dbg(xsdfec->dev, "No-packing bit register invalid"); no_packing = ((no_packing << XSDFEC_REG1_NO_PACKING_LSB) & XSDFEC_REG1_NO_PACKING_MASK); if (nm & ~(XSDFEC_REG1_NM_MASK >> XSDFEC_REG1_NM_LSB)) dev_dbg(xsdfec->dev, "NM is beyond 10 bits"); nm = (nm << XSDFEC_REG1_NM_LSB) & XSDFEC_REG1_NM_MASK; wdata = nm | no_packing | psize; if (XSDFEC_LDPC_CODE_REG1_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP) > XSDFEC_LDPC_CODE_REG1_ADDR_HIGH) { dev_dbg(xsdfec->dev, "Writing outside of LDPC reg1 space 0x%x", XSDFEC_LDPC_CODE_REG1_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP)); return -EINVAL; } xsdfec_regwrite(xsdfec, XSDFEC_LDPC_CODE_REG1_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP), wdata); return 0; } static int xsdfec_reg2_write(struct xsdfec_dev *xsdfec, u32 nlayers, u32 nmqc, u32 norm_type, u32 special_qc, u32 no_final_parity, u32 max_schedule, u32 offset) { u32 wdata; if (nlayers < XSDFEC_REG2_NLAYERS_MIN || nlayers > XSDFEC_REG2_NLAYERS_MAX) { dev_dbg(xsdfec->dev, "Nlayers is not in range"); return -EINVAL; } if (nmqc & ~(XSDFEC_REG2_NNMQC_MASK >> XSDFEC_REG2_NMQC_LSB)) dev_dbg(xsdfec->dev, "NMQC exceeds 11 bits"); nmqc = (nmqc << XSDFEC_REG2_NMQC_LSB) & XSDFEC_REG2_NNMQC_MASK; if (norm_type > 1) dev_dbg(xsdfec->dev, "Norm type is invalid"); norm_type = ((norm_type << XSDFEC_REG2_NORM_TYPE_LSB) & XSDFEC_REG2_NORM_TYPE_MASK); if (special_qc > 1) dev_dbg(xsdfec->dev, "Special QC in invalid"); special_qc = ((special_qc << XSDFEC_REG2_SPEICAL_QC_LSB) & XSDFEC_REG2_SPECIAL_QC_MASK); if (no_final_parity > 1) dev_dbg(xsdfec->dev, "No final parity check invalid"); no_final_parity = ((no_final_parity << XSDFEC_REG2_NO_FINAL_PARITY_LSB) & XSDFEC_REG2_NO_FINAL_PARITY_MASK); if (max_schedule & ~(XSDFEC_REG2_MAX_SCHEDULE_MASK >> XSDFEC_REG2_MAX_SCHEDULE_LSB)) dev_dbg(xsdfec->dev, "Max Schedule exceeds 2 bits"); max_schedule = ((max_schedule << XSDFEC_REG2_MAX_SCHEDULE_LSB) & XSDFEC_REG2_MAX_SCHEDULE_MASK); wdata = (max_schedule | no_final_parity | special_qc | norm_type | nmqc | nlayers); if (XSDFEC_LDPC_CODE_REG2_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP) > XSDFEC_LDPC_CODE_REG2_ADDR_HIGH) { dev_dbg(xsdfec->dev, "Writing outside of LDPC reg2 space 0x%x", XSDFEC_LDPC_CODE_REG2_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP)); return -EINVAL; } xsdfec_regwrite(xsdfec, XSDFEC_LDPC_CODE_REG2_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP), wdata); return 0; } static int xsdfec_reg3_write(struct xsdfec_dev *xsdfec, u8 sc_off, u8 la_off, u16 qc_off, u32 offset) { u32 wdata; wdata = ((qc_off << XSDFEC_REG3_QC_OFF_LSB) | (la_off << XSDFEC_REG3_LA_OFF_LSB) | sc_off); if (XSDFEC_LDPC_CODE_REG3_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP) > XSDFEC_LDPC_CODE_REG3_ADDR_HIGH) { dev_dbg(xsdfec->dev, "Writing outside of LDPC reg3 space 0x%x", XSDFEC_LDPC_CODE_REG3_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP)); return -EINVAL; } xsdfec_regwrite(xsdfec, XSDFEC_LDPC_CODE_REG3_ADDR_BASE + (offset * XSDFEC_LDPC_REG_JUMP), wdata); return 0; } static int xsdfec_table_write(struct xsdfec_dev *xsdfec, u32 offset, u32 *src_ptr, u32 len, const u32 base_addr, const u32 depth) { u32 reg = 0; int res, i, nr_pages; u32 n; u32 *addr = NULL; struct page *pages[MAX_NUM_PAGES]; /* * Writes that go beyond the length of * Shared Scale(SC) table should fail */ if (offset > depth / XSDFEC_REG_WIDTH_JUMP || len > depth / XSDFEC_REG_WIDTH_JUMP || offset + len > depth / XSDFEC_REG_WIDTH_JUMP) { dev_dbg(xsdfec->dev, "Write exceeds SC table length"); return -EINVAL; } n = (len * XSDFEC_REG_WIDTH_JUMP) / PAGE_SIZE; if ((len * XSDFEC_REG_WIDTH_JUMP) % PAGE_SIZE) n += 1; if (WARN_ON_ONCE(n > INT_MAX)) return -EINVAL; nr_pages = n; res = pin_user_pages_fast((unsigned long)src_ptr, nr_pages, 0, pages); if (res < nr_pages) { if (res > 0) unpin_user_pages(pages, res); return -EINVAL; } for (i = 0; i < nr_pages; i++) { addr = kmap(pages[i]); do { xsdfec_regwrite(xsdfec, base_addr + ((offset + reg) * XSDFEC_REG_WIDTH_JUMP), addr[reg]); reg++; } while ((reg < len) && ((reg * XSDFEC_REG_WIDTH_JUMP) % PAGE_SIZE)); unpin_user_page(pages[i]); } return 0; } static int xsdfec_add_ldpc(struct xsdfec_dev *xsdfec, void __user *arg) { struct xsdfec_ldpc_params *ldpc; int ret, n; ldpc = memdup_user(arg, sizeof(*ldpc)); if (IS_ERR(ldpc)) return PTR_ERR(ldpc); if (xsdfec->config.code == XSDFEC_TURBO_CODE) { ret = -EIO; goto err_out; } /* Verify Device has not started */ if (xsdfec->state == XSDFEC_STARTED) { ret = -EIO; goto err_out; } if (xsdfec->config.code_wr_protect) { ret = -EIO; goto err_out; } /* Write Reg 0 */ ret = xsdfec_reg0_write(xsdfec, ldpc->n, ldpc->k, ldpc->psize, ldpc->code_id); if (ret) goto err_out; /* Write Reg 1 */ ret = xsdfec_reg1_write(xsdfec, ldpc->psize, ldpc->no_packing, ldpc->nm, ldpc->code_id); if (ret) goto err_out; /* Write Reg 2 */ ret = xsdfec_reg2_write(xsdfec, ldpc->nlayers, ldpc->nmqc, ldpc->norm_type, ldpc->special_qc, ldpc->no_final_parity, ldpc->max_schedule, ldpc->code_id); if (ret) goto err_out; /* Write Reg 3 */ ret = xsdfec_reg3_write(xsdfec, ldpc->sc_off, ldpc->la_off, ldpc->qc_off, ldpc->code_id); if (ret) goto err_out; /* Write Shared Codes */ n = ldpc->nlayers / 4; if (ldpc->nlayers % 4) n++; ret = xsdfec_table_write(xsdfec, ldpc->sc_off, ldpc->sc_table, n, XSDFEC_LDPC_SC_TABLE_ADDR_BASE, XSDFEC_SC_TABLE_DEPTH); if (ret < 0) goto err_out; ret = xsdfec_table_write(xsdfec, 4 * ldpc->la_off, ldpc->la_table, ldpc->nlayers, XSDFEC_LDPC_LA_TABLE_ADDR_BASE, XSDFEC_LA_TABLE_DEPTH); if (ret < 0) goto err_out; ret = xsdfec_table_write(xsdfec, 4 * ldpc->qc_off, ldpc->qc_table, ldpc->nqc, XSDFEC_LDPC_QC_TABLE_ADDR_BASE, XSDFEC_QC_TABLE_DEPTH); err_out: kfree(ldpc); return ret; } static int xsdfec_set_order(struct xsdfec_dev *xsdfec, void __user *arg) { bool order_invalid; enum xsdfec_order order; int err; err = get_user(order, (enum xsdfec_order __user *)arg); if (err) return -EFAULT; order_invalid = (order != XSDFEC_MAINTAIN_ORDER) && (order != XSDFEC_OUT_OF_ORDER); if (order_invalid) return -EINVAL; /* Verify Device has not started */ if (xsdfec->state == XSDFEC_STARTED) return -EIO; xsdfec_regwrite(xsdfec, XSDFEC_ORDER_ADDR, order); xsdfec->config.order = order; return 0; } static int xsdfec_set_bypass(struct xsdfec_dev *xsdfec, bool __user *arg) { bool bypass; int err; err = get_user(bypass, arg); if (err) return -EFAULT; /* Verify Device has not started */ if (xsdfec->state == XSDFEC_STARTED) return -EIO; if (bypass) xsdfec_regwrite(xsdfec, XSDFEC_BYPASS_ADDR, 1); else xsdfec_regwrite(xsdfec, XSDFEC_BYPASS_ADDR, 0); xsdfec->config.bypass = bypass; return 0; } static int xsdfec_is_active(struct xsdfec_dev *xsdfec, bool __user *arg) { u32 reg_value; bool is_active; int err; reg_value = xsdfec_regread(xsdfec, XSDFEC_ACTIVE_ADDR); /* using a double ! operator instead of casting */ is_active = !!(reg_value & XSDFEC_IS_ACTIVITY_SET); err = put_user(is_active, arg); if (err) return -EFAULT; return err; } static u32 xsdfec_translate_axis_width_cfg_val(enum xsdfec_axis_width axis_width_cfg) { u32 axis_width_field = 0; switch (axis_width_cfg) { case XSDFEC_1x128b: axis_width_field = 0; break; case XSDFEC_2x128b: axis_width_field = 1; break; case XSDFEC_4x128b: axis_width_field = 2; break; } return axis_width_field; } static u32 xsdfec_translate_axis_words_cfg_val(enum xsdfec_axis_word_include axis_word_inc_cfg) { u32 axis_words_field = 0; if (axis_word_inc_cfg == XSDFEC_FIXED_VALUE || axis_word_inc_cfg == XSDFEC_IN_BLOCK) axis_words_field = 0; else if (axis_word_inc_cfg == XSDFEC_PER_AXI_TRANSACTION) axis_words_field = 1; return axis_words_field; } static int xsdfec_cfg_axi_streams(struct xsdfec_dev *xsdfec) { u32 reg_value; u32 dout_words_field; u32 dout_width_field; u32 din_words_field; u32 din_width_field; struct xsdfec_config *config = &xsdfec->config; /* translate config info to register values */ dout_words_field = xsdfec_translate_axis_words_cfg_val(config->dout_word_include); dout_width_field = xsdfec_translate_axis_width_cfg_val(config->dout_width); din_words_field = xsdfec_translate_axis_words_cfg_val(config->din_word_include); din_width_field = xsdfec_translate_axis_width_cfg_val(config->din_width); reg_value = dout_words_field << XSDFEC_AXIS_DOUT_WORDS_LSB; reg_value |= dout_width_field << XSDFEC_AXIS_DOUT_WIDTH_LSB; reg_value |= din_words_field << XSDFEC_AXIS_DIN_WORDS_LSB; reg_value |= din_width_field << XSDFEC_AXIS_DIN_WIDTH_LSB; xsdfec_regwrite(xsdfec, XSDFEC_AXIS_WIDTH_ADDR, reg_value); return 0; } static int xsdfec_dev_open(struct inode *iptr, struct file *fptr) { return 0; } static int xsdfec_dev_release(struct inode *iptr, struct file *fptr) { return 0; } static int xsdfec_start(struct xsdfec_dev *xsdfec) { u32 regread; regread = xsdfec_regread(xsdfec, XSDFEC_FEC_CODE_ADDR); regread &= 0x1; if (regread != xsdfec->config.code) { dev_dbg(xsdfec->dev, "%s SDFEC HW code does not match driver code, reg %d, code %d", __func__, regread, xsdfec->config.code); return -EINVAL; } /* Set AXIS enable */ xsdfec_regwrite(xsdfec, XSDFEC_AXIS_ENABLE_ADDR, XSDFEC_AXIS_ENABLE_MASK); /* Done */ xsdfec->state = XSDFEC_STARTED; return 0; } static int xsdfec_stop(struct xsdfec_dev *xsdfec) { u32 regread; if (xsdfec->state != XSDFEC_STARTED) dev_dbg(xsdfec->dev, "Device not started correctly"); /* Disable AXIS_ENABLE Input interfaces only */ regread = xsdfec_regread(xsdfec, XSDFEC_AXIS_ENABLE_ADDR); regread &= (~XSDFEC_AXIS_IN_ENABLE_MASK); xsdfec_regwrite(xsdfec, XSDFEC_AXIS_ENABLE_ADDR, regread); /* Stop */ xsdfec->state = XSDFEC_STOPPED; return 0; } static int xsdfec_clear_stats(struct xsdfec_dev *xsdfec) { spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags); xsdfec->isr_err_count = 0; xsdfec->uecc_count = 0; xsdfec->cecc_count = 0; spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags); return 0; } static int xsdfec_get_stats(struct xsdfec_dev *xsdfec, void __user *arg) { int err; struct xsdfec_stats user_stats; spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags); user_stats.isr_err_count = xsdfec->isr_err_count; user_stats.cecc_count = xsdfec->cecc_count; user_stats.uecc_count = xsdfec->uecc_count; xsdfec->stats_updated = false; spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags); err = copy_to_user(arg, &user_stats, sizeof(user_stats)); if (err) err = -EFAULT; return err; } static int xsdfec_set_default_config(struct xsdfec_dev *xsdfec) { /* Ensure registers are aligned with core configuration */ xsdfec_regwrite(xsdfec, XSDFEC_FEC_CODE_ADDR, xsdfec->config.code); xsdfec_cfg_axi_streams(xsdfec); update_config_from_hw(xsdfec); return 0; } static long xsdfec_dev_ioctl(struct file *fptr, unsigned int cmd, unsigned long data) { struct xsdfec_dev *xsdfec; void __user *arg = NULL; int rval = -EINVAL; xsdfec = container_of(fptr->private_data, struct xsdfec_dev, miscdev); /* In failed state allow only reset and get status IOCTLs */ if (xsdfec->state == XSDFEC_NEEDS_RESET && (cmd != XSDFEC_SET_DEFAULT_CONFIG && cmd != XSDFEC_GET_STATUS && cmd != XSDFEC_GET_STATS && cmd != XSDFEC_CLEAR_STATS)) { return -EPERM; } if (_IOC_TYPE(cmd) != XSDFEC_MAGIC) return -ENOTTY; /* check if ioctl argument is present and valid */ if (_IOC_DIR(cmd) != _IOC_NONE) { arg = (void __user *)data; if (!arg) return rval; } switch (cmd) { case XSDFEC_START_DEV: rval = xsdfec_start(xsdfec); break; case XSDFEC_STOP_DEV: rval = xsdfec_stop(xsdfec); break; case XSDFEC_CLEAR_STATS: rval = xsdfec_clear_stats(xsdfec); break; case XSDFEC_GET_STATS: rval = xsdfec_get_stats(xsdfec, arg); break; case XSDFEC_GET_STATUS: rval = xsdfec_get_status(xsdfec, arg); break; case XSDFEC_GET_CONFIG: rval = xsdfec_get_config(xsdfec, arg); break; case XSDFEC_SET_DEFAULT_CONFIG: rval = xsdfec_set_default_config(xsdfec); break; case XSDFEC_SET_IRQ: rval = xsdfec_set_irq(xsdfec, arg); break; case XSDFEC_SET_TURBO: rval = xsdfec_set_turbo(xsdfec, arg); break; case XSDFEC_GET_TURBO: rval = xsdfec_get_turbo(xsdfec, arg); break; case XSDFEC_ADD_LDPC_CODE_PARAMS: rval = xsdfec_add_ldpc(xsdfec, arg); break; case XSDFEC_SET_ORDER: rval = xsdfec_set_order(xsdfec, arg); break; case XSDFEC_SET_BYPASS: rval = xsdfec_set_bypass(xsdfec, arg); break; case XSDFEC_IS_ACTIVE: rval = xsdfec_is_active(xsdfec, (bool __user *)arg); break; default: /* Should not get here */ break; } return rval; } static __poll_t xsdfec_poll(struct file *file, poll_table *wait) { __poll_t mask = 0; struct xsdfec_dev *xsdfec; xsdfec = container_of(file->private_data, struct xsdfec_dev, miscdev); if (!xsdfec) return EPOLLNVAL | EPOLLHUP; poll_wait(file, &xsdfec->waitq, wait); /* XSDFEC ISR detected an error */ spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags); if (xsdfec->state_updated) mask |= EPOLLIN | EPOLLPRI; if (xsdfec->stats_updated) mask |= EPOLLIN | EPOLLRDNORM; spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags); return mask; } static const struct file_operations xsdfec_fops = { .owner = THIS_MODULE, .open = xsdfec_dev_open, .release = xsdfec_dev_release, .unlocked_ioctl = xsdfec_dev_ioctl, .poll = xsdfec_poll, .compat_ioctl = compat_ptr_ioctl, }; static int xsdfec_parse_of(struct xsdfec_dev *xsdfec) { struct device *dev = xsdfec->dev; struct device_node *node = dev->of_node; int rval; const char *fec_code; u32 din_width; u32 din_word_include; u32 dout_width; u32 dout_word_include; rval = of_property_read_string(node, "xlnx,sdfec-code", &fec_code); if (rval < 0) return rval; if (!strcasecmp(fec_code, "ldpc")) xsdfec->config.code = XSDFEC_LDPC_CODE; else if (!strcasecmp(fec_code, "turbo")) xsdfec->config.code = XSDFEC_TURBO_CODE; else return -EINVAL; rval = of_property_read_u32(node, "xlnx,sdfec-din-words", &din_word_include); if (rval < 0) return rval; if (din_word_include < XSDFEC_AXIS_WORDS_INCLUDE_MAX) xsdfec->config.din_word_include = din_word_include; else return -EINVAL; rval = of_property_read_u32(node, "xlnx,sdfec-din-width", &din_width); if (rval < 0) return rval; switch (din_width) { /* Fall through and set for valid values */ case XSDFEC_1x128b: case XSDFEC_2x128b: case XSDFEC_4x128b: xsdfec->config.din_width = din_width; break; default: return -EINVAL; } rval = of_property_read_u32(node, "xlnx,sdfec-dout-words", &dout_word_include); if (rval < 0) return rval; if (dout_word_include < XSDFEC_AXIS_WORDS_INCLUDE_MAX) xsdfec->config.dout_word_include = dout_word_include; else return -EINVAL; rval = of_property_read_u32(node, "xlnx,sdfec-dout-width", &dout_width); if (rval < 0) return rval; switch (dout_width) { /* Fall through and set for valid values */ case XSDFEC_1x128b: case XSDFEC_2x128b: case XSDFEC_4x128b: xsdfec->config.dout_width = dout_width; break; default: return -EINVAL; } /* Write LDPC to CODE Register */ xsdfec_regwrite(xsdfec, XSDFEC_FEC_CODE_ADDR, xsdfec->config.code); xsdfec_cfg_axi_streams(xsdfec); return 0; } static irqreturn_t xsdfec_irq_thread(int irq, void *dev_id) { struct xsdfec_dev *xsdfec = dev_id; irqreturn_t ret = IRQ_HANDLED; u32 ecc_err; u32 isr_err; u32 uecc_count; u32 cecc_count; u32 isr_err_count; u32 aecc_count; u32 tmp; WARN_ON(xsdfec->irq != irq); /* Mask Interrupts */ xsdfec_isr_enable(xsdfec, false); xsdfec_ecc_isr_enable(xsdfec, false); /* Read ISR */ ecc_err = xsdfec_regread(xsdfec, XSDFEC_ECC_ISR_ADDR); isr_err = xsdfec_regread(xsdfec, XSDFEC_ISR_ADDR); /* Clear the interrupts */ xsdfec_regwrite(xsdfec, XSDFEC_ECC_ISR_ADDR, ecc_err); xsdfec_regwrite(xsdfec, XSDFEC_ISR_ADDR, isr_err); tmp = ecc_err & XSDFEC_ALL_ECC_ISR_MBE_MASK; /* Count uncorrectable 2-bit errors */ uecc_count = hweight32(tmp); /* Count all ECC errors */ aecc_count = hweight32(ecc_err); /* Number of correctable 1-bit ECC error */ cecc_count = aecc_count - 2 * uecc_count; /* Count ISR errors */ isr_err_count = hweight32(isr_err); dev_dbg(xsdfec->dev, "tmp=%x, uecc=%x, aecc=%x, cecc=%x, isr=%x", tmp, uecc_count, aecc_count, cecc_count, isr_err_count); dev_dbg(xsdfec->dev, "uecc=%x, cecc=%x, isr=%x", xsdfec->uecc_count, xsdfec->cecc_count, xsdfec->isr_err_count); spin_lock_irqsave(&xsdfec->error_data_lock, xsdfec->flags); /* Add new errors to a 2-bits counter */ if (uecc_count) xsdfec->uecc_count += uecc_count; /* Add new errors to a 1-bits counter */ if (cecc_count) xsdfec->cecc_count += cecc_count; /* Add new errors to a ISR counter */ if (isr_err_count) xsdfec->isr_err_count += isr_err_count; /* Update state/stats flag */ if (uecc_count) { if (ecc_err & XSDFEC_ECC_ISR_MBE_MASK) xsdfec->state = XSDFEC_NEEDS_RESET; else if (ecc_err & XSDFEC_PL_INIT_ECC_ISR_MBE_MASK) xsdfec->state = XSDFEC_PL_RECONFIGURE; xsdfec->stats_updated = true; xsdfec->state_updated = true; } if (cecc_count) xsdfec->stats_updated = true; if (isr_err_count) { xsdfec->state = XSDFEC_NEEDS_RESET; xsdfec->stats_updated = true; xsdfec->state_updated = true; } spin_unlock_irqrestore(&xsdfec->error_data_lock, xsdfec->flags); dev_dbg(xsdfec->dev, "state=%x, stats=%x", xsdfec->state_updated, xsdfec->stats_updated); /* Enable another polling */ if (xsdfec->state_updated || xsdfec->stats_updated) wake_up_interruptible(&xsdfec->waitq); else ret = IRQ_NONE; /* Unmask Interrupts */ xsdfec_isr_enable(xsdfec, true); xsdfec_ecc_isr_enable(xsdfec, true); return ret; } static int xsdfec_clk_init(struct platform_device *pdev, struct xsdfec_clks *clks) { int err; clks->core_clk = devm_clk_get(&pdev->dev, "core_clk"); if (IS_ERR(clks->core_clk)) { dev_err(&pdev->dev, "failed to get core_clk"); return PTR_ERR(clks->core_clk); } clks->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); if (IS_ERR(clks->axi_clk)) { dev_err(&pdev->dev, "failed to get axi_clk"); return PTR_ERR(clks->axi_clk); } clks->din_words_clk = devm_clk_get(&pdev->dev, "s_axis_din_words_aclk"); if (IS_ERR(clks->din_words_clk)) { if (PTR_ERR(clks->din_words_clk) != -ENOENT) { err = PTR_ERR(clks->din_words_clk); return err; } clks->din_words_clk = NULL; } clks->din_clk = devm_clk_get(&pdev->dev, "s_axis_din_aclk"); if (IS_ERR(clks->din_clk)) { if (PTR_ERR(clks->din_clk) != -ENOENT) { err = PTR_ERR(clks->din_clk); return err; } clks->din_clk = NULL; } clks->dout_clk = devm_clk_get(&pdev->dev, "m_axis_dout_aclk"); if (IS_ERR(clks->dout_clk)) { if (PTR_ERR(clks->dout_clk) != -ENOENT) { err = PTR_ERR(clks->dout_clk); return err; } clks->dout_clk = NULL; } clks->dout_words_clk = devm_clk_get(&pdev->dev, "s_axis_dout_words_aclk"); if (IS_ERR(clks->dout_words_clk)) { if (PTR_ERR(clks->dout_words_clk) != -ENOENT) { err = PTR_ERR(clks->dout_words_clk); return err; } clks->dout_words_clk = NULL; } clks->ctrl_clk = devm_clk_get(&pdev->dev, "s_axis_ctrl_aclk"); if (IS_ERR(clks->ctrl_clk)) { if (PTR_ERR(clks->ctrl_clk) != -ENOENT) { err = PTR_ERR(clks->ctrl_clk); return err; } clks->ctrl_clk = NULL; } clks->status_clk = devm_clk_get(&pdev->dev, "m_axis_status_aclk"); if (IS_ERR(clks->status_clk)) { if (PTR_ERR(clks->status_clk) != -ENOENT) { err = PTR_ERR(clks->status_clk); return err; } clks->status_clk = NULL; } err = clk_prepare_enable(clks->core_clk); if (err) { dev_err(&pdev->dev, "failed to enable core_clk (%d)", err); return err; } err = clk_prepare_enable(clks->axi_clk); if (err) { dev_err(&pdev->dev, "failed to enable axi_clk (%d)", err); goto err_disable_core_clk; } err = clk_prepare_enable(clks->din_clk); if (err) { dev_err(&pdev->dev, "failed to enable din_clk (%d)", err); goto err_disable_axi_clk; } err = clk_prepare_enable(clks->din_words_clk); if (err) { dev_err(&pdev->dev, "failed to enable din_words_clk (%d)", err); goto err_disable_din_clk; } err = clk_prepare_enable(clks->dout_clk); if (err) { dev_err(&pdev->dev, "failed to enable dout_clk (%d)", err); goto err_disable_din_words_clk; } err = clk_prepare_enable(clks->dout_words_clk); if (err) { dev_err(&pdev->dev, "failed to enable dout_words_clk (%d)", err); goto err_disable_dout_clk; } err = clk_prepare_enable(clks->ctrl_clk); if (err) { dev_err(&pdev->dev, "failed to enable ctrl_clk (%d)", err); goto err_disable_dout_words_clk; } err = clk_prepare_enable(clks->status_clk); if (err) { dev_err(&pdev->dev, "failed to enable status_clk (%d)\n", err); goto err_disable_ctrl_clk; } return err; err_disable_ctrl_clk: clk_disable_unprepare(clks->ctrl_clk); err_disable_dout_words_clk: clk_disable_unprepare(clks->dout_words_clk); err_disable_dout_clk: clk_disable_unprepare(clks->dout_clk); err_disable_din_words_clk: clk_disable_unprepare(clks->din_words_clk); err_disable_din_clk: clk_disable_unprepare(clks->din_clk); err_disable_axi_clk: clk_disable_unprepare(clks->axi_clk); err_disable_core_clk: clk_disable_unprepare(clks->core_clk); return err; } static void xsdfec_disable_all_clks(struct xsdfec_clks *clks) { clk_disable_unprepare(clks->status_clk); clk_disable_unprepare(clks->ctrl_clk); clk_disable_unprepare(clks->dout_words_clk); clk_disable_unprepare(clks->dout_clk); clk_disable_unprepare(clks->din_words_clk); clk_disable_unprepare(clks->din_clk); clk_disable_unprepare(clks->core_clk); clk_disable_unprepare(clks->axi_clk); } static int xsdfec_probe(struct platform_device *pdev) { struct xsdfec_dev *xsdfec; struct device *dev; struct resource *res; int err; bool irq_enabled = true; xsdfec = devm_kzalloc(&pdev->dev, sizeof(*xsdfec), GFP_KERNEL); if (!xsdfec) return -ENOMEM; xsdfec->dev = &pdev->dev; spin_lock_init(&xsdfec->error_data_lock); err = xsdfec_clk_init(pdev, &xsdfec->clks); if (err) return err; dev = xsdfec->dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); xsdfec->regs = devm_ioremap_resource(dev, res); if (IS_ERR(xsdfec->regs)) { err = PTR_ERR(xsdfec->regs); goto err_xsdfec_dev; } xsdfec->irq = platform_get_irq(pdev, 0); if (xsdfec->irq < 0) { dev_dbg(dev, "platform_get_irq failed"); irq_enabled = false; } err = xsdfec_parse_of(xsdfec); if (err < 0) goto err_xsdfec_dev; update_config_from_hw(xsdfec); /* Save driver private data */ platform_set_drvdata(pdev, xsdfec); if (irq_enabled) { init_waitqueue_head(&xsdfec->waitq); /* Register IRQ thread */ err = devm_request_threaded_irq(dev, xsdfec->irq, NULL, xsdfec_irq_thread, IRQF_ONESHOT, "xilinx-sdfec16", xsdfec); if (err < 0) { dev_err(dev, "unable to request IRQ%d", xsdfec->irq); goto err_xsdfec_dev; } } err = ida_alloc(&dev_nrs, GFP_KERNEL); if (err < 0) goto err_xsdfec_dev; xsdfec->dev_id = err; snprintf(xsdfec->dev_name, DEV_NAME_LEN, "xsdfec%d", xsdfec->dev_id); xsdfec->miscdev.minor = MISC_DYNAMIC_MINOR; xsdfec->miscdev.name = xsdfec->dev_name; xsdfec->miscdev.fops = &xsdfec_fops; xsdfec->miscdev.parent = dev; err = misc_register(&xsdfec->miscdev); if (err) { dev_err(dev, "error:%d. Unable to register device", err); goto err_xsdfec_ida; } return 0; err_xsdfec_ida: ida_free(&dev_nrs, xsdfec->dev_id); err_xsdfec_dev: xsdfec_disable_all_clks(&xsdfec->clks); return err; } static int xsdfec_remove(struct platform_device *pdev) { struct xsdfec_dev *xsdfec; xsdfec = platform_get_drvdata(pdev); misc_deregister(&xsdfec->miscdev); ida_free(&dev_nrs, xsdfec->dev_id); xsdfec_disable_all_clks(&xsdfec->clks); return 0; } static const struct of_device_id xsdfec_of_match[] = { { .compatible = "xlnx,sd-fec-1.1", }, { /* end of table */ } }; MODULE_DEVICE_TABLE(of, xsdfec_of_match); static struct platform_driver xsdfec_driver = { .driver = { .name = "xilinx-sdfec", .of_match_table = xsdfec_of_match, }, .probe = xsdfec_probe, .remove = xsdfec_remove, }; module_platform_driver(xsdfec_driver); MODULE_AUTHOR("Xilinx, Inc"); MODULE_DESCRIPTION("Xilinx SD-FEC16 Driver"); MODULE_LICENSE("GPL");