/*
 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
 *
 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *
 * This code is more or less generated from another driver, please
 * excuse some codingstyle oddities.
 *
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/mutex.h>

#include "dvb_frontend.h"

#include "dib0090.h"
#include "dibx000_common.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");

#define dprintk(args...) do { \
	if (debug) { \
		printk(KERN_DEBUG "DiB0090: "); \
		printk(args); \
		printk("\n"); \
	} \
} while (0)

#define CONFIG_SYS_DVBT
#define CONFIG_SYS_ISDBT
#define CONFIG_BAND_CBAND
#define CONFIG_BAND_VHF
#define CONFIG_BAND_UHF
#define CONFIG_DIB0090_USE_PWM_AGC

#define EN_LNA0      0x8000
#define EN_LNA1      0x4000
#define EN_LNA2      0x2000
#define EN_LNA3      0x1000
#define EN_MIX0      0x0800
#define EN_MIX1      0x0400
#define EN_MIX2      0x0200
#define EN_MIX3      0x0100
#define EN_IQADC     0x0040
#define EN_PLL       0x0020
#define EN_TX        0x0010
#define EN_BB        0x0008
#define EN_LO        0x0004
#define EN_BIAS      0x0001

#define EN_IQANA     0x0002
#define EN_DIGCLK    0x0080	/* not in the 0x24 reg, only in 0x1b */
#define EN_CRYSTAL   0x0002

#define EN_UHF		 0x22E9
#define EN_VHF		 0x44E9
#define EN_LBD		 0x11E9
#define EN_SBD		 0x44E9
#define EN_CAB		 0x88E9

/* Calibration defines */
#define      DC_CAL 0x1
#define     WBD_CAL 0x2
#define    TEMP_CAL 0x4
#define CAPTRIM_CAL 0x8

#define KROSUS_PLL_LOCKED   0x800
#define KROSUS              0x2

/* Use those defines to identify SOC version */
#define SOC               0x02
#define SOC_7090_P1G_11R1 0x82
#define SOC_7090_P1G_21R1 0x8a
#define SOC_8090_P1G_11R1 0x86
#define SOC_8090_P1G_21R1 0x8e

/* else use thos ones to check */
#define P1A_B      0x0
#define P1C	   0x1
#define P1D_E_F    0x3
#define P1G	   0x7
#define P1G_21R2   0xf

#define MP001 0x1		/* Single 9090/8096 */
#define MP005 0x4		/* Single Sband */
#define MP008 0x6		/* Dual diversity VHF-UHF-LBAND */
#define MP009 0x7		/* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */

#define pgm_read_word(w) (*w)

struct dc_calibration;

struct dib0090_tuning {
	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */
	u8 switch_trim;
	u8 lna_tune;
	u16 lna_bias;
	u16 v2i;
	u16 mix;
	u16 load;
	u16 tuner_enable;
};

struct dib0090_pll {
	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */
	u8 vco_band;
	u8 hfdiv_code;
	u8 hfdiv;
	u8 topresc;
};

struct dib0090_identity {
	u8 version;
	u8 product;
	u8 p1g;
	u8 in_soc;
};

struct dib0090_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend *fe;
	const struct dib0090_config *config;

	u8 current_band;
	enum frontend_tune_state tune_state;
	u32 current_rf;

	u16 wbd_offset;
	s16 wbd_target;		/* in dB */

	s16 rf_gain_limit;	/* take-over-point: where to split between bb and rf gain */
	s16 current_gain;	/* keeps the currently programmed gain */
	u8 agc_step;		/* new binary search */

	u16 gain[2];		/* for channel monitoring */

	const u16 *rf_ramp;
	const u16 *bb_ramp;

	/* for the software AGC ramps */
	u16 bb_1_def;
	u16 rf_lt_def;
	u16 gain_reg[4];

	/* for the captrim/dc-offset search */
	s8 step;
	s16 adc_diff;
	s16 min_adc_diff;

	s8 captrim;
	s8 fcaptrim;

	const struct dc_calibration *dc;
	u16 bb6, bb7;

	const struct dib0090_tuning *current_tune_table_index;
	const struct dib0090_pll *current_pll_table_index;

	u8 tuner_is_tuned;
	u8 agc_freeze;

	struct dib0090_identity identity;

	u32 rf_request;
	u8 current_standard;

	u8 calibrate;
	u32 rest;
	u16 bias;
	s16 temperature;

	u8 wbd_calibration_gain;
	const struct dib0090_wbd_slope *current_wbd_table;
	u16 wbdmux;

	/* for the I2C transfer */
	struct i2c_msg msg[2];
	u8 i2c_write_buffer[3];
	u8 i2c_read_buffer[2];
	struct mutex i2c_buffer_lock;
};

struct dib0090_fw_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend *fe;
	struct dib0090_identity identity;
	const struct dib0090_config *config;

	/* for the I2C transfer */
	struct i2c_msg msg;
	u8 i2c_write_buffer[2];
	u8 i2c_read_buffer[2];
	struct mutex i2c_buffer_lock;
};

static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
{
	u16 ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock");
		return 0;
	}

	state->i2c_write_buffer[0] = reg;

	memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
	state->msg[0].addr = state->config->i2c_address;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 1;
	state->msg[1].addr = state->config->i2c_address;
	state->msg[1].flags = I2C_M_RD;
	state->msg[1].buf = state->i2c_read_buffer;
	state->msg[1].len = 2;

	if (i2c_transfer(state->i2c, state->msg, 2) != 2) {
		printk(KERN_WARNING "DiB0090 I2C read failed\n");
		ret = 0;
	} else
		ret = (state->i2c_read_buffer[0] << 8)
			| state->i2c_read_buffer[1];

	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
}

static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
{
	int ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock");
		return -EINVAL;
	}

	state->i2c_write_buffer[0] = reg & 0xff;
	state->i2c_write_buffer[1] = val >> 8;
	state->i2c_write_buffer[2] = val & 0xff;

	memset(state->msg, 0, sizeof(struct i2c_msg));
	state->msg[0].addr = state->config->i2c_address;
	state->msg[0].flags = 0;
	state->msg[0].buf = state->i2c_write_buffer;
	state->msg[0].len = 3;

	if (i2c_transfer(state->i2c, state->msg, 1) != 1) {
		printk(KERN_WARNING "DiB0090 I2C write failed\n");
		ret = -EREMOTEIO;
	} else
		ret = 0;

	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
}

static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
{
	u16 ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock");
		return 0;
	}

	state->i2c_write_buffer[0] = reg;

	memset(&state->msg, 0, sizeof(struct i2c_msg));
	state->msg.addr = reg;
	state->msg.flags = I2C_M_RD;
	state->msg.buf = state->i2c_read_buffer;
	state->msg.len = 2;
	if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
		printk(KERN_WARNING "DiB0090 I2C read failed\n");
		ret = 0;
	} else
		ret = (state->i2c_read_buffer[0] << 8)
			| state->i2c_read_buffer[1];

	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
}

static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
{
	int ret;

	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
		dprintk("could not acquire lock");
		return -EINVAL;
	}

	state->i2c_write_buffer[0] = val >> 8;
	state->i2c_write_buffer[1] = val & 0xff;

	memset(&state->msg, 0, sizeof(struct i2c_msg));
	state->msg.addr = reg;
	state->msg.flags = 0;
	state->msg.buf = state->i2c_write_buffer;
	state->msg.len = 2;
	if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
		printk(KERN_WARNING "DiB0090 I2C write failed\n");
		ret = -EREMOTEIO;
	} else
		ret = 0;

	mutex_unlock(&state->i2c_buffer_lock);
	return ret;
}

#define HARD_RESET(state) do {  if (cfg->reset) {  if (cfg->sleep) cfg->sleep(fe, 0); msleep(10);  cfg->reset(fe, 1); msleep(10);  cfg->reset(fe, 0); msleep(10);  }  } while (0)
#define ADC_TARGET -220
#define GAIN_ALPHA 5
#define WBD_ALPHA 6
#define LPF	100
static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
{
	do {
		dib0090_write_reg(state, r++, *b++);
	} while (--c);
}

static int dib0090_identify(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	u16 v;
	struct dib0090_identity *identity = &state->identity;

	v = dib0090_read_reg(state, 0x1a);

	identity->p1g = 0;
	identity->in_soc = 0;

	dprintk("Tuner identification (Version = 0x%04x)", v);

	/* without PLL lock info */
	v &= ~KROSUS_PLL_LOCKED;

	identity->version = v & 0xff;
	identity->product = (v >> 8) & 0xf;

	if (identity->product != KROSUS)
		goto identification_error;

	if ((identity->version & 0x3) == SOC) {
		identity->in_soc = 1;
		switch (identity->version) {
		case SOC_8090_P1G_11R1:
			dprintk("SOC 8090 P1-G11R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_8090_P1G_21R1:
			dprintk("SOC 8090 P1-G21R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_7090_P1G_11R1:
			dprintk("SOC 7090 P1-G11R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_7090_P1G_21R1:
			dprintk("SOC 7090 P1-G21R1 Has been detected");
			identity->p1g = 1;
			break;
		default:
			goto identification_error;
		}
	} else {
		switch ((identity->version >> 5) & 0x7) {
		case MP001:
			dprintk("MP001 : 9090/8096");
			break;
		case MP005:
			dprintk("MP005 : Single Sband");
			break;
		case MP008:
			dprintk("MP008 : diversity VHF-UHF-LBAND");
			break;
		case MP009:
			dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
			break;
		default:
			goto identification_error;
		}

		switch (identity->version & 0x1f) {
		case P1G_21R2:
			dprintk("P1G_21R2 detected");
			identity->p1g = 1;
			break;
		case P1G:
			dprintk("P1G detected");
			identity->p1g = 1;
			break;
		case P1D_E_F:
			dprintk("P1D/E/F detected");
			break;
		case P1C:
			dprintk("P1C detected");
			break;
		case P1A_B:
			dprintk("P1-A/B detected: driver is deactivated - not available");
			goto identification_error;
			break;
		default:
			goto identification_error;
		}
	}

	return 0;

identification_error:
	return -EIO;
}

static int dib0090_fw_identify(struct dvb_frontend *fe)
{
	struct dib0090_fw_state *state = fe->tuner_priv;
	struct dib0090_identity *identity = &state->identity;

	u16 v = dib0090_fw_read_reg(state, 0x1a);
	identity->p1g = 0;
	identity->in_soc = 0;

	dprintk("FE: Tuner identification (Version = 0x%04x)", v);

	/* without PLL lock info */
	v &= ~KROSUS_PLL_LOCKED;

	identity->version = v & 0xff;
	identity->product = (v >> 8) & 0xf;

	if (identity->product != KROSUS)
		goto identification_error;

	if ((identity->version & 0x3) == SOC) {
		identity->in_soc = 1;
		switch (identity->version) {
		case SOC_8090_P1G_11R1:
			dprintk("SOC 8090 P1-G11R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_8090_P1G_21R1:
			dprintk("SOC 8090 P1-G21R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_7090_P1G_11R1:
			dprintk("SOC 7090 P1-G11R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_7090_P1G_21R1:
			dprintk("SOC 7090 P1-G21R1 Has been detected");
			identity->p1g = 1;
			break;
		default:
			goto identification_error;
		}
	} else {
		switch ((identity->version >> 5) & 0x7) {
		case MP001:
			dprintk("MP001 : 9090/8096");
			break;
		case MP005:
			dprintk("MP005 : Single Sband");
			break;
		case MP008:
			dprintk("MP008 : diversity VHF-UHF-LBAND");
			break;
		case MP009:
			dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
			break;
		default:
			goto identification_error;
		}

		switch (identity->version & 0x1f) {
		case P1G_21R2:
			dprintk("P1G_21R2 detected");
			identity->p1g = 1;
			break;
		case P1G:
			dprintk("P1G detected");
			identity->p1g = 1;
			break;
		case P1D_E_F:
			dprintk("P1D/E/F detected");
			break;
		case P1C:
			dprintk("P1C detected");
			break;
		case P1A_B:
			dprintk("P1-A/B detected: driver is deactivated - not available");
			goto identification_error;
			break;
		default:
			goto identification_error;
		}
	}

	return 0;

identification_error:
	return -EIO;
}

static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
{
	struct dib0090_state *state = fe->tuner_priv;
	u16 PllCfg, i, v;

	HARD_RESET(state);
	dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
	if (cfg->in_soc)
		return;

	dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */
	/* adcClkOutRatio=8->7, release reset */
	dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
	if (cfg->clkoutdrive != 0)
		dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
				| (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
	else
		dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
				| (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));

	/* Read Pll current config * */
	PllCfg = dib0090_read_reg(state, 0x21);

	/** Reconfigure PLL if current setting is different from default setting **/
	if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc)
			&& !cfg->io.pll_bypass) {

		/* Set Bypass mode */
		PllCfg |= (1 << 15);
		dib0090_write_reg(state, 0x21, PllCfg);

		/* Set Reset Pll */
		PllCfg &= ~(1 << 13);
		dib0090_write_reg(state, 0x21, PllCfg);

	/*** Set new Pll configuration in bypass and reset state ***/
		PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
		dib0090_write_reg(state, 0x21, PllCfg);

		/* Remove Reset Pll */
		PllCfg |= (1 << 13);
		dib0090_write_reg(state, 0x21, PllCfg);

	/*** Wait for PLL lock ***/
		i = 100;
		do {
			v = !!(dib0090_read_reg(state, 0x1a) & 0x800);
			if (v)
				break;
		} while (--i);

		if (i == 0) {
			dprintk("Pll: Unable to lock Pll");
			return;
		}

		/* Finally Remove Bypass mode */
		PllCfg &= ~(1 << 15);
		dib0090_write_reg(state, 0x21, PllCfg);
	}

	if (cfg->io.pll_bypass) {
		PllCfg |= (cfg->io.pll_bypass << 15);
		dib0090_write_reg(state, 0x21, PllCfg);
	}
}

static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
{
	struct dib0090_fw_state *state = fe->tuner_priv;
	u16 PllCfg;
	u16 v;
	int i;

	dprintk("fw reset digital");
	HARD_RESET(state);

	dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
	dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */

	dib0090_fw_write_reg(state, 0x20,
			((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv);

	v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0);
	if (cfg->clkoutdrive != 0)
		v |= cfg->clkoutdrive << 5;
	else
		v |= 7 << 5;

	v |= 2 << 10;
	dib0090_fw_write_reg(state, 0x23, v);

	/* Read Pll current config * */
	PllCfg = dib0090_fw_read_reg(state, 0x21);

	/** Reconfigure PLL if current setting is different from default setting **/
	if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) {

		/* Set Bypass mode */
		PllCfg |= (1 << 15);
		dib0090_fw_write_reg(state, 0x21, PllCfg);

		/* Set Reset Pll */
		PllCfg &= ~(1 << 13);
		dib0090_fw_write_reg(state, 0x21, PllCfg);

	/*** Set new Pll configuration in bypass and reset state ***/
		PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
		dib0090_fw_write_reg(state, 0x21, PllCfg);

		/* Remove Reset Pll */
		PllCfg |= (1 << 13);
		dib0090_fw_write_reg(state, 0x21, PllCfg);

	/*** Wait for PLL lock ***/
		i = 100;
		do {
			v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800);
			if (v)
				break;
		} while (--i);

		if (i == 0) {
			dprintk("Pll: Unable to lock Pll");
			return -EIO;
		}

		/* Finally Remove Bypass mode */
		PllCfg &= ~(1 << 15);
		dib0090_fw_write_reg(state, 0x21, PllCfg);
	}

	if (cfg->io.pll_bypass) {
		PllCfg |= (cfg->io.pll_bypass << 15);
		dib0090_fw_write_reg(state, 0x21, PllCfg);
	}

	return dib0090_fw_identify(fe);
}

static int dib0090_wakeup(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	if (state->config->sleep)
		state->config->sleep(fe, 0);

	/* enable dataTX in case we have been restarted in the wrong moment */
	dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
	return 0;
}

static int dib0090_sleep(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	if (state->config->sleep)
		state->config->sleep(fe, 1);
	return 0;
}

void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
{
	struct dib0090_state *state = fe->tuner_priv;
	if (fast)
		dib0090_write_reg(state, 0x04, 0);
	else
		dib0090_write_reg(state, 0x04, 1);
}

EXPORT_SYMBOL(dib0090_dcc_freq);

static const u16 bb_ramp_pwm_normal_socs[] = {
	550, /* max BB gain in 10th of dB */
	(1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
	440,
	(4  << 9) | 0, /* BB_RAMP3 = 26dB */
	(0  << 9) | 208, /* BB_RAMP4 */
	(4  << 9) | 208, /* BB_RAMP5 = 29dB */
	(0  << 9) | 440, /* BB_RAMP6 */
};

static const u16 rf_ramp_pwm_cband_7090p[] = {
	280, /* max RF gain in 10th of dB */
	18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	504, /* ramp_max = maximum X used on the ramp */
	(29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
	(0  << 10) | 504, /* RF_RAMP6, LNA 1 */
	(60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
	(0  << 10) | 364, /* RF_RAMP8, LNA 2 */
	(34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
	(0  << 10) | 228, /* GAIN_4_2, LNA 3 */
	(37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
	(0  << 10) | 109, /* RF_RAMP4, LNA 4 */
};

static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = {
	186, /* max RF gain in 10th of dB */
	40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	746, /* ramp_max = maximum X used on the ramp */
	(10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
	(0  << 10) | 746, /* RF_RAMP6, LNA 1 */
	(0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
	(0  << 10) | 0, /* RF_RAMP8, LNA 2 */
	(28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
	(0  << 10) | 345, /* GAIN_4_2, LNA 3 */
	(20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
	(0  << 10) | 200, /* RF_RAMP4, LNA 4 */
};

static const u16 rf_ramp_pwm_cband_7090e_aci[] = {
	86, /* max RF gain in 10th of dB */
	40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	345, /* ramp_max = maximum X used on the ramp */
	(0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
	(0 << 10) | 0, /* RF_RAMP6, LNA 1 */
	(0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
	(0 << 10) | 0, /* RF_RAMP8, LNA 2 */
	(28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
	(0  << 10) | 345, /* GAIN_4_2, LNA 3 */
	(20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
	(0  << 10) | 200, /* RF_RAMP4, LNA 4 */
};

static const u16 rf_ramp_pwm_cband_8090[] = {
	345, /* max RF gain in 10th of dB */
	29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	1000, /* ramp_max = maximum X used on the ramp */
	(35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
	(0  << 10) | 1000, /* RF_RAMP4, LNA 1 */
	(58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
	(0  << 10) | 772, /* RF_RAMP6, LNA 2 */
	(27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
	(0  << 10) | 496, /* RF_RAMP8, LNA 3 */
	(40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
	(0  << 10) | 200, /* GAIN_4_2, LNA 4 */
};

static const u16 rf_ramp_pwm_uhf_7090[] = {
	407, /* max RF gain in 10th of dB */
	13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	529, /* ramp_max = maximum X used on the ramp */
	(23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
	(0  << 10) | 176, /* RF_RAMP4, LNA 1 */
	(63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
	(0  << 10) | 529, /* RF_RAMP6, LNA 2 */
	(48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
	(0  << 10) | 400, /* RF_RAMP8, LNA 3 */
	(29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
	(0  << 10) | 316, /* GAIN_4_2, LNA 4 */
};

static const u16 rf_ramp_pwm_uhf_8090[] = {
	388, /* max RF gain in 10th of dB */
	26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	1008, /* ramp_max = maximum X used on the ramp */
	(11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
	(0  << 10) | 369, /* RF_RAMP4, LNA 1 */
	(41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
	(0  << 10) | 1008, /* RF_RAMP6, LNA 2 */
	(27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
	(0  << 10) | 809, /* RF_RAMP8, LNA 3 */
	(14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
	(0  << 10) | 659, /* GAIN_4_2, LNA 4 */
};

/* GENERAL PWM ramp definition for all other Krosus */
static const u16 bb_ramp_pwm_normal[] = {
	500, /* max BB gain in 10th of dB */
	8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
	400,
	(2  << 9) | 0, /* BB_RAMP3 = 21dB */
	(0  << 9) | 168, /* BB_RAMP4 */
	(2  << 9) | 168, /* BB_RAMP5 = 29dB */
	(0  << 9) | 400, /* BB_RAMP6 */
};

#if 0
/* Currently unused */
static const u16 bb_ramp_pwm_boost[] = {
	550, /* max BB gain in 10th of dB */
	8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
	440,
	(2  << 9) | 0, /* BB_RAMP3 = 26dB */
	(0  << 9) | 208, /* BB_RAMP4 */
	(2  << 9) | 208, /* BB_RAMP5 = 29dB */
	(0  << 9) | 440, /* BB_RAMP6 */
};
#endif

static const u16 rf_ramp_pwm_cband[] = {
	314, /* max RF gain in 10th of dB */
	33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	1023, /* ramp_max = maximum X used on the ramp */
	(8  << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
	(0  << 10) | 1023, /* RF_RAMP4, LNA 1 */
	(15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
	(0  << 10) | 742, /* RF_RAMP6, LNA 2 */
	(9  << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
	(0  << 10) | 468, /* RF_RAMP8, LNA 3 */
	(9  << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
	(0  << 10) | 233, /* GAIN_4_2, LNA 4 */
};

static const u16 rf_ramp_pwm_vhf[] = {
	398, /* max RF gain in 10th of dB */
	24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	954, /* ramp_max = maximum X used on the ramp */
	(7  << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
	(0  << 10) | 290, /* RF_RAMP4, LNA 1 */
	(16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
	(0  << 10) | 954, /* RF_RAMP6, LNA 2 */
	(17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
	(0  << 10) | 699, /* RF_RAMP8, LNA 3 */
	(7  << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
	(0  << 10) | 580, /* GAIN_4_2, LNA 4 */
};

static const u16 rf_ramp_pwm_uhf[] = {
	398, /* max RF gain in 10th of dB */
	24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	954, /* ramp_max = maximum X used on the ramp */
	(7  << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
	(0  << 10) | 290, /* RF_RAMP4, LNA 1 */
	(16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
	(0  << 10) | 954, /* RF_RAMP6, LNA 2 */
	(17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
	(0  << 10) | 699, /* RF_RAMP8, LNA 3 */
	(7  << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
	(0  << 10) | 580, /* GAIN_4_2, LNA 4 */
};

#if 0
/* Currently unused */
static const u16 rf_ramp_pwm_sband[] = {
	253, /* max RF gain in 10th of dB */
	38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	961,
	(4  << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
	(0  << 10) | 508, /* RF_RAMP4, LNA 1 */
	(9  << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
	(0  << 10) | 961, /* RF_RAMP6, LNA 2 */
	(0  << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
	(0  << 10) | 0, /* RF_RAMP8, LNA 3 */
	(0  << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
	(0  << 10) | 0, /* GAIN_4_2, LNA 4 */
};
#endif

struct slope {
	s16 range;
	s16 slope;
};
static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
{
	u8 i;
	u16 rest;
	u16 ret = 0;
	for (i = 0; i < num; i++) {
		if (val > slopes[i].range)
			rest = slopes[i].range;
		else
			rest = val;
		ret += (rest * slopes[i].slope) / slopes[i].range;
		val -= rest;
	}
	return ret;
}

static const struct slope dib0090_wbd_slopes[3] = {
	{66, 120},		/* -64,-52: offset -   65 */
	{600, 170},		/* -52,-35: 65     -  665 */
	{170, 250},		/* -45,-10: 665    - 835 */
};

static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
{
	wbd &= 0x3ff;
	if (wbd < state->wbd_offset)
		wbd = 0;
	else
		wbd -= state->wbd_offset;
	/* -64dB is the floor */
	return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
}

static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
{
	u16 offset = 250;

	/* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */

	if (state->current_band == BAND_VHF)
		offset = 650;
#ifndef FIRMWARE_FIREFLY
	if (state->current_band == BAND_VHF)
		offset = state->config->wbd_vhf_offset;
	if (state->current_band == BAND_CBAND)
		offset = state->config->wbd_cband_offset;
#endif

	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
	dprintk("wbd-target: %d dB", (u32) state->wbd_target);
}

static const int gain_reg_addr[4] = {
	0x08, 0x0a, 0x0f, 0x01
};

static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
{
	u16 rf, bb, ref;
	u16 i, v, gain_reg[4] = { 0 }, gain;
	const u16 *g;

	if (top_delta < -511)
		top_delta = -511;
	if (top_delta > 511)
		top_delta = 511;

	if (force) {
		top_delta *= (1 << WBD_ALPHA);
		gain_delta *= (1 << GAIN_ALPHA);
	}

	if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit))	/* overflow */
		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
	else
		state->rf_gain_limit += top_delta;

	if (state->rf_gain_limit < 0)	/*underflow */
		state->rf_gain_limit = 0;

	/* use gain as a temporary variable and correct current_gain */
	gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
	if (gain_delta >= ((s16) gain - state->current_gain))	/* overflow */
		state->current_gain = gain;
	else
		state->current_gain += gain_delta;
	/* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
	if (state->current_gain < 0)
		state->current_gain = 0;

	/* now split total gain to rf and bb gain */
	gain = state->current_gain >> GAIN_ALPHA;

	/* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
	if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
		rf = state->rf_gain_limit >> WBD_ALPHA;
		bb = gain - rf;
		if (bb > state->bb_ramp[0])
			bb = state->bb_ramp[0];
	} else {		/* high signal level -> all gains put on RF */
		rf = gain;
		bb = 0;
	}

	state->gain[0] = rf;
	state->gain[1] = bb;

	/* software ramp */
	/* Start with RF gains */
	g = state->rf_ramp + 1;	/* point on RF LNA1 max gain */
	ref = rf;
	for (i = 0; i < 7; i++) {	/* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
		if (g[0] == 0 || ref < (g[1] - g[0]))	/* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
			v = 0;	/* force the gain to write for the current amp to be null */
		else if (ref >= g[1])	/* Gain to set is higher than the high working point of this amp */
			v = g[2];	/* force this amp to be full gain */
		else		/* compute the value to set to this amp because we are somewhere in his range */
			v = ((ref - (g[1] - g[0])) * g[2]) / g[0];

		if (i == 0)	/* LNA 1 reg mapping */
			gain_reg[0] = v;
		else if (i == 1)	/* LNA 2 reg mapping */
			gain_reg[0] |= v << 7;
		else if (i == 2)	/* LNA 3 reg mapping */
			gain_reg[1] = v;
		else if (i == 3)	/* LNA 4 reg mapping */
			gain_reg[1] |= v << 7;
		else if (i == 4)	/* CBAND LNA reg mapping */
			gain_reg[2] = v | state->rf_lt_def;
		else if (i == 5)	/* BB gain 1 reg mapping */
			gain_reg[3] = v << 3;
		else if (i == 6)	/* BB gain 2 reg mapping */
			gain_reg[3] |= v << 8;

		g += 3;		/* go to next gain bloc */

		/* When RF is finished, start with BB */
		if (i == 4) {
			g = state->bb_ramp + 1;	/* point on BB gain 1 max gain */
			ref = bb;
		}
	}
	gain_reg[3] |= state->bb_1_def;
	gain_reg[3] |= ((bb % 10) * 100) / 125;

#ifdef DEBUG_AGC
	dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb,
		gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
#endif

	/* Write the amplifier regs */
	for (i = 0; i < 4; i++) {
		v = gain_reg[i];
		if (force || state->gain_reg[i] != v) {
			state->gain_reg[i] = v;
			dib0090_write_reg(state, gain_reg_addr[i], v);
		}
	}
}

static void dib0090_set_boost(struct dib0090_state *state, int onoff)
{
	state->bb_1_def &= 0xdfff;
	state->bb_1_def |= onoff << 13;
}

static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
{
	state->rf_ramp = cfg;
}

static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
{
	state->rf_ramp = cfg;

	dib0090_write_reg(state, 0x2a, 0xffff);

	dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a));

	dib0090_write_regs(state, 0x2c, cfg + 3, 6);
	dib0090_write_regs(state, 0x3e, cfg + 9, 2);
}

static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
{
	state->bb_ramp = cfg;
	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */
}

static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
{
	state->bb_ramp = cfg;

	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */

	dib0090_write_reg(state, 0x33, 0xffff);
	dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33));
	dib0090_write_regs(state, 0x35, cfg + 3, 4);
}

void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	u16 *bb_ramp = (u16 *)&bb_ramp_pwm_normal; /* default baseband config */
	u16 *rf_ramp = NULL;
	u8 en_pwm_rf_mux = 1;

	/* reset the AGC */
	if (state->config->use_pwm_agc) {
		if (state->current_band == BAND_CBAND) {
			if (state->identity.in_soc) {
				bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
				if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
					rf_ramp = (u16 *)&rf_ramp_pwm_cband_8090;
				else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) {
					if (state->config->is_dib7090e) {
						if (state->rf_ramp == NULL)
							rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090e_sensitivity;
						else
							rf_ramp = (u16 *)state->rf_ramp;
					} else
						rf_ramp = (u16 *)&rf_ramp_pwm_cband_7090p;
				}
			} else
				rf_ramp = (u16 *)&rf_ramp_pwm_cband;
		} else

			if (state->current_band == BAND_VHF) {
				if (state->identity.in_soc) {
					bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
					/* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
				} else
					rf_ramp = (u16 *)&rf_ramp_pwm_vhf;
			} else if (state->current_band == BAND_UHF) {
				if (state->identity.in_soc) {
					bb_ramp = (u16 *)&bb_ramp_pwm_normal_socs;
					if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
						rf_ramp = (u16 *)&rf_ramp_pwm_uhf_8090;
					else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
						rf_ramp = (u16 *)&rf_ramp_pwm_uhf_7090;
				} else
					rf_ramp = (u16 *)&rf_ramp_pwm_uhf;
			}
		if (rf_ramp)
			dib0090_set_rframp_pwm(state, rf_ramp);
		dib0090_set_bbramp_pwm(state, bb_ramp);

		/* activate the ramp generator using PWM control */
		if (state->rf_ramp)
			dprintk("ramp RF gain = %d BAND = %s version = %d",
				state->rf_ramp[0],
				(state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND",
				state->identity.version & 0x1f);

		if (rf_ramp && ((state->rf_ramp && state->rf_ramp[0] == 0) ||
		    (state->current_band == BAND_CBAND &&
		    (state->identity.version & 0x1f) <= P1D_E_F))) {
			dprintk("DE-Engage mux for direct gain reg control");
			en_pwm_rf_mux = 0;
		} else
			dprintk("Engage mux for PWM control");

		dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11));

		/* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
		if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
			dib0090_write_reg(state, 0x04, 3);
		else
			dib0090_write_reg(state, 0x04, 1);
		dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */
	}
}
EXPORT_SYMBOL(dib0090_pwm_gain_reset);

void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff)
{
	struct dib0090_state *state = fe->tuner_priv;
	if (DC_servo_cutoff < 4)
		dib0090_write_reg(state, 0x04, DC_servo_cutoff);
}
EXPORT_SYMBOL(dib0090_set_dc_servo);

static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
{
	u16 adc_val = dib0090_read_reg(state, 0x1d);
	if (state->identity.in_soc)
		adc_val >>= 2;
	return adc_val;
}

int dib0090_gain_control(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	enum frontend_tune_state *tune_state = &state->tune_state;
	int ret = 10;

	u16 wbd_val = 0;
	u8 apply_gain_immediatly = 1;
	s16 wbd_error = 0, adc_error = 0;

	if (*tune_state == CT_AGC_START) {
		state->agc_freeze = 0;
		dib0090_write_reg(state, 0x04, 0x0);

#ifdef CONFIG_BAND_SBAND
		if (state->current_band == BAND_SBAND) {
			dib0090_set_rframp(state, rf_ramp_sband);
			dib0090_set_bbramp(state, bb_ramp_boost);
		} else
#endif
#ifdef CONFIG_BAND_VHF
		if (state->current_band == BAND_VHF && !state->identity.p1g) {
			dib0090_set_rframp(state, rf_ramp_pwm_vhf);
			dib0090_set_bbramp(state, bb_ramp_pwm_normal);
		} else
#endif
#ifdef CONFIG_BAND_CBAND
		if (state->current_band == BAND_CBAND && !state->identity.p1g) {
			dib0090_set_rframp(state, rf_ramp_pwm_cband);
			dib0090_set_bbramp(state, bb_ramp_pwm_normal);
		} else
#endif
		if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) {
			dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p);
			dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs);
		} else {
			dib0090_set_rframp(state, rf_ramp_pwm_uhf);
			dib0090_set_bbramp(state, bb_ramp_pwm_normal);
		}

		dib0090_write_reg(state, 0x32, 0);
		dib0090_write_reg(state, 0x39, 0);

		dib0090_wbd_target(state, state->current_rf);

		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
		state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;

		*tune_state = CT_AGC_STEP_0;
	} else if (!state->agc_freeze) {
		s16 wbd = 0, i, cnt;

		int adc;
		wbd_val = dib0090_get_slow_adc_val(state);

		if (*tune_state == CT_AGC_STEP_0)
			cnt = 5;
		else
			cnt = 1;

		for (i = 0; i < cnt; i++) {
			wbd_val = dib0090_get_slow_adc_val(state);
			wbd += dib0090_wbd_to_db(state, wbd_val);
		}
		wbd /= cnt;
		wbd_error = state->wbd_target - wbd;

		if (*tune_state == CT_AGC_STEP_0) {
			if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) {
#ifdef CONFIG_BAND_CBAND
				/* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
				u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
				if (state->current_band == BAND_CBAND && ltg2) {
					ltg2 >>= 1;
					state->rf_lt_def &= ltg2 << 10;	/* reduce in 3 steps from 7 to 0 */
				}
#endif
			} else {
				state->agc_step = 0;
				*tune_state = CT_AGC_STEP_1;
			}
		} else {
			/* calc the adc power */
			adc = state->config->get_adc_power(fe);
			adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21;	/* included in [0:-700] */

			adc_error = (s16) (((s32) ADC_TARGET) - adc);
#ifdef CONFIG_STANDARD_DAB
			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
				adc_error -= 10;
#endif
#ifdef CONFIG_STANDARD_DVBT
			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
					(state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
				adc_error += 60;
#endif
#ifdef CONFIG_SYS_ISDBT
			if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
								0)
							&&
							((state->fe->dtv_property_cache.layer[0].modulation ==
							  QAM_64)
							 || (state->fe->dtv_property_cache.
								 layer[0].modulation == QAM_16)))
						||
						((state->fe->dtv_property_cache.layer[1].segment_count >
						  0)
						 &&
						 ((state->fe->dtv_property_cache.layer[1].modulation ==
						   QAM_64)
						  || (state->fe->dtv_property_cache.
							  layer[1].modulation == QAM_16)))
						||
						((state->fe->dtv_property_cache.layer[2].segment_count >
						  0)
						 &&
						 ((state->fe->dtv_property_cache.layer[2].modulation ==
						   QAM_64)
						  || (state->fe->dtv_property_cache.
							  layer[2].modulation == QAM_16)))
						)
				)
				adc_error += 60;
#endif

			if (*tune_state == CT_AGC_STEP_1) {	/* quickly go to the correct range of the ADC power */
				if (ABS(adc_error) < 50 || state->agc_step++ > 5) {

#ifdef CONFIG_STANDARD_DAB
					if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
						dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63));	/* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
						dib0090_write_reg(state, 0x04, 0x0);
					} else
#endif
					{
						dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
						dib0090_write_reg(state, 0x04, 0x01);	/*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
					}

					*tune_state = CT_AGC_STOP;
				}
			} else {
				/* everything higher than or equal to CT_AGC_STOP means tracking */
				ret = 100;	/* 10ms interval */
				apply_gain_immediatly = 0;
			}
		}
#ifdef DEBUG_AGC
		dprintk
			("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
			 (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
			 (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
#endif
	}

	/* apply gain */
	if (!state->agc_freeze)
		dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
	return ret;
}

EXPORT_SYMBOL(dib0090_gain_control);

void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
{
	struct dib0090_state *state = fe->tuner_priv;
	if (rf)
		*rf = state->gain[0];
	if (bb)
		*bb = state->gain[1];
	if (rf_gain_limit)
		*rf_gain_limit = state->rf_gain_limit;
	if (rflt)
		*rflt = (state->rf_lt_def >> 10) & 0x7;
}

EXPORT_SYMBOL(dib0090_get_current_gain);

u16 dib0090_get_wbd_target(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000;
	s32 current_temp = state->temperature;
	s32 wbd_thot, wbd_tcold;
	const struct dib0090_wbd_slope *wbd = state->current_wbd_table;

	while (f_MHz > wbd->max_freq)
		wbd++;

	dprintk("using wbd-table-entry with max freq %d", wbd->max_freq);

	if (current_temp < 0)
		current_temp = 0;
	if (current_temp > 128)
		current_temp = 128;

	state->wbdmux &= ~(7 << 13);
	if (wbd->wbd_gain != 0)
		state->wbdmux |= (wbd->wbd_gain << 13);
	else
		state->wbdmux |= (4 << 13);

	dib0090_write_reg(state, 0x10, state->wbdmux);

	wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
	wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);

	wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;

	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
	dprintk("wbd-target: %d dB", (u32) state->wbd_target);
	dprintk("wbd offset applied is %d", wbd_tcold);

	return state->wbd_offset + wbd_tcold;
}
EXPORT_SYMBOL(dib0090_get_wbd_target);

u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	return state->wbd_offset;
}
EXPORT_SYMBOL(dib0090_get_wbd_offset);

int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3)
{
	struct dib0090_state *state = fe->tuner_priv;

	dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8)
			| ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1));

	return 0;
}
EXPORT_SYMBOL(dib0090_set_switch);

int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff)
{
	struct dib0090_state *state = fe->tuner_priv;

	dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff)
			| ((onoff & 1) << 15));
	return 0;
}
EXPORT_SYMBOL(dib0090_set_vga);

int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity)
{
	struct dib0090_state *state = fe->tuner_priv;

	if ((!state->identity.p1g) || (!state->identity.in_soc)
			|| ((state->identity.version != SOC_7090_P1G_21R1)
				&& (state->identity.version != SOC_7090_P1G_11R1))) {
		dprintk("%s() function can only be used for dib7090P", __func__);
		return -ENODEV;
	}

	if (cfg_sensitivity)
		state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_sensitivity;
	else
		state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_aci;
	dib0090_pwm_gain_reset(fe);

	return 0;
}
EXPORT_SYMBOL(dib0090_update_rframp_7090);

static const u16 dib0090_defaults[] = {

	25, 0x01,
	0x0000,
	0x99a0,
	0x6008,
	0x0000,
	0x8bcb,
	0x0000,
	0x0405,
	0x0000,
	0x0000,
	0x0000,
	0xb802,
	0x0300,
	0x2d12,
	0xbac0,
	0x7c00,
	0xdbb9,
	0x0954,
	0x0743,
	0x8000,
	0x0001,
	0x0040,
	0x0100,
	0x0000,
	0xe910,
	0x149e,

	1, 0x1c,
	0xff2d,

	1, 0x39,
	0x0000,

	2, 0x1e,
	0x07FF,
	0x0007,

	1, 0x24,
	EN_UHF | EN_CRYSTAL,

	2, 0x3c,
	0x3ff,
	0x111,
	0
};

static const u16 dib0090_p1g_additionnal_defaults[] = {
	1, 0x05,
	0xabcd,

	1, 0x11,
	0x00b4,

	1, 0x1c,
	0xfffd,

	1, 0x40,
	0x108,
	0
};

static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n)
{
	u16 l, r;

	l = pgm_read_word(n++);
	while (l) {
		r = pgm_read_word(n++);
		do {
			dib0090_write_reg(state, r, pgm_read_word(n++));
			r++;
		} while (--l);
		l = pgm_read_word(n++);
	}
}

#define CAP_VALUE_MIN (u8)  9
#define CAP_VALUE_MAX (u8) 40
#define HR_MIN	      (u8) 25
#define HR_MAX	      (u8) 40
#define POLY_MIN      (u8)  0
#define POLY_MAX      (u8)  8

static void dib0090_set_EFUSE(struct dib0090_state *state)
{
	u8 c, h, n;
	u16 e2, e4;
	u16 cal;

	e2 = dib0090_read_reg(state, 0x26);
	e4 = dib0090_read_reg(state, 0x28);

	if ((state->identity.version == P1D_E_F) ||
			(state->identity.version == P1G) || (e2 == 0xffff)) {

		dib0090_write_reg(state, 0x22, 0x10);
		cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;

		if ((cal < 670) || (cal == 1023))
			cal = 850;
		n = 165 - ((cal * 10)>>6) ;
		e2 = e4 = (3<<12) | (34<<6) | (n);
	}

	if (e2 != e4)
		e2 &= e4; /* Remove the redundancy  */

	if (e2 != 0xffff) {
		c = e2 & 0x3f;
		n = (e2 >> 12) & 0xf;
		h = (e2 >> 6) & 0x3f;

		if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
			c = 32;
		else
			c += 14;
		if ((h >= HR_MAX) || (h <= HR_MIN))
			h = 34;
		if ((n >= POLY_MAX) || (n <= POLY_MIN))
			n = 3;

		dib0090_write_reg(state, 0x13, (h << 10));
		e2 = (n << 11) | ((h >> 2)<<6) | c;
		dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */
	}
}

static int dib0090_reset(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;

	dib0090_reset_digital(fe, state->config);
	if (dib0090_identify(fe) < 0)
		return -EIO;

#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
	if (!(state->identity.version & 0x1))	/* it is P1B - reset is already done */
		return 0;
#endif

	if (!state->identity.in_soc) {
		if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2)
			dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL));
		else
			dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL));
	}

	dib0090_set_default_config(state, dib0090_defaults);

	if (state->identity.in_soc)
		dib0090_write_reg(state, 0x18, 0x2910);  /* charge pump current = 0 */

	if (state->identity.p1g)
		dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);

	/* Update the efuse : Only available for KROSUS > P1C  and SOC as well*/
	if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
		dib0090_set_EFUSE(state);

	/* Congigure in function of the crystal */
	if (state->config->force_crystal_mode != 0)
		dib0090_write_reg(state, 0x14,
				state->config->force_crystal_mode & 3);
	else if (state->config->io.clock_khz >= 24000)
		dib0090_write_reg(state, 0x14, 1);
	else
		dib0090_write_reg(state, 0x14, 2);
	dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);

	state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL;	/* enable iq-offset-calibration and wbd-calibration when tuning next time */

	return 0;
}

#define steps(u) (((u) > 15) ? ((u)-16) : (u))
#define INTERN_WAIT 10
static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	int ret = INTERN_WAIT * 10;

	switch (*tune_state) {
	case CT_TUNER_STEP_2:
		/* Turns to positive */
		dib0090_write_reg(state, 0x1f, 0x7);
		*tune_state = CT_TUNER_STEP_3;
		break;

	case CT_TUNER_STEP_3:
		state->adc_diff = dib0090_read_reg(state, 0x1d);

		/* Turns to negative */
		dib0090_write_reg(state, 0x1f, 0x4);
		*tune_state = CT_TUNER_STEP_4;
		break;

	case CT_TUNER_STEP_4:
		state->adc_diff -= dib0090_read_reg(state, 0x1d);
		*tune_state = CT_TUNER_STEP_5;
		ret = 0;
		break;

	default:
		break;
	}

	return ret;
}

struct dc_calibration {
	u8 addr;
	u8 offset;
	u8 pga:1;
	u16 bb1;
	u8 i:1;
};

static const struct dc_calibration dc_table[] = {
	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
	{0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
	{0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
	{0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
	{0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
	{0},
};

static const struct dc_calibration dc_p1g_table[] = {
	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
	/* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
	{0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
	{0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
	{0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
	{0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
	{0},
};

static void dib0090_set_trim(struct dib0090_state *state)
{
	u16 *val;

	if (state->dc->addr == 0x07)
		val = &state->bb7;
	else
		val = &state->bb6;

	*val &= ~(0x1f << state->dc->offset);
	*val |= state->step << state->dc->offset;

	dib0090_write_reg(state, state->dc->addr, *val);
}

static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	int ret = 0;
	u16 reg;

	switch (*tune_state) {
	case CT_TUNER_START:
		dprintk("Start DC offset calibration");

		/* force vcm2 = 0.8V */
		state->bb6 = 0;
		state->bb7 = 0x040d;

		/* the LNA AND LO are off */
		reg = dib0090_read_reg(state, 0x24) & 0x0ffb;	/* shutdown lna and lo */
		dib0090_write_reg(state, 0x24, reg);

		state->wbdmux = dib0090_read_reg(state, 0x10);
		dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
		dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));

		state->dc = dc_table;

		if (state->identity.p1g)
			state->dc = dc_p1g_table;

		/* fall through */
	case CT_TUNER_STEP_0:
		dprintk("Start/continue DC calibration for %s path", (state->dc->i == 1) ? "I" : "Q");
		dib0090_write_reg(state, 0x01, state->dc->bb1);
		dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));

		state->step = 0;
		state->min_adc_diff = 1023;
		*tune_state = CT_TUNER_STEP_1;
		ret = 50;
		break;

	case CT_TUNER_STEP_1:
		dib0090_set_trim(state);
		*tune_state = CT_TUNER_STEP_2;
		break;

	case CT_TUNER_STEP_2:
	case CT_TUNER_STEP_3:
	case CT_TUNER_STEP_4:
		ret = dib0090_get_offset(state, tune_state);
		break;

	case CT_TUNER_STEP_5:	/* found an offset */
		dprintk("adc_diff = %d, current step= %d", (u32) state->adc_diff, state->step);
		if (state->step == 0 && state->adc_diff < 0) {
			state->min_adc_diff = -1023;
			dprintk("Change of sign of the minimum adc diff");
		}

		dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state->adc_diff, state->min_adc_diff, state->step);

		/* first turn for this frequency */
		if (state->step == 0) {
			if (state->dc->pga && state->adc_diff < 0)
				state->step = 0x10;
			if (state->dc->pga == 0 && state->adc_diff > 0)
				state->step = 0x10;
		}

		/* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
		if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
			/* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
			state->step++;
			state->min_adc_diff = state->adc_diff;
			*tune_state = CT_TUNER_STEP_1;
		} else {
			/* the minimum was what we have seen in the step before */
			if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) {
				dprintk("Since adc_diff N = %d  > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff);
				state->step--;
			}

			dib0090_set_trim(state);
			dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->dc->addr, state->adc_diff, state->step);

			state->dc++;
			if (state->dc->addr == 0)	/* done */
				*tune_state = CT_TUNER_STEP_6;
			else
				*tune_state = CT_TUNER_STEP_0;

		}
		break;

	case CT_TUNER_STEP_6:
		dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
		dib0090_write_reg(state, 0x1f, 0x7);
		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */
		state->calibrate &= ~DC_CAL;
	default:
		break;
	}
	return ret;
}

static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	u8 wbd_gain;
	const struct dib0090_wbd_slope *wbd = state->current_wbd_table;

	switch (*tune_state) {
	case CT_TUNER_START:
		while (state->current_rf / 1000 > wbd->max_freq)
			wbd++;
		if (wbd->wbd_gain != 0)
			wbd_gain = wbd->wbd_gain;
		else {
			wbd_gain = 4;
#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
			if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND))
				wbd_gain = 2;
#endif
		}

		if (wbd_gain == state->wbd_calibration_gain) {	/* the WBD calibration has already been done */
			*tune_state = CT_TUNER_START;
			state->calibrate &= ~WBD_CAL;
			return 0;
		}

		dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));

		dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
		*tune_state = CT_TUNER_STEP_0;
		state->wbd_calibration_gain = wbd_gain;
		return 90;	/* wait for the WBDMUX to switch and for the ADC to sample */

	case CT_TUNER_STEP_0:
		state->wbd_offset = dib0090_get_slow_adc_val(state);
		dprintk("WBD calibration offset = %d", state->wbd_offset);
		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */
		state->calibrate &= ~WBD_CAL;
		break;

	default:
		break;
	}
	return 0;
}

static void dib0090_set_bandwidth(struct dib0090_state *state)
{
	u16 tmp;

	if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
		tmp = (3 << 14);
	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
		tmp = (2 << 14);
	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
		tmp = (1 << 14);
	else
		tmp = (0 << 14);

	state->bb_1_def &= 0x3fff;
	state->bb_1_def |= tmp;

	dib0090_write_reg(state, 0x01, state->bb_1_def);	/* be sure that we have the right bb-filter */

	dib0090_write_reg(state, 0x03, 0x6008);	/* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
	dib0090_write_reg(state, 0x04, 0x1);	/* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
	if (state->identity.in_soc) {
		dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
	} else {
		dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f));	/* 22 = cap_value */
		dib0090_write_reg(state, 0x05, 0xabcd);	/* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
	}
}

static const struct dib0090_pll dib0090_pll_table[] = {
#ifdef CONFIG_BAND_CBAND
	{56000, 0, 9, 48, 6},
	{70000, 1, 9, 48, 6},
	{87000, 0, 8, 32, 4},
	{105000, 1, 8, 32, 4},
	{115000, 0, 7, 24, 6},
	{140000, 1, 7, 24, 6},
	{170000, 0, 6, 16, 4},
#endif
#ifdef CONFIG_BAND_VHF
	{200000, 1, 6, 16, 4},
	{230000, 0, 5, 12, 6},
	{280000, 1, 5, 12, 6},
	{340000, 0, 4, 8, 4},
	{380000, 1, 4, 8, 4},
	{450000, 0, 3, 6, 6},
#endif
#ifdef CONFIG_BAND_UHF
	{580000, 1, 3, 6, 6},
	{700000, 0, 2, 4, 4},
	{860000, 1, 2, 4, 4},
#endif
#ifdef CONFIG_BAND_LBAND
	{1800000, 1, 0, 2, 4},
#endif
#ifdef CONFIG_BAND_SBAND
	{2900000, 0, 14, 1, 4},
#endif
};

static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {

#ifdef CONFIG_BAND_CBAND
	{184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
	{227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
	{380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
#endif
#ifdef CONFIG_BAND_UHF
	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};

static const struct dib0090_tuning dib0090_tuning_table[] = {

#ifdef CONFIG_BAND_CBAND
	{170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
#endif
#ifdef CONFIG_BAND_VHF
	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
#endif
#ifdef CONFIG_BAND_UHF
	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};

static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
#ifdef CONFIG_BAND_CBAND
	{170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
#endif
#ifdef CONFIG_BAND_VHF
	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
#endif
#ifdef CONFIG_BAND_UHF
	{510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};

static const struct dib0090_pll dib0090_p1g_pll_table[] = {
#ifdef CONFIG_BAND_CBAND
	{57000, 0, 11, 48, 6},
	{70000, 1, 11, 48, 6},
	{86000, 0, 10, 32, 4},
	{105000, 1, 10, 32, 4},
	{115000, 0, 9, 24, 6},
	{140000, 1, 9, 24, 6},
	{170000, 0, 8, 16, 4},
#endif
#ifdef CONFIG_BAND_VHF
	{200000, 1, 8, 16, 4},
	{230000, 0, 7, 12, 6},
	{280000, 1, 7, 12, 6},
	{340000, 0, 6, 8, 4},
	{380000, 1, 6, 8, 4},
	{455000, 0, 5, 6, 6},
#endif
#ifdef CONFIG_BAND_UHF
	{580000, 1, 5, 6, 6},
	{680000, 0, 4, 4, 4},
	{860000, 1, 4, 4, 4},
#endif
#ifdef CONFIG_BAND_LBAND
	{1800000, 1, 2, 2, 4},
#endif
#ifdef CONFIG_BAND_SBAND
	{2900000, 0, 1, 1, 6},
#endif
};

static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
#ifdef CONFIG_BAND_CBAND
	{184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
	{227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
	{380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
#endif
#ifdef CONFIG_BAND_UHF
	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};

static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
#ifdef CONFIG_BAND_CBAND
	{300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
	{380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
	{570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
	{858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
#endif
};

static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = {
#ifdef CONFIG_BAND_CBAND
	{ 300000,  0 ,  3,  0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
	{ 380000,  0 ,  10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
	{ 600000,  0 ,  10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB },
	{ 660000,  0 ,  5,  0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB },
	{ 720000,  0 ,  5,  0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB },
	{ 860000,  0 ,  4,  0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB },
#endif
};

int dib0090_update_tuning_table_7090(struct dvb_frontend *fe,
		u8 cfg_sensitivity)
{
	struct dib0090_state *state = fe->tuner_priv;
	const struct dib0090_tuning *tune =
		dib0090_tuning_table_cband_7090e_sensitivity;
	const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = {
		{ 300000,  0 ,  3,  0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
		{ 650000,  0 ,  4,  0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB },
		{ 860000,  0 ,  5,  0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB },
	};

	if ((!state->identity.p1g) || (!state->identity.in_soc)
			|| ((state->identity.version != SOC_7090_P1G_21R1)
				&& (state->identity.version != SOC_7090_P1G_11R1))) {
		dprintk("%s() function can only be used for dib7090", __func__);
		return -ENODEV;
	}

	if (cfg_sensitivity)
		tune = dib0090_tuning_table_cband_7090e_sensitivity;
	else
		tune = dib0090_tuning_table_cband_7090e_aci;

	while (state->rf_request > tune->max_freq)
		tune++;

	dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000)
			| (tune->lna_bias & 0x7fff));
	dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f)
			| ((tune->lna_tune << 6) & 0x07c0));
	return 0;
}
EXPORT_SYMBOL(dib0090_update_tuning_table_7090);

static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	int ret = 0;
	u16 lo4 = 0xe900;

	s16 adc_target;
	u16 adc;
	s8 step_sign;
	u8 force_soft_search = 0;

	if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
		force_soft_search = 1;

	if (*tune_state == CT_TUNER_START) {
		dprintk("Start Captrim search : %s", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO");
		dib0090_write_reg(state, 0x10, 0x2B1);
		dib0090_write_reg(state, 0x1e, 0x0032);

		if (!state->tuner_is_tuned) {
			/* prepare a complete captrim */
			if (!state->identity.p1g || force_soft_search)
				state->step = state->captrim = state->fcaptrim = 64;

			state->current_rf = state->rf_request;
		} else {	/* we are already tuned to this frequency - the configuration is correct  */
			if (!state->identity.p1g || force_soft_search) {
				/* do a minimal captrim even if the frequency has not changed */
				state->step = 4;
				state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
			}
		}
		state->adc_diff = 3000;
		*tune_state = CT_TUNER_STEP_0;

	} else if (*tune_state == CT_TUNER_STEP_0) {
		if (state->identity.p1g && !force_soft_search) {
			u8 ratio = 31;

			dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
			dib0090_read_reg(state, 0x40);
			ret = 50;
		} else {
			state->step /= 2;
			dib0090_write_reg(state, 0x18, lo4 | state->captrim);

			if (state->identity.in_soc)
				ret = 25;
		}
		*tune_state = CT_TUNER_STEP_1;

	} else if (*tune_state == CT_TUNER_STEP_1) {
		if (state->identity.p1g && !force_soft_search) {
			dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0);
			dib0090_read_reg(state, 0x40);

			state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F;
			dprintk("***Final Captrim= 0x%x", state->fcaptrim);
			*tune_state = CT_TUNER_STEP_3;

		} else {
			/* MERGE for all krosus before P1G */
			adc = dib0090_get_slow_adc_val(state);
			dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024);

			if (state->rest == 0 || state->identity.in_soc) {	/* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
				adc_target = 200;
			} else
				adc_target = 400;

			if (adc >= adc_target) {
				adc -= adc_target;
				step_sign = -1;
			} else {
				adc = adc_target - adc;
				step_sign = 1;
			}

			if (adc < state->adc_diff) {
				dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
				state->adc_diff = adc;
				state->fcaptrim = state->captrim;
			}

			state->captrim += step_sign * state->step;
			if (state->step >= 1)
				*tune_state = CT_TUNER_STEP_0;
			else
				*tune_state = CT_TUNER_STEP_2;

			ret = 25;
		}
	} else if (*tune_state == CT_TUNER_STEP_2) {	/* this step is only used by krosus < P1G */
		/*write the final cptrim config */
		dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);

		*tune_state = CT_TUNER_STEP_3;

	} else if (*tune_state == CT_TUNER_STEP_3) {
		state->calibrate &= ~CAPTRIM_CAL;
		*tune_state = CT_TUNER_STEP_0;
	}

	return ret;
}

static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	int ret = 15;
	s16 val;

	switch (*tune_state) {
	case CT_TUNER_START:
		state->wbdmux = dib0090_read_reg(state, 0x10);
		dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));

		state->bias = dib0090_read_reg(state, 0x13);
		dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));

		*tune_state = CT_TUNER_STEP_0;
		/* wait for the WBDMUX to switch and for the ADC to sample */
		break;

	case CT_TUNER_STEP_0:
		state->adc_diff = dib0090_get_slow_adc_val(state);
		dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
		*tune_state = CT_TUNER_STEP_1;
		break;

	case CT_TUNER_STEP_1:
		val = dib0090_get_slow_adc_val(state);
		state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;

		dprintk("temperature: %d C", state->temperature - 30);

		*tune_state = CT_TUNER_STEP_2;
		break;

	case CT_TUNER_STEP_2:
		dib0090_write_reg(state, 0x13, state->bias);
		dib0090_write_reg(state, 0x10, state->wbdmux);	/* write back original WBDMUX */

		*tune_state = CT_TUNER_START;
		state->calibrate &= ~TEMP_CAL;
		if (state->config->analog_output == 0)
			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));

		break;

	default:
		ret = 0;
		break;
	}
	return ret;
}

#define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */
static int dib0090_tune(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	const struct dib0090_tuning *tune = state->current_tune_table_index;
	const struct dib0090_pll *pll = state->current_pll_table_index;
	enum frontend_tune_state *tune_state = &state->tune_state;

	u16 lo5, lo6, Den, tmp;
	u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
	int ret = 10;		/* 1ms is the default delay most of the time */
	u8 c, i;

	/************************* VCO ***************************/
	/* Default values for FG                                 */
	/* from these are needed :                               */
	/* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv             */

	/* in any case we first need to do a calibration if needed */
	if (*tune_state == CT_TUNER_START) {
		/* deactivate DataTX before some calibrations */
		if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
		else
			/* Activate DataTX in case a calibration has been done before */
			if (state->config->analog_output == 0)
				dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
	}

	if (state->calibrate & DC_CAL)
		return dib0090_dc_offset_calibration(state, tune_state);
	else if (state->calibrate & WBD_CAL) {
		if (state->current_rf == 0)
			state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
		return dib0090_wbd_calibration(state, tune_state);
	} else if (state->calibrate & TEMP_CAL)
		return dib0090_get_temperature(state, tune_state);
	else if (state->calibrate & CAPTRIM_CAL)
		return dib0090_captrim_search(state, tune_state);

	if (*tune_state == CT_TUNER_START) {
		/* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
		if (state->config->use_pwm_agc && state->identity.in_soc) {
			tmp = dib0090_read_reg(state, 0x39);
			if ((tmp >> 10) & 0x1)
				dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
		}

		state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
		state->rf_request =
			state->fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
					BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->
					freq_offset_khz_vhf);

		/* in ISDB-T 1seg we shift tuning frequency */
		if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1
					&& state->fe->dtv_property_cache.isdbt_partial_reception == 0)) {
			const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if;
			u8 found_offset = 0;
			u32 margin_khz = 100;

			if (LUT_offset != NULL) {
				while (LUT_offset->RF_freq != 0xffff) {
					if (((state->rf_request > (LUT_offset->RF_freq - margin_khz))
								&& (state->rf_request < (LUT_offset->RF_freq + margin_khz)))
							&& LUT_offset->std == state->fe->dtv_property_cache.delivery_system) {
						state->rf_request += LUT_offset->offset_khz;
						found_offset = 1;
						break;
					}
					LUT_offset++;
				}
			}

			if (found_offset == 0)
				state->rf_request += 400;
		}
		if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) {
			state->tuner_is_tuned = 0;
			state->current_rf = 0;
			state->current_standard = 0;

			tune = dib0090_tuning_table;
			if (state->identity.p1g)
				tune = dib0090_p1g_tuning_table;

			tmp = (state->identity.version >> 5) & 0x7;

			if (state->identity.in_soc) {
				if (state->config->force_cband_input) {	/* Use the CBAND input for all band */
					if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF
							|| state->current_band & BAND_UHF) {
						state->current_band = BAND_CBAND;
						if (state->config->is_dib7090e)
							tune = dib0090_tuning_table_cband_7090e_sensitivity;
						else
							tune = dib0090_tuning_table_cband_7090;
					}
				} else {	/* Use the CBAND input for all band under UHF */
					if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) {
						state->current_band = BAND_CBAND;
						if (state->config->is_dib7090e)
							tune = dib0090_tuning_table_cband_7090e_sensitivity;
						else
							tune = dib0090_tuning_table_cband_7090;
					}
				}
			} else
			 if (tmp == 0x4 || tmp == 0x7) {
				/* CBAND tuner version for VHF */
				if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) {
					state->current_band = BAND_CBAND;	/* Force CBAND */

					tune = dib0090_tuning_table_fm_vhf_on_cband;
					if (state->identity.p1g)
						tune = dib0090_p1g_tuning_table_fm_vhf_on_cband;
				}
			}

			pll = dib0090_pll_table;
			if (state->identity.p1g)
				pll = dib0090_p1g_pll_table;

			/* Look for the interval */
			while (state->rf_request > tune->max_freq)
				tune++;
			while (state->rf_request > pll->max_freq)
				pll++;

			state->current_tune_table_index = tune;
			state->current_pll_table_index = pll;

			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));

			VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;

			FREF = state->config->io.clock_khz;
			if (state->config->fref_clock_ratio != 0)
				FREF /= state->config->fref_clock_ratio;

			FBDiv = (VCOF_kHz / pll->topresc / FREF);
			Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;

			if (Rest < LPF)
				Rest = 0;
			else if (Rest < 2 * LPF)
				Rest = 2 * LPF;
			else if (Rest > (FREF - LPF)) {
				Rest = 0;
				FBDiv += 1;
			} else if (Rest > (FREF - 2 * LPF))
				Rest = FREF - 2 * LPF;
			Rest = (Rest * 6528) / (FREF / 10);
			state->rest = Rest;

			/* external loop filter, otherwise:
			 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
			 * lo6 = 0x0e34 */

			if (Rest == 0) {
				if (pll->vco_band)
					lo5 = 0x049f;
				else
					lo5 = 0x041f;
			} else {
				if (pll->vco_band)
					lo5 = 0x049e;
				else if (state->config->analog_output)
					lo5 = 0x041d;
				else
					lo5 = 0x041c;
			}

			if (state->identity.p1g) {	/* Bias is done automatically in P1G */
				if (state->identity.in_soc) {
					if (state->identity.version == SOC_8090_P1G_11R1)
						lo5 = 0x46f;
					else
						lo5 = 0x42f;
				} else
					lo5 = 0x42c;
			}

			lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7);	/* bit 15 is the split to the slave, we do not do it here */

			if (!state->config->io.pll_int_loop_filt) {
				if (state->identity.in_soc)
					lo6 = 0xff98;
				else if (state->identity.p1g || (Rest == 0))
					lo6 = 0xfff8;
				else
					lo6 = 0xff28;
			} else
				lo6 = (state->config->io.pll_int_loop_filt << 3);

			Den = 1;

			if (Rest > 0) {
				if (state->config->analog_output)
					lo6 |= (1 << 2) | 2;
				else {
					if (state->identity.in_soc)
						lo6 |= (1 << 2) | 2;
					else
						lo6 |= (1 << 2) | 2;
				}
				Den = 255;
			}
			dib0090_write_reg(state, 0x15, (u16) FBDiv);
			if (state->config->fref_clock_ratio != 0)
				dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
			else
				dib0090_write_reg(state, 0x16, (Den << 8) | 1);
			dib0090_write_reg(state, 0x17, (u16) Rest);
			dib0090_write_reg(state, 0x19, lo5);
			dib0090_write_reg(state, 0x1c, lo6);

			lo6 = tune->tuner_enable;
			if (state->config->analog_output)
				lo6 = (lo6 & 0xff9f) | 0x2;

			dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL);

		}

		state->current_rf = state->rf_request;
		state->current_standard = state->fe->dtv_property_cache.delivery_system;

		ret = 20;
		state->calibrate = CAPTRIM_CAL;	/* captrim serach now */
	}

	else if (*tune_state == CT_TUNER_STEP_0) {	/* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
		const struct dib0090_wbd_slope *wbd = state->current_wbd_table;

		while (state->current_rf / 1000 > wbd->max_freq)
			wbd++;

		dib0090_write_reg(state, 0x1e, 0x07ff);
		dprintk("Final Captrim: %d", (u32) state->fcaptrim);
		dprintk("HFDIV code: %d", (u32) pll->hfdiv_code);
		dprintk("VCO = %d", (u32) pll->vco_band);
		dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request);
		dprintk("REFDIV: %d, FREF: %d", (u32) 1, (u32) state->config->io.clock_khz);
		dprintk("FBDIV: %d, Rest: %d", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
		dprintk("Num: %d, Den: %d, SD: %d", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8),
			(u32) dib0090_read_reg(state, 0x1c) & 0x3);

#define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */
		c = 4;
		i = 3;

		if (wbd->wbd_gain != 0)
			c = wbd->wbd_gain;

		state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
		dib0090_write_reg(state, 0x10, state->wbdmux);

		if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) {
			dprintk("P1G : The cable band is selected and lna_tune = %d", tune->lna_tune);
			dib0090_write_reg(state, 0x09, tune->lna_bias);
			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim));
		} else
			dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias);

		dib0090_write_reg(state, 0x0c, tune->v2i);
		dib0090_write_reg(state, 0x0d, tune->mix);
		dib0090_write_reg(state, 0x0e, tune->load);
		*tune_state = CT_TUNER_STEP_1;

	} else if (*tune_state == CT_TUNER_STEP_1) {
		/* initialize the lt gain register */
		state->rf_lt_def = 0x7c00;

		dib0090_set_bandwidth(state);
		state->tuner_is_tuned = 1;

		state->calibrate |= WBD_CAL;
		state->calibrate |= TEMP_CAL;
		*tune_state = CT_TUNER_STOP;
	} else
		ret = FE_CALLBACK_TIME_NEVER;
	return ret;
}

static int dib0090_release(struct dvb_frontend *fe)
{
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;

	return state->tune_state;
}

EXPORT_SYMBOL(dib0090_get_tune_state);

int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
{
	struct dib0090_state *state = fe->tuner_priv;

	state->tune_state = tune_state;
	return 0;
}

EXPORT_SYMBOL(dib0090_set_tune_state);

static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
{
	struct dib0090_state *state = fe->tuner_priv;

	*frequency = 1000 * state->current_rf;
	return 0;
}

static int dib0090_set_params(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	u32 ret;

	state->tune_state = CT_TUNER_START;

	do {
		ret = dib0090_tune(fe);
		if (ret == FE_CALLBACK_TIME_NEVER)
			break;

		/*
		 * Despite dib0090_tune returns time at a 0.1 ms range,
		 * the actual sleep time depends on CONFIG_HZ. The worse case
		 * is when CONFIG_HZ=100. In such case, the minimum granularity
		 * is 10ms. On some real field tests, the tuner sometimes don't
		 * lock when this timer is lower than 10ms. So, enforce a 10ms
		 * granularity and use usleep_range() instead of msleep().
		 */
		ret = 10 * (ret + 99)/100;
		usleep_range(ret * 1000, (ret + 1) * 1000);
	} while (state->tune_state != CT_TUNER_STOP);

	return 0;
}

static const struct dvb_tuner_ops dib0090_ops = {
	.info = {
		 .name = "DiBcom DiB0090",
		 .frequency_min = 45000000,
		 .frequency_max = 860000000,
		 .frequency_step = 1000,
		 },
	.release = dib0090_release,

	.init = dib0090_wakeup,
	.sleep = dib0090_sleep,
	.set_params = dib0090_set_params,
	.get_frequency = dib0090_get_frequency,
};

static const struct dvb_tuner_ops dib0090_fw_ops = {
	.info = {
		 .name = "DiBcom DiB0090",
		 .frequency_min = 45000000,
		 .frequency_max = 860000000,
		 .frequency_step = 1000,
		 },
	.release = dib0090_release,

	.init = NULL,
	.sleep = NULL,
	.set_params = NULL,
	.get_frequency = NULL,
};

static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
	{470, 0, 250, 0, 100, 4},
	{860, 51, 866, 21, 375, 4},
	{1700, 0, 800, 0, 850, 4},
	{2900, 0, 250, 0, 100, 6},
	{0xFFFF, 0, 0, 0, 0, 0},
};

struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
{
	struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
	if (st == NULL)
		return NULL;

	st->config = config;
	st->i2c = i2c;
	st->fe = fe;
	mutex_init(&st->i2c_buffer_lock);
	fe->tuner_priv = st;

	if (config->wbd == NULL)
		st->current_wbd_table = dib0090_wbd_table_default;
	else
		st->current_wbd_table = config->wbd;

	if (dib0090_reset(fe) != 0)
		goto free_mem;

	printk(KERN_INFO "DiB0090: successfully identified\n");
	memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));

	return fe;
 free_mem:
	kfree(st);
	fe->tuner_priv = NULL;
	return NULL;
}

EXPORT_SYMBOL(dib0090_register);

struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
{
	struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL);
	if (st == NULL)
		return NULL;

	st->config = config;
	st->i2c = i2c;
	st->fe = fe;
	mutex_init(&st->i2c_buffer_lock);
	fe->tuner_priv = st;

	if (dib0090_fw_reset_digital(fe, st->config) != 0)
		goto free_mem;

	dprintk("DiB0090 FW: successfully identified");
	memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));

	return fe;
free_mem:
	kfree(st);
	fe->tuner_priv = NULL;
	return NULL;
}
EXPORT_SYMBOL(dib0090_fw_register);

MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
MODULE_LICENSE("GPL");