// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include "../include/common/hl_boot_if.h" #include #include #define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */ /** * hl_fw_load_fw_to_device() - Load F/W code to device's memory. * * @hdev: pointer to hl_device structure. * @fw_name: the firmware image name * @dst: IO memory mapped address space to copy firmware to * @src_offset: offset in src FW to copy from * @size: amount of bytes to copy (0 to copy the whole binary) * * Copy fw code from firmware file to device memory. * * Return: 0 on success, non-zero for failure. */ int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, void __iomem *dst, u32 src_offset, u32 size) { const struct firmware *fw; const void *fw_data; size_t fw_size; int rc; rc = request_firmware(&fw, fw_name, hdev->dev); if (rc) { dev_err(hdev->dev, "Firmware file %s is not found!\n", fw_name); goto out; } fw_size = fw->size; if ((fw_size % 4) != 0) { dev_err(hdev->dev, "Illegal %s firmware size %zu\n", fw_name, fw_size); rc = -EINVAL; goto out; } dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size); if (fw_size > FW_FILE_MAX_SIZE) { dev_err(hdev->dev, "FW file size %zu exceeds maximum of %u bytes\n", fw_size, FW_FILE_MAX_SIZE); rc = -EINVAL; goto out; } if (size - src_offset > fw_size) { dev_err(hdev->dev, "size to copy(%u) and offset(%u) are invalid\n", size, src_offset); rc = -EINVAL; goto out; } if (size) fw_size = size; fw_data = (const void *) fw->data; memcpy_toio(dst, fw_data + src_offset, fw_size); out: release_firmware(fw); return rc; } int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode) { struct cpucp_packet pkt = {}; pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT); return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); } int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, u16 len, u32 timeout, u64 *result) { struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id]; struct cpucp_packet *pkt; dma_addr_t pkt_dma_addr; u32 tmp, expected_ack_val; int rc = 0; pkt = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, len, &pkt_dma_addr); if (!pkt) { dev_err(hdev->dev, "Failed to allocate DMA memory for packet to CPU\n"); return -ENOMEM; } memcpy(pkt, msg, len); mutex_lock(&hdev->send_cpu_message_lock); if (hdev->disabled) goto out; if (hdev->device_cpu_disabled) { rc = -EIO; goto out; } /* set fence to a non valid value */ pkt->fence = UINT_MAX; rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, len, pkt_dma_addr); if (rc) { dev_err(hdev->dev, "Failed to send CB on CPU PQ (%d)\n", rc); goto out; } if (hdev->asic_prop.fw_app_security_map & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN) expected_ack_val = queue->pi; else expected_ack_val = CPUCP_PACKET_FENCE_VAL; rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp, (tmp == expected_ack_val), 1000, timeout, true); hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id); if (rc == -ETIMEDOUT) { dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp); hdev->device_cpu_disabled = true; goto out; } tmp = le32_to_cpu(pkt->ctl); rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT; if (rc) { dev_err(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT); rc = -EIO; } else if (result) { *result = le64_to_cpu(pkt->result); } out: mutex_unlock(&hdev->send_cpu_message_lock); hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, len, pkt); return rc; } int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.value = cpu_to_le64(event_type); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); if (rc) dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type); return rc; } int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, size_t irq_arr_size) { struct cpucp_unmask_irq_arr_packet *pkt; size_t total_pkt_size; u64 result; int rc; total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) + irq_arr_size; /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ total_pkt_size = (total_pkt_size + 0x7) & ~0x7; /* total_pkt_size is casted to u16 later on */ if (total_pkt_size > USHRT_MAX) { dev_err(hdev->dev, "too many elements in IRQ array\n"); return -EINVAL; } pkt = kzalloc(total_pkt_size, GFP_KERNEL); if (!pkt) return -ENOMEM; pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0])); memcpy(&pkt->irqs, irq_arr, irq_arr_size); pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY << CPUCP_PKT_CTL_OPCODE_SHIFT); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt, total_pkt_size, 0, &result); if (rc) dev_err(hdev->dev, "failed to unmask IRQ array\n"); kfree(pkt); return rc; } int hl_fw_test_cpu_queue(struct hl_device *hdev) { struct cpucp_packet test_pkt = {}; u64 result; int rc; test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << CPUCP_PKT_CTL_OPCODE_SHIFT); test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt, sizeof(test_pkt), 0, &result); if (!rc) { if (result != CPUCP_PACKET_FENCE_VAL) dev_err(hdev->dev, "CPU queue test failed (%#08llx)\n", result); } else { dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc); } return rc; } void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle) { u64 kernel_addr; kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size); *dma_handle = hdev->cpu_accessible_dma_address + (kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem); return (void *) (uintptr_t) kernel_addr; } void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr) { gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr, size); } int hl_fw_send_heartbeat(struct hl_device *hdev) { struct cpucp_packet hb_pkt = {}; u64 result; int rc; hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << CPUCP_PKT_CTL_OPCODE_SHIFT); hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt, sizeof(hb_pkt), 0, &result); if ((rc) || (result != CPUCP_PACKET_FENCE_VAL)) rc = -EIO; return rc; } static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg, u32 cpu_security_boot_status_reg) { u32 err_val, security_val; bool err_exists = false; /* Some of the firmware status codes are deprecated in newer f/w * versions. In those versions, the errors are reported * in different registers. Therefore, we need to check those * registers and print the exact errors. Moreover, there * may be multiple errors, so we need to report on each error * separately. Some of the error codes might indicate a state * that is not an error per-se, but it is an error in production * environment */ err_val = RREG32(boot_err0_reg); if (!(err_val & CPU_BOOT_ERR0_ENABLED)) return 0; if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) { dev_err(hdev->dev, "Device boot error - DRAM initialization failed\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) { dev_err(hdev->dev, "Device boot error - FIT image corrupted\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) { dev_err(hdev->dev, "Device boot error - Thermal Sensor initialization failed\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) { dev_warn(hdev->dev, "Device boot warning - Skipped DRAM initialization\n"); /* This is a warning so we don't want it to disable the * device */ err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED; } if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) { if (hdev->bmc_enable) { dev_err(hdev->dev, "Device boot error - Skipped waiting for BMC\n"); err_exists = true; } else { dev_info(hdev->dev, "Device boot message - Skipped waiting for BMC\n"); /* This is an info so we don't want it to disable the * device */ err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED; } } if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) { dev_err(hdev->dev, "Device boot error - Serdes data from BMC not available\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) { dev_err(hdev->dev, "Device boot error - NIC F/W initialization failed\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) { dev_err(hdev->dev, "Device boot warning - security not ready\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) { dev_err(hdev->dev, "Device boot error - security failure\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) { dev_err(hdev->dev, "Device boot error - eFuse failure\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_PLL_FAIL) { dev_err(hdev->dev, "Device boot error - PLL failure\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) { dev_err(hdev->dev, "Device boot error - device unusable\n"); err_exists = true; } security_val = RREG32(cpu_security_boot_status_reg); if (security_val & CPU_BOOT_DEV_STS0_ENABLED) dev_dbg(hdev->dev, "Device security status %#x\n", security_val); if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) { dev_err(hdev->dev, "Device boot error - unknown error 0x%08x\n", err_val); err_exists = true; } if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) & lower_32_bits(hdev->boot_error_status_mask))) return -EIO; return 0; } int hl_fw_cpucp_info_get(struct hl_device *hdev, u32 cpu_security_boot_status_reg, u32 boot_err0_reg) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct cpucp_packet pkt = {}; void *cpucp_info_cpu_addr; dma_addr_t cpucp_info_dma_addr; u64 result; int rc; cpucp_info_cpu_addr = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info), &cpucp_info_dma_addr); if (!cpucp_info_cpu_addr) { dev_err(hdev->dev, "Failed to allocate DMA memory for CPU-CP info packet\n"); return -ENOMEM; } memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.addr = cpu_to_le64(cpucp_info_dma_addr); pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info)); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), HL_CPUCP_INFO_TIMEOUT_USEC, &result); if (rc) { dev_err(hdev->dev, "Failed to handle CPU-CP info pkt, error %d\n", rc); goto out; } rc = fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg); if (rc) { dev_err(hdev->dev, "Errors in device boot\n"); goto out; } memcpy(&prop->cpucp_info, cpucp_info_cpu_addr, sizeof(prop->cpucp_info)); rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors); if (rc) { dev_err(hdev->dev, "Failed to build hwmon channel info, error %d\n", rc); rc = -EFAULT; goto out; } /* Read FW application security bits again */ if (hdev->asic_prop.fw_security_status_valid) hdev->asic_prop.fw_app_security_map = RREG32(cpu_security_boot_status_reg); out: hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr); return rc; } static int hl_fw_send_msi_info_msg(struct hl_device *hdev) { struct cpucp_array_data_packet *pkt; size_t total_pkt_size, data_size; u64 result; int rc; /* skip sending this info for unsupported ASICs */ if (!hdev->asic_funcs->get_msi_info) return 0; data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32); total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size; /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ total_pkt_size = (total_pkt_size + 0x7) & ~0x7; /* total_pkt_size is casted to u16 later on */ if (total_pkt_size > USHRT_MAX) { dev_err(hdev->dev, "CPUCP array data is too big\n"); return -EINVAL; } pkt = kzalloc(total_pkt_size, GFP_KERNEL); if (!pkt) return -ENOMEM; pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES); hdev->asic_funcs->get_msi_info((u32 *)&pkt->data); pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt, total_pkt_size, 0, &result); /* * in case packet result is invalid it means that FW does not support * this feature and will use default/hard coded MSI values. no reason * to stop the boot */ if (rc && result == cpucp_packet_invalid) rc = 0; if (rc) dev_err(hdev->dev, "failed to send CPUCP array data\n"); kfree(pkt); return rc; } int hl_fw_cpucp_handshake(struct hl_device *hdev, u32 cpu_security_boot_status_reg, u32 boot_err0_reg) { int rc; rc = hl_fw_cpucp_info_get(hdev, cpu_security_boot_status_reg, boot_err0_reg); if (rc) return rc; return hl_fw_send_msi_info_msg(hdev); } int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size) { struct cpucp_packet pkt = {}; void *eeprom_info_cpu_addr; dma_addr_t eeprom_info_dma_addr; u64 result; int rc; eeprom_info_cpu_addr = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, max_size, &eeprom_info_dma_addr); if (!eeprom_info_cpu_addr) { dev_err(hdev->dev, "Failed to allocate DMA memory for CPU-CP EEPROM packet\n"); return -ENOMEM; } memset(eeprom_info_cpu_addr, 0, max_size); pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.addr = cpu_to_le64(eeprom_info_dma_addr); pkt.data_max_size = cpu_to_le32(max_size); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), HL_CPUCP_EEPROM_TIMEOUT_USEC, &result); if (rc) { dev_err(hdev->dev, "Failed to handle CPU-CP EEPROM packet, error %d\n", rc); goto out; } /* result contains the actual size */ memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size)); out: hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr); return rc; } int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, struct hl_info_pci_counters *counters) { struct cpucp_packet pkt = {}; u64 result; int rc; pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); /* Fetch PCI rx counter */ pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), HL_CPUCP_INFO_TIMEOUT_USEC, &result); if (rc) { dev_err(hdev->dev, "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); return rc; } counters->rx_throughput = result; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); /* Fetch PCI tx counter */ pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), HL_CPUCP_INFO_TIMEOUT_USEC, &result); if (rc) { dev_err(hdev->dev, "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); return rc; } counters->tx_throughput = result; /* Fetch PCI replay counter */ memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), HL_CPUCP_INFO_TIMEOUT_USEC, &result); if (rc) { dev_err(hdev->dev, "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); return rc; } counters->replay_cnt = (u32) result; return rc; } int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy) { struct cpucp_packet pkt = {}; u64 result; int rc; pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), HL_CPUCP_INFO_TIMEOUT_USEC, &result); if (rc) { dev_err(hdev->dev, "Failed to handle CpuCP total energy pkt, error %d\n", rc); return rc; } *total_energy = result; return rc; } int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, enum pll_index *pll_index) { struct asic_fixed_properties *prop = &hdev->asic_prop; u8 pll_byte, pll_bit_off; bool dynamic_pll; int fw_pll_idx; dynamic_pll = prop->fw_security_status_valid && (prop->fw_app_security_map & CPU_BOOT_DEV_STS0_DYN_PLL_EN); if (!dynamic_pll) { /* * in case we are working with legacy FW (each asic has unique * PLL numbering) use the driver based index as they are * aligned with fw legacy numbering */ *pll_index = input_pll_index; return 0; } /* retrieve a FW compatible PLL index based on * ASIC specific user request */ fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index); if (fw_pll_idx < 0) { dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n", input_pll_index, fw_pll_idx); return -EINVAL; } /* PLL map is a u8 array */ pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3]; pll_bit_off = fw_pll_idx & 0x7; if (!(pll_byte & BIT(pll_bit_off))) { dev_err(hdev->dev, "PLL index %d is not supported\n", fw_pll_idx); return -EINVAL; } *pll_index = fw_pll_idx; return 0; } int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, u16 *pll_freq_arr) { struct cpucp_packet pkt; enum pll_index used_pll_idx; u64 result; int rc; rc = get_used_pll_index(hdev, pll_index, &used_pll_idx); if (rc) return rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.pll_type = __cpu_to_le16((u16)used_pll_idx); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), HL_CPUCP_INFO_TIMEOUT_USEC, &result); if (rc) dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc); pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result); pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result); pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result); pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result); return rc; } int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power) { struct cpucp_packet pkt; u64 result; int rc; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), HL_CPUCP_INFO_TIMEOUT_USEC, &result); if (rc) { dev_err(hdev->dev, "Failed to read power, error %d\n", rc); return rc; } *power = result; return rc; } static void detect_cpu_boot_status(struct hl_device *hdev, u32 status) { /* Some of the status codes below are deprecated in newer f/w * versions but we keep them here for backward compatibility */ switch (status) { case CPU_BOOT_STATUS_NA: dev_err(hdev->dev, "Device boot error - BTL did NOT run\n"); break; case CPU_BOOT_STATUS_IN_WFE: dev_err(hdev->dev, "Device boot error - Stuck inside WFE loop\n"); break; case CPU_BOOT_STATUS_IN_BTL: dev_err(hdev->dev, "Device boot error - Stuck in BTL\n"); break; case CPU_BOOT_STATUS_IN_PREBOOT: dev_err(hdev->dev, "Device boot error - Stuck in Preboot\n"); break; case CPU_BOOT_STATUS_IN_SPL: dev_err(hdev->dev, "Device boot error - Stuck in SPL\n"); break; case CPU_BOOT_STATUS_IN_UBOOT: dev_err(hdev->dev, "Device boot error - Stuck in u-boot\n"); break; case CPU_BOOT_STATUS_DRAM_INIT_FAIL: dev_err(hdev->dev, "Device boot error - DRAM initialization failed\n"); break; case CPU_BOOT_STATUS_UBOOT_NOT_READY: dev_err(hdev->dev, "Device boot error - u-boot stopped by user\n"); break; case CPU_BOOT_STATUS_TS_INIT_FAIL: dev_err(hdev->dev, "Device boot error - Thermal Sensor initialization failed\n"); break; default: dev_err(hdev->dev, "Device boot error - Invalid status code %d\n", status); break; } } static int hl_fw_read_preboot_caps(struct hl_device *hdev, u32 cpu_boot_status_reg, u32 cpu_boot_caps_reg, u32 boot_err0_reg, u32 timeout) { struct asic_fixed_properties *prop = &hdev->asic_prop; u32 status; int rc; /* Need to check two possible scenarios: * * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where * the preboot is waiting for the boot fit * * All other status values - for older firmwares where the uboot was * loaded from the FLASH */ rc = hl_poll_timeout( hdev, cpu_boot_status_reg, status, (status == CPU_BOOT_STATUS_IN_UBOOT) || (status == CPU_BOOT_STATUS_DRAM_RDY) || (status == CPU_BOOT_STATUS_NIC_FW_RDY) || (status == CPU_BOOT_STATUS_READY_TO_BOOT) || (status == CPU_BOOT_STATUS_SRAM_AVAIL) || (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT), 10000, timeout); if (rc) { dev_err(hdev->dev, "CPU boot ready status timeout\n"); detect_cpu_boot_status(hdev, status); /* If we read all FF, then something is totally wrong, no point * of reading specific errors */ if (status != -1) fw_read_errors(hdev, boot_err0_reg, cpu_boot_status_reg); return -EIO; } prop->fw_preboot_caps_map = RREG32(cpu_boot_caps_reg); /* * For now- force dynamic_fw_load to false as LKD does not yet * implements all necessary parts of it. * TODO: once dynamic load is ready set to: * prop->dynamic_fw_load = !!(prop->fw_preboot_caps_map & * CPU_BOOT_DEV_STS0_FW_LD_COM_EN) */ prop->dynamic_fw_load = 0; dev_dbg(hdev->dev, "Attempting %s FW load\n", prop->dynamic_fw_load ? "dynamic" : "legacy"); return 0; } static int hl_fw_read_preboot_status_legacy(struct hl_device *hdev, u32 cpu_boot_status_reg, u32 cpu_security_boot_status_reg, u32 boot_err0_reg, u32 timeout) { struct asic_fixed_properties *prop = &hdev->asic_prop; u32 security_status; int rc; rc = hdev->asic_funcs->read_device_fw_version(hdev, FW_COMP_PREBOOT); if (rc) return rc; security_status = prop->fw_preboot_caps_map; /* We read security status multiple times during boot: * 1. preboot - a. Check whether the security status bits are valid * b. Check whether fw security is enabled * c. Check whether hard reset is done by preboot * 2. boot cpu - a. Fetch boot cpu security status * b. Check whether hard reset is done by boot cpu * 3. FW application - a. Fetch fw application security status * b. Check whether hard reset is done by fw app * * Preboot: * Check security status bit (CPU_BOOT_DEV_STS0_ENABLED), if it is set * check security enabled bit (CPU_BOOT_DEV_STS0_SECURITY_EN) */ if (security_status & CPU_BOOT_DEV_STS0_ENABLED) { prop->fw_security_status_valid = 1; /* FW security should be derived from PCI ID, we keep this * check for backward compatibility */ if (security_status & CPU_BOOT_DEV_STS0_SECURITY_EN) prop->fw_security_disabled = false; if (security_status & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) prop->hard_reset_done_by_fw = true; } else { prop->fw_security_status_valid = 0; } dev_dbg(hdev->dev, "Firmware preboot security status %#x\n", security_status); dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n", prop->hard_reset_done_by_fw ? "enabled" : "disabled"); dev_info(hdev->dev, "firmware-level security is %s\n", prop->fw_security_disabled ? "disabled" : "enabled"); return 0; } int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg, u32 cpu_boot_caps_reg, u32 boot_err0_reg, u32 timeout) { int rc; /* pldm was added for cases in which we use preboot on pldm and want * to load boot fit, but we can't wait for preboot because it runs * very slowly */ if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU) || hdev->pldm) return 0; /* * In order to determine boot method (static VS dymanic) we need to * read the boot caps register */ rc = hl_fw_read_preboot_caps(hdev, cpu_boot_status_reg, cpu_boot_caps_reg, boot_err0_reg, timeout); if (rc) return rc; if (!hdev->asic_prop.dynamic_fw_load) return hl_fw_read_preboot_status_legacy(hdev, cpu_boot_status_reg, cpu_boot_caps_reg, boot_err0_reg, timeout); dev_err(hdev->dev, "Dynamic FW load is not supported\n"); return -EINVAL; } int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, u32 msg_to_cpu_reg, u32 cpu_msg_status_reg, u32 cpu_security_boot_status_reg, u32 boot_err0_reg, bool skip_bmc, u32 cpu_timeout, u32 boot_fit_timeout) { struct asic_fixed_properties *prop = &hdev->asic_prop; u32 status; int rc; if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) return 0; dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n", cpu_timeout / USEC_PER_SEC); /* Wait for boot FIT request */ rc = hl_poll_timeout( hdev, cpu_boot_status_reg, status, status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT, 10000, boot_fit_timeout); if (rc) { dev_dbg(hdev->dev, "No boot fit request received, resuming boot\n"); } else { rc = hdev->asic_funcs->load_boot_fit_to_device(hdev); if (rc) goto out; /* Clear device CPU message status */ WREG32(cpu_msg_status_reg, CPU_MSG_CLR); /* Signal device CPU that boot loader is ready */ WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); /* Poll for CPU device ack */ rc = hl_poll_timeout( hdev, cpu_msg_status_reg, status, status == CPU_MSG_OK, 10000, boot_fit_timeout); if (rc) { dev_err(hdev->dev, "Timeout waiting for boot fit load ack\n"); goto out; } /* Clear message */ WREG32(msg_to_cpu_reg, KMD_MSG_NA); } /* Make sure CPU boot-loader is running */ rc = hl_poll_timeout( hdev, cpu_boot_status_reg, status, (status == CPU_BOOT_STATUS_DRAM_RDY) || (status == CPU_BOOT_STATUS_NIC_FW_RDY) || (status == CPU_BOOT_STATUS_READY_TO_BOOT) || (status == CPU_BOOT_STATUS_SRAM_AVAIL), 10000, cpu_timeout); dev_dbg(hdev->dev, "uboot status = %d\n", status); /* Read U-Boot version now in case we will later fail */ hdev->asic_funcs->read_device_fw_version(hdev, FW_COMP_UBOOT); /* Clear reset status since we need to read it again from boot CPU */ prop->hard_reset_done_by_fw = false; /* Read boot_cpu security bits */ if (prop->fw_security_status_valid) { prop->fw_boot_cpu_security_map = RREG32(cpu_security_boot_status_reg); if (prop->fw_boot_cpu_security_map & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) prop->hard_reset_done_by_fw = true; dev_dbg(hdev->dev, "Firmware boot CPU security status %#x\n", prop->fw_boot_cpu_security_map); } dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n", prop->hard_reset_done_by_fw ? "enabled" : "disabled"); if (rc) { detect_cpu_boot_status(hdev, status); rc = -EIO; goto out; } if (!(hdev->fw_components & FW_TYPE_LINUX)) { dev_info(hdev->dev, "Skip loading Linux F/W\n"); goto out; } if (status == CPU_BOOT_STATUS_SRAM_AVAIL) goto out; dev_info(hdev->dev, "Loading firmware to device, may take some time...\n"); rc = hdev->asic_funcs->load_firmware_to_device(hdev); if (rc) goto out; if (skip_bmc) { WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC); rc = hl_poll_timeout( hdev, cpu_boot_status_reg, status, (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED), 10000, cpu_timeout); if (rc) { dev_err(hdev->dev, "Failed to get ACK on skipping BMC, %d\n", status); WREG32(msg_to_cpu_reg, KMD_MSG_NA); rc = -EIO; goto out; } } WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); rc = hl_poll_timeout( hdev, cpu_boot_status_reg, status, (status == CPU_BOOT_STATUS_SRAM_AVAIL), 10000, cpu_timeout); /* Clear message */ WREG32(msg_to_cpu_reg, KMD_MSG_NA); if (rc) { if (status == CPU_BOOT_STATUS_FIT_CORRUPTED) dev_err(hdev->dev, "Device reports FIT image is corrupted\n"); else dev_err(hdev->dev, "Failed to load firmware to device, %d\n", status); rc = -EIO; goto out; } rc = fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg); if (rc) return rc; /* Clear reset status since we need to read again from app */ prop->hard_reset_done_by_fw = false; /* Read FW application security bits */ if (prop->fw_security_status_valid) { prop->fw_app_security_map = RREG32(cpu_security_boot_status_reg); if (prop->fw_app_security_map & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) prop->hard_reset_done_by_fw = true; dev_dbg(hdev->dev, "Firmware application CPU security status %#x\n", prop->fw_app_security_map); } dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n", prop->hard_reset_done_by_fw ? "enabled" : "disabled"); dev_info(hdev->dev, "Successfully loaded firmware to device\n"); return 0; out: fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg); return rc; }