/* * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. * Copyright (C) 2008 - 2011 Bart Van Assche . * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ib_srpt.h" /* Name of this kernel module. */ #define DRV_NAME "ib_srpt" #define SRPT_ID_STRING "Linux SRP target" #undef pr_fmt #define pr_fmt(fmt) DRV_NAME " " fmt MODULE_AUTHOR("Vu Pham and Bart Van Assche"); MODULE_DESCRIPTION("SCSI RDMA Protocol target driver"); MODULE_LICENSE("Dual BSD/GPL"); /* * Global Variables */ static u64 srpt_service_guid; static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; module_param(srp_max_req_size, int, 0444); MODULE_PARM_DESC(srp_max_req_size, "Maximum size of SRP request messages in bytes."); static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; module_param(srpt_srq_size, int, 0444); MODULE_PARM_DESC(srpt_srq_size, "Shared receive queue (SRQ) size."); static int srpt_set_u64_x(const char *buffer, const struct kernel_param *kp) { return kstrtou64(buffer, 16, (u64 *)kp->arg); } static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp) { return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg); } module_param_call(srpt_service_guid, srpt_set_u64_x, srpt_get_u64_x, &srpt_service_guid, 0444); MODULE_PARM_DESC(srpt_service_guid, "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA."); static struct ib_client srpt_client; /* Protects both rdma_cm_port and rdma_cm_id. */ static DEFINE_MUTEX(rdma_cm_mutex); /* Port number RDMA/CM will bind to. */ static u16 rdma_cm_port; static struct rdma_cm_id *rdma_cm_id; static void srpt_release_cmd(struct se_cmd *se_cmd); static void srpt_free_ch(struct kref *kref); static int srpt_queue_status(struct se_cmd *cmd); static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); static void srpt_process_wait_list(struct srpt_rdma_ch *ch); /* * The only allowed channel state changes are those that change the channel * state into a state with a higher numerical value. Hence the new > prev test. */ static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) { unsigned long flags; enum rdma_ch_state prev; bool changed = false; spin_lock_irqsave(&ch->spinlock, flags); prev = ch->state; if (new > prev) { ch->state = new; changed = true; } spin_unlock_irqrestore(&ch->spinlock, flags); return changed; } /** * srpt_event_handler - asynchronous IB event callback function * @handler: IB event handler registered by ib_register_event_handler(). * @event: Description of the event that occurred. * * Callback function called by the InfiniBand core when an asynchronous IB * event occurs. This callback may occur in interrupt context. See also * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand * Architecture Specification. */ static void srpt_event_handler(struct ib_event_handler *handler, struct ib_event *event) { struct srpt_device *sdev = container_of(handler, struct srpt_device, event_handler); struct srpt_port *sport; u8 port_num; pr_debug("ASYNC event= %d on device= %s\n", event->event, dev_name(&sdev->device->dev)); switch (event->event) { case IB_EVENT_PORT_ERR: port_num = event->element.port_num - 1; if (port_num < sdev->device->phys_port_cnt) { sport = &sdev->port[port_num]; sport->lid = 0; sport->sm_lid = 0; } else { WARN(true, "event %d: port_num %d out of range 1..%d\n", event->event, port_num + 1, sdev->device->phys_port_cnt); } break; case IB_EVENT_PORT_ACTIVE: case IB_EVENT_LID_CHANGE: case IB_EVENT_PKEY_CHANGE: case IB_EVENT_SM_CHANGE: case IB_EVENT_CLIENT_REREGISTER: case IB_EVENT_GID_CHANGE: /* Refresh port data asynchronously. */ port_num = event->element.port_num - 1; if (port_num < sdev->device->phys_port_cnt) { sport = &sdev->port[port_num]; if (!sport->lid && !sport->sm_lid) schedule_work(&sport->work); } else { WARN(true, "event %d: port_num %d out of range 1..%d\n", event->event, port_num + 1, sdev->device->phys_port_cnt); } break; default: pr_err("received unrecognized IB event %d\n", event->event); break; } } /** * srpt_srq_event - SRQ event callback function * @event: Description of the event that occurred. * @ctx: Context pointer specified at SRQ creation time. */ static void srpt_srq_event(struct ib_event *event, void *ctx) { pr_debug("SRQ event %d\n", event->event); } static const char *get_ch_state_name(enum rdma_ch_state s) { switch (s) { case CH_CONNECTING: return "connecting"; case CH_LIVE: return "live"; case CH_DISCONNECTING: return "disconnecting"; case CH_DRAINING: return "draining"; case CH_DISCONNECTED: return "disconnected"; } return "???"; } /** * srpt_qp_event - QP event callback function * @event: Description of the event that occurred. * @ch: SRPT RDMA channel. */ static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) { pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n", event->event, ch, ch->sess_name, ch->qp->qp_num, get_ch_state_name(ch->state)); switch (event->event) { case IB_EVENT_COMM_EST: if (ch->using_rdma_cm) rdma_notify(ch->rdma_cm.cm_id, event->event); else ib_cm_notify(ch->ib_cm.cm_id, event->event); break; case IB_EVENT_QP_LAST_WQE_REACHED: pr_debug("%s-%d, state %s: received Last WQE event.\n", ch->sess_name, ch->qp->qp_num, get_ch_state_name(ch->state)); break; default: pr_err("received unrecognized IB QP event %d\n", event->event); break; } } /** * srpt_set_ioc - initialize a IOUnitInfo structure * @c_list: controller list. * @slot: one-based slot number. * @value: four-bit value. * * Copies the lowest four bits of value in element slot of the array of four * bit elements called c_list (controller list). The index slot is one-based. */ static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) { u16 id; u8 tmp; id = (slot - 1) / 2; if (slot & 0x1) { tmp = c_list[id] & 0xf; c_list[id] = (value << 4) | tmp; } else { tmp = c_list[id] & 0xf0; c_list[id] = (value & 0xf) | tmp; } } /** * srpt_get_class_port_info - copy ClassPortInfo to a management datagram * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO. * * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture * Specification. */ static void srpt_get_class_port_info(struct ib_dm_mad *mad) { struct ib_class_port_info *cif; cif = (struct ib_class_port_info *)mad->data; memset(cif, 0, sizeof(*cif)); cif->base_version = 1; cif->class_version = 1; ib_set_cpi_resp_time(cif, 20); mad->mad_hdr.status = 0; } /** * srpt_get_iou - write IOUnitInfo to a management datagram * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO. * * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture * Specification. See also section B.7, table B.6 in the SRP r16a document. */ static void srpt_get_iou(struct ib_dm_mad *mad) { struct ib_dm_iou_info *ioui; u8 slot; int i; ioui = (struct ib_dm_iou_info *)mad->data; ioui->change_id = cpu_to_be16(1); ioui->max_controllers = 16; /* set present for slot 1 and empty for the rest */ srpt_set_ioc(ioui->controller_list, 1, 1); for (i = 1, slot = 2; i < 16; i++, slot++) srpt_set_ioc(ioui->controller_list, slot, 0); mad->mad_hdr.status = 0; } /** * srpt_get_ioc - write IOControllerprofile to a management datagram * @sport: HCA port through which the MAD has been received. * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query. * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE. * * See also section 16.3.3.4 IOControllerProfile in the InfiniBand * Architecture Specification. See also section B.7, table B.7 in the SRP * r16a document. */ static void srpt_get_ioc(struct srpt_port *sport, u32 slot, struct ib_dm_mad *mad) { struct srpt_device *sdev = sport->sdev; struct ib_dm_ioc_profile *iocp; int send_queue_depth; iocp = (struct ib_dm_ioc_profile *)mad->data; if (!slot || slot > 16) { mad->mad_hdr.status = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); return; } if (slot > 2) { mad->mad_hdr.status = cpu_to_be16(DM_MAD_STATUS_NO_IOC); return; } if (sdev->use_srq) send_queue_depth = sdev->srq_size; else send_queue_depth = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); memset(iocp, 0, sizeof(*iocp)); strcpy(iocp->id_string, SRPT_ID_STRING); iocp->guid = cpu_to_be64(srpt_service_guid); iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); iocp->subsys_device_id = 0x0; iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); iocp->protocol = cpu_to_be16(SRP_PROTOCOL); iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); iocp->send_queue_depth = cpu_to_be16(send_queue_depth); iocp->rdma_read_depth = 4; iocp->send_size = cpu_to_be32(srp_max_req_size); iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 1U << 24)); iocp->num_svc_entries = 1; iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; mad->mad_hdr.status = 0; } /** * srpt_get_svc_entries - write ServiceEntries to a management datagram * @ioc_guid: I/O controller GUID to use in reply. * @slot: I/O controller number. * @hi: End of the range of service entries to be specified in the reply. * @lo: Start of the range of service entries to be specified in the reply.. * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES. * * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture * Specification. See also section B.7, table B.8 in the SRP r16a document. */ static void srpt_get_svc_entries(u64 ioc_guid, u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) { struct ib_dm_svc_entries *svc_entries; WARN_ON(!ioc_guid); if (!slot || slot > 16) { mad->mad_hdr.status = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); return; } if (slot > 2 || lo > hi || hi > 1) { mad->mad_hdr.status = cpu_to_be16(DM_MAD_STATUS_NO_IOC); return; } svc_entries = (struct ib_dm_svc_entries *)mad->data; memset(svc_entries, 0, sizeof(*svc_entries)); svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); snprintf(svc_entries->service_entries[0].name, sizeof(svc_entries->service_entries[0].name), "%s%016llx", SRP_SERVICE_NAME_PREFIX, ioc_guid); mad->mad_hdr.status = 0; } /** * srpt_mgmt_method_get - process a received management datagram * @sp: HCA port through which the MAD has been received. * @rq_mad: received MAD. * @rsp_mad: response MAD. */ static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, struct ib_dm_mad *rsp_mad) { u16 attr_id; u32 slot; u8 hi, lo; attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); switch (attr_id) { case DM_ATTR_CLASS_PORT_INFO: srpt_get_class_port_info(rsp_mad); break; case DM_ATTR_IOU_INFO: srpt_get_iou(rsp_mad); break; case DM_ATTR_IOC_PROFILE: slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); srpt_get_ioc(sp, slot, rsp_mad); break; case DM_ATTR_SVC_ENTRIES: slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); hi = (u8) ((slot >> 8) & 0xff); lo = (u8) (slot & 0xff); slot = (u16) ((slot >> 16) & 0xffff); srpt_get_svc_entries(srpt_service_guid, slot, hi, lo, rsp_mad); break; default: rsp_mad->mad_hdr.status = cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); break; } } /** * srpt_mad_send_handler - MAD send completion callback * @mad_agent: Return value of ib_register_mad_agent(). * @mad_wc: Work completion reporting that the MAD has been sent. */ static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_wc *mad_wc) { rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE); ib_free_send_mad(mad_wc->send_buf); } /** * srpt_mad_recv_handler - MAD reception callback function * @mad_agent: Return value of ib_register_mad_agent(). * @send_buf: Not used. * @mad_wc: Work completion reporting that a MAD has been received. */ static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_buf *send_buf, struct ib_mad_recv_wc *mad_wc) { struct srpt_port *sport = (struct srpt_port *)mad_agent->context; struct ib_ah *ah; struct ib_mad_send_buf *rsp; struct ib_dm_mad *dm_mad; if (!mad_wc || !mad_wc->recv_buf.mad) return; ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, mad_wc->recv_buf.grh, mad_agent->port_num); if (IS_ERR(ah)) goto err; BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, mad_wc->wc->pkey_index, 0, IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, GFP_KERNEL, IB_MGMT_BASE_VERSION); if (IS_ERR(rsp)) goto err_rsp; rsp->ah = ah; dm_mad = rsp->mad; memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; dm_mad->mad_hdr.status = 0; switch (mad_wc->recv_buf.mad->mad_hdr.method) { case IB_MGMT_METHOD_GET: srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); break; case IB_MGMT_METHOD_SET: dm_mad->mad_hdr.status = cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); break; default: dm_mad->mad_hdr.status = cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); break; } if (!ib_post_send_mad(rsp, NULL)) { ib_free_recv_mad(mad_wc); /* will destroy_ah & free_send_mad in send completion */ return; } ib_free_send_mad(rsp); err_rsp: rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE); err: ib_free_recv_mad(mad_wc); } static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid) { const __be16 *g = (const __be16 *)guid; return snprintf(buf, size, "%04x:%04x:%04x:%04x", be16_to_cpu(g[0]), be16_to_cpu(g[1]), be16_to_cpu(g[2]), be16_to_cpu(g[3])); } /** * srpt_refresh_port - configure a HCA port * @sport: SRPT HCA port. * * Enable InfiniBand management datagram processing, update the cached sm_lid, * lid and gid values, and register a callback function for processing MADs * on the specified port. * * Note: It is safe to call this function more than once for the same port. */ static int srpt_refresh_port(struct srpt_port *sport) { struct ib_mad_agent *mad_agent; struct ib_mad_reg_req reg_req; struct ib_port_modify port_modify; struct ib_port_attr port_attr; int ret; ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); if (ret) return ret; sport->sm_lid = port_attr.sm_lid; sport->lid = port_attr.lid; ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); if (ret) return ret; srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name), &sport->gid.global.interface_id); snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name), "0x%016llx%016llx", be64_to_cpu(sport->gid.global.subnet_prefix), be64_to_cpu(sport->gid.global.interface_id)); if (rdma_protocol_iwarp(sport->sdev->device, sport->port)) return 0; memset(&port_modify, 0, sizeof(port_modify)); port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; port_modify.clr_port_cap_mask = 0; ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); if (ret) { pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n", dev_name(&sport->sdev->device->dev), sport->port, ret); return 0; } if (!sport->mad_agent) { memset(®_req, 0, sizeof(reg_req)); reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); mad_agent = ib_register_mad_agent(sport->sdev->device, sport->port, IB_QPT_GSI, ®_req, 0, srpt_mad_send_handler, srpt_mad_recv_handler, sport, 0); if (IS_ERR(mad_agent)) { pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n", dev_name(&sport->sdev->device->dev), sport->port, PTR_ERR(mad_agent)); sport->mad_agent = NULL; memset(&port_modify, 0, sizeof(port_modify)); port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); return 0; } sport->mad_agent = mad_agent; } return 0; } /** * srpt_unregister_mad_agent - unregister MAD callback functions * @sdev: SRPT HCA pointer. * @port_cnt: number of ports with registered MAD * * Note: It is safe to call this function more than once for the same device. */ static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt) { struct ib_port_modify port_modify = { .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, }; struct srpt_port *sport; int i; for (i = 1; i <= port_cnt; i++) { sport = &sdev->port[i - 1]; WARN_ON(sport->port != i); if (sport->mad_agent) { ib_modify_port(sdev->device, i, 0, &port_modify); ib_unregister_mad_agent(sport->mad_agent); sport->mad_agent = NULL; } } } /** * srpt_alloc_ioctx - allocate a SRPT I/O context structure * @sdev: SRPT HCA pointer. * @ioctx_size: I/O context size. * @buf_cache: I/O buffer cache. * @dir: DMA data direction. */ static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, int ioctx_size, struct kmem_cache *buf_cache, enum dma_data_direction dir) { struct srpt_ioctx *ioctx; ioctx = kzalloc(ioctx_size, GFP_KERNEL); if (!ioctx) goto err; ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL); if (!ioctx->buf) goto err_free_ioctx; ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, kmem_cache_size(buf_cache), dir); if (ib_dma_mapping_error(sdev->device, ioctx->dma)) goto err_free_buf; return ioctx; err_free_buf: kmem_cache_free(buf_cache, ioctx->buf); err_free_ioctx: kfree(ioctx); err: return NULL; } /** * srpt_free_ioctx - free a SRPT I/O context structure * @sdev: SRPT HCA pointer. * @ioctx: I/O context pointer. * @buf_cache: I/O buffer cache. * @dir: DMA data direction. */ static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, struct kmem_cache *buf_cache, enum dma_data_direction dir) { if (!ioctx) return; ib_dma_unmap_single(sdev->device, ioctx->dma, kmem_cache_size(buf_cache), dir); kmem_cache_free(buf_cache, ioctx->buf); kfree(ioctx); } /** * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures * @sdev: Device to allocate the I/O context ring for. * @ring_size: Number of elements in the I/O context ring. * @ioctx_size: I/O context size. * @buf_cache: I/O buffer cache. * @alignment_offset: Offset in each ring buffer at which the SRP information * unit starts. * @dir: DMA data direction. */ static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, int ring_size, int ioctx_size, struct kmem_cache *buf_cache, int alignment_offset, enum dma_data_direction dir) { struct srpt_ioctx **ring; int i; WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) && ioctx_size != sizeof(struct srpt_send_ioctx)); ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL); if (!ring) goto out; for (i = 0; i < ring_size; ++i) { ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir); if (!ring[i]) goto err; ring[i]->index = i; ring[i]->offset = alignment_offset; } goto out; err: while (--i >= 0) srpt_free_ioctx(sdev, ring[i], buf_cache, dir); kvfree(ring); ring = NULL; out: return ring; } /** * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures * @ioctx_ring: I/O context ring to be freed. * @sdev: SRPT HCA pointer. * @ring_size: Number of ring elements. * @buf_cache: I/O buffer cache. * @dir: DMA data direction. */ static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, struct srpt_device *sdev, int ring_size, struct kmem_cache *buf_cache, enum dma_data_direction dir) { int i; if (!ioctx_ring) return; for (i = 0; i < ring_size; ++i) srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir); kvfree(ioctx_ring); } /** * srpt_set_cmd_state - set the state of a SCSI command * @ioctx: Send I/O context. * @new: New I/O context state. * * Does not modify the state of aborted commands. Returns the previous command * state. */ static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, enum srpt_command_state new) { enum srpt_command_state previous; previous = ioctx->state; if (previous != SRPT_STATE_DONE) ioctx->state = new; return previous; } /** * srpt_test_and_set_cmd_state - test and set the state of a command * @ioctx: Send I/O context. * @old: Current I/O context state. * @new: New I/O context state. * * Returns true if and only if the previous command state was equal to 'old'. */ static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, enum srpt_command_state old, enum srpt_command_state new) { enum srpt_command_state previous; WARN_ON(!ioctx); WARN_ON(old == SRPT_STATE_DONE); WARN_ON(new == SRPT_STATE_NEW); previous = ioctx->state; if (previous == old) ioctx->state = new; return previous == old; } /** * srpt_post_recv - post an IB receive request * @sdev: SRPT HCA pointer. * @ch: SRPT RDMA channel. * @ioctx: Receive I/O context pointer. */ static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *ioctx) { struct ib_sge list; struct ib_recv_wr wr; BUG_ON(!sdev); list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset; list.length = srp_max_req_size; list.lkey = sdev->lkey; ioctx->ioctx.cqe.done = srpt_recv_done; wr.wr_cqe = &ioctx->ioctx.cqe; wr.next = NULL; wr.sg_list = &list; wr.num_sge = 1; if (sdev->use_srq) return ib_post_srq_recv(sdev->srq, &wr, NULL); else return ib_post_recv(ch->qp, &wr, NULL); } /** * srpt_zerolength_write - perform a zero-length RDMA write * @ch: SRPT RDMA channel. * * A quote from the InfiniBand specification: C9-88: For an HCA responder * using Reliable Connection service, for each zero-length RDMA READ or WRITE * request, the R_Key shall not be validated, even if the request includes * Immediate data. */ static int srpt_zerolength_write(struct srpt_rdma_ch *ch) { struct ib_rdma_wr wr = { .wr = { .next = NULL, { .wr_cqe = &ch->zw_cqe, }, .opcode = IB_WR_RDMA_WRITE, .send_flags = IB_SEND_SIGNALED, } }; pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, ch->qp->qp_num); return ib_post_send(ch->qp, &wr.wr, NULL); } static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) { struct srpt_rdma_ch *ch = wc->qp->qp_context; pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num, wc->status); if (wc->status == IB_WC_SUCCESS) { srpt_process_wait_list(ch); } else { if (srpt_set_ch_state(ch, CH_DISCONNECTED)) schedule_work(&ch->release_work); else pr_debug("%s-%d: already disconnected.\n", ch->sess_name, ch->qp->qp_num); } } static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, unsigned *sg_cnt) { enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); struct srpt_rdma_ch *ch = ioctx->ch; struct scatterlist *prev = NULL; unsigned prev_nents; int ret, i; if (nbufs == 1) { ioctx->rw_ctxs = &ioctx->s_rw_ctx; } else { ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), GFP_KERNEL); if (!ioctx->rw_ctxs) return -ENOMEM; } for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; u64 remote_addr = be64_to_cpu(db->va); u32 size = be32_to_cpu(db->len); u32 rkey = be32_to_cpu(db->key); ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, i < nbufs - 1); if (ret) goto unwind; ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); if (ret < 0) { target_free_sgl(ctx->sg, ctx->nents); goto unwind; } ioctx->n_rdma += ret; ioctx->n_rw_ctx++; if (prev) { sg_unmark_end(&prev[prev_nents - 1]); sg_chain(prev, prev_nents + 1, ctx->sg); } else { *sg = ctx->sg; } prev = ctx->sg; prev_nents = ctx->nents; *sg_cnt += ctx->nents; } return 0; unwind: while (--i >= 0) { struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, ctx->sg, ctx->nents, dir); target_free_sgl(ctx->sg, ctx->nents); } if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) kfree(ioctx->rw_ctxs); return ret; } static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx) { enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); int i; for (i = 0; i < ioctx->n_rw_ctx; i++) { struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, ctx->sg, ctx->nents, dir); target_free_sgl(ctx->sg, ctx->nents); } if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) kfree(ioctx->rw_ctxs); } static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) { /* * The pointer computations below will only be compiled correctly * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check * whether srp_cmd::add_data has been declared as a byte pointer. */ BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && !__same_type(srp_cmd->add_data[0], (u8)0)); /* * According to the SRP spec, the lower two bits of the 'ADDITIONAL * CDB LENGTH' field are reserved and the size in bytes of this field * is four times the value specified in bits 3..7. Hence the "& ~3". */ return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); } /** * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request * @recv_ioctx: I/O context associated with the received command @srp_cmd. * @ioctx: I/O context that will be used for responding to the initiator. * @srp_cmd: Pointer to the SRP_CMD request data. * @dir: Pointer to the variable to which the transfer direction will be * written. * @sg: [out] scatterlist for the parsed SRP_CMD. * @sg_cnt: [out] length of @sg. * @data_len: Pointer to the variable to which the total data length of all * descriptors in the SRP_CMD request will be written. * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data * starts. * * This function initializes ioctx->nrbuf and ioctx->r_bufs. * * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; * -ENOMEM when memory allocation fails and zero upon success. */ static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *ioctx, struct srp_cmd *srp_cmd, enum dma_data_direction *dir, struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len, u16 imm_data_offset) { BUG_ON(!dir); BUG_ON(!data_len); /* * The lower four bits of the buffer format field contain the DATA-IN * buffer descriptor format, and the highest four bits contain the * DATA-OUT buffer descriptor format. */ if (srp_cmd->buf_fmt & 0xf) /* DATA-IN: transfer data from target to initiator (read). */ *dir = DMA_FROM_DEVICE; else if (srp_cmd->buf_fmt >> 4) /* DATA-OUT: transfer data from initiator to target (write). */ *dir = DMA_TO_DEVICE; else *dir = DMA_NONE; /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ ioctx->cmd.data_direction = *dir; if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); *data_len = be32_to_cpu(db->len); return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); int nbufs = be32_to_cpu(idb->table_desc.len) / sizeof(struct srp_direct_buf); if (nbufs > (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n", srp_cmd->data_out_desc_cnt, srp_cmd->data_in_desc_cnt, be32_to_cpu(idb->table_desc.len), sizeof(struct srp_direct_buf)); return -EINVAL; } *data_len = be32_to_cpu(idb->len); return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, sg, sg_cnt); } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) { struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd); void *data = (void *)srp_cmd + imm_data_offset; uint32_t len = be32_to_cpu(imm_buf->len); uint32_t req_size = imm_data_offset + len; if (req_size > srp_max_req_size) { pr_err("Immediate data (length %d + %d) exceeds request size %d\n", imm_data_offset, len, srp_max_req_size); return -EINVAL; } if (recv_ioctx->byte_len < req_size) { pr_err("Received too few data - %d < %d\n", recv_ioctx->byte_len, req_size); return -EIO; } /* * The immediate data buffer descriptor must occur before the * immediate data itself. */ if ((void *)(imm_buf + 1) > (void *)data) { pr_err("Received invalid write request\n"); return -EINVAL; } *data_len = len; ioctx->recv_ioctx = recv_ioctx; if ((uintptr_t)data & 511) { pr_warn_once("Internal error - the receive buffers are not aligned properly.\n"); return -EINVAL; } sg_init_one(&ioctx->imm_sg, data, len); *sg = &ioctx->imm_sg; *sg_cnt = 1; return 0; } else { *data_len = 0; return 0; } } /** * srpt_init_ch_qp - initialize queue pair attributes * @ch: SRPT RDMA channel. * @qp: Queue pair pointer. * * Initialized the attributes of queue pair 'qp' by allowing local write, * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. */ static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) { struct ib_qp_attr *attr; int ret; WARN_ON_ONCE(ch->using_rdma_cm); attr = kzalloc(sizeof(*attr), GFP_KERNEL); if (!attr) return -ENOMEM; attr->qp_state = IB_QPS_INIT; attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE; attr->port_num = ch->sport->port; ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port, ch->pkey, &attr->pkey_index); if (ret < 0) pr_err("Translating pkey %#x failed (%d) - using index 0\n", ch->pkey, ret); ret = ib_modify_qp(qp, attr, IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | IB_QP_PKEY_INDEX); kfree(attr); return ret; } /** * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR) * @ch: channel of the queue pair. * @qp: queue pair to change the state of. * * Returns zero upon success and a negative value upon failure. * * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. * If this structure ever becomes larger, it might be necessary to allocate * it dynamically instead of on the stack. */ static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int attr_mask; int ret; WARN_ON_ONCE(ch->using_rdma_cm); qp_attr.qp_state = IB_QPS_RTR; ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); if (ret) goto out; qp_attr.max_dest_rd_atomic = 4; ret = ib_modify_qp(qp, &qp_attr, attr_mask); out: return ret; } /** * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS) * @ch: channel of the queue pair. * @qp: queue pair to change the state of. * * Returns zero upon success and a negative value upon failure. * * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. * If this structure ever becomes larger, it might be necessary to allocate * it dynamically instead of on the stack. */ static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int attr_mask; int ret; qp_attr.qp_state = IB_QPS_RTS; ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask); if (ret) goto out; qp_attr.max_rd_atomic = 4; ret = ib_modify_qp(qp, &qp_attr, attr_mask); out: return ret; } /** * srpt_ch_qp_err - set the channel queue pair state to 'error' * @ch: SRPT RDMA channel. */ static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) { struct ib_qp_attr qp_attr; qp_attr.qp_state = IB_QPS_ERR; return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); } /** * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator * @ch: SRPT RDMA channel. */ static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) { struct srpt_send_ioctx *ioctx; int tag, cpu; BUG_ON(!ch); tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu); if (tag < 0) return NULL; ioctx = ch->ioctx_ring[tag]; BUG_ON(ioctx->ch != ch); ioctx->state = SRPT_STATE_NEW; WARN_ON_ONCE(ioctx->recv_ioctx); ioctx->n_rdma = 0; ioctx->n_rw_ctx = 0; ioctx->queue_status_only = false; /* * transport_init_se_cmd() does not initialize all fields, so do it * here. */ memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); ioctx->cmd.map_tag = tag; ioctx->cmd.map_cpu = cpu; return ioctx; } /** * srpt_abort_cmd - abort a SCSI command * @ioctx: I/O context associated with the SCSI command. */ static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) { enum srpt_command_state state; BUG_ON(!ioctx); /* * If the command is in a state where the target core is waiting for * the ib_srpt driver, change the state to the next state. */ state = ioctx->state; switch (state) { case SRPT_STATE_NEED_DATA: ioctx->state = SRPT_STATE_DATA_IN; break; case SRPT_STATE_CMD_RSP_SENT: case SRPT_STATE_MGMT_RSP_SENT: ioctx->state = SRPT_STATE_DONE; break; default: WARN_ONCE(true, "%s: unexpected I/O context state %d\n", __func__, state); break; } pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, ioctx->state, ioctx->cmd.tag); switch (state) { case SRPT_STATE_NEW: case SRPT_STATE_DATA_IN: case SRPT_STATE_MGMT: case SRPT_STATE_DONE: /* * Do nothing - defer abort processing until * srpt_queue_response() is invoked. */ break; case SRPT_STATE_NEED_DATA: pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); transport_generic_request_failure(&ioctx->cmd, TCM_CHECK_CONDITION_ABORT_CMD); break; case SRPT_STATE_CMD_RSP_SENT: /* * SRP_RSP sending failed or the SRP_RSP send completion has * not been received in time. */ transport_generic_free_cmd(&ioctx->cmd, 0); break; case SRPT_STATE_MGMT_RSP_SENT: transport_generic_free_cmd(&ioctx->cmd, 0); break; default: WARN(1, "Unexpected command state (%d)", state); break; } return state; } /** * srpt_rdma_read_done - RDMA read completion callback * @cq: Completion queue. * @wc: Work completion. * * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping * the data that has been transferred via IB RDMA had to be postponed until the * check_stop_free() callback. None of this is necessary anymore and needs to * be cleaned up. */ static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) { struct srpt_rdma_ch *ch = wc->qp->qp_context; struct srpt_send_ioctx *ioctx = container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); WARN_ON(ioctx->n_rdma <= 0); atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); ioctx->n_rdma = 0; if (unlikely(wc->status != IB_WC_SUCCESS)) { pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", ioctx, wc->status); srpt_abort_cmd(ioctx); return; } if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, SRPT_STATE_DATA_IN)) target_execute_cmd(&ioctx->cmd); else pr_err("%s[%d]: wrong state = %d\n", __func__, __LINE__, ioctx->state); } /** * srpt_build_cmd_rsp - build a SRP_RSP response * @ch: RDMA channel through which the request has been received. * @ioctx: I/O context associated with the SRP_CMD request. The response will * be built in the buffer ioctx->buf points at and hence this function will * overwrite the request data. * @tag: tag of the request for which this response is being generated. * @status: value for the STATUS field of the SRP_RSP information unit. * * Returns the size in bytes of the SRP_RSP response. * * An SRP_RSP response contains a SCSI status or service response. See also * section 6.9 in the SRP r16a document for the format of an SRP_RSP * response. See also SPC-2 for more information about sense data. */ static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, u64 tag, int status) { struct se_cmd *cmd = &ioctx->cmd; struct srp_rsp *srp_rsp; const u8 *sense_data; int sense_data_len, max_sense_len; u32 resid = cmd->residual_count; /* * The lowest bit of all SAM-3 status codes is zero (see also * paragraph 5.3 in SAM-3). */ WARN_ON(status & 1); srp_rsp = ioctx->ioctx.buf; BUG_ON(!srp_rsp); sense_data = ioctx->sense_data; sense_data_len = ioctx->cmd.scsi_sense_length; WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); memset(srp_rsp, 0, sizeof(*srp_rsp)); srp_rsp->opcode = SRP_RSP; srp_rsp->req_lim_delta = cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); srp_rsp->tag = tag; srp_rsp->status = status; if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { if (cmd->data_direction == DMA_TO_DEVICE) { /* residual data from an underflow write */ srp_rsp->flags = SRP_RSP_FLAG_DOUNDER; srp_rsp->data_out_res_cnt = cpu_to_be32(resid); } else if (cmd->data_direction == DMA_FROM_DEVICE) { /* residual data from an underflow read */ srp_rsp->flags = SRP_RSP_FLAG_DIUNDER; srp_rsp->data_in_res_cnt = cpu_to_be32(resid); } } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { if (cmd->data_direction == DMA_TO_DEVICE) { /* residual data from an overflow write */ srp_rsp->flags = SRP_RSP_FLAG_DOOVER; srp_rsp->data_out_res_cnt = cpu_to_be32(resid); } else if (cmd->data_direction == DMA_FROM_DEVICE) { /* residual data from an overflow read */ srp_rsp->flags = SRP_RSP_FLAG_DIOVER; srp_rsp->data_in_res_cnt = cpu_to_be32(resid); } } if (sense_data_len) { BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); if (sense_data_len > max_sense_len) { pr_warn("truncated sense data from %d to %d bytes\n", sense_data_len, max_sense_len); sense_data_len = max_sense_len; } srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); memcpy(srp_rsp->data, sense_data, sense_data_len); } return sizeof(*srp_rsp) + sense_data_len; } /** * srpt_build_tskmgmt_rsp - build a task management response * @ch: RDMA channel through which the request has been received. * @ioctx: I/O context in which the SRP_RSP response will be built. * @rsp_code: RSP_CODE that will be stored in the response. * @tag: Tag of the request for which this response is being generated. * * Returns the size in bytes of the SRP_RSP response. * * An SRP_RSP response contains a SCSI status or service response. See also * section 6.9 in the SRP r16a document for the format of an SRP_RSP * response. */ static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, u8 rsp_code, u64 tag) { struct srp_rsp *srp_rsp; int resp_data_len; int resp_len; resp_data_len = 4; resp_len = sizeof(*srp_rsp) + resp_data_len; srp_rsp = ioctx->ioctx.buf; BUG_ON(!srp_rsp); memset(srp_rsp, 0, sizeof(*srp_rsp)); srp_rsp->opcode = SRP_RSP; srp_rsp->req_lim_delta = cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); srp_rsp->tag = tag; srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); srp_rsp->data[3] = rsp_code; return resp_len; } static int srpt_check_stop_free(struct se_cmd *cmd) { struct srpt_send_ioctx *ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); return target_put_sess_cmd(&ioctx->cmd); } /** * srpt_handle_cmd - process a SRP_CMD information unit * @ch: SRPT RDMA channel. * @recv_ioctx: Receive I/O context. * @send_ioctx: Send I/O context. */ static void srpt_handle_cmd(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *send_ioctx) { struct se_cmd *cmd; struct srp_cmd *srp_cmd; struct scatterlist *sg = NULL; unsigned sg_cnt = 0; u64 data_len; enum dma_data_direction dir; int rc; BUG_ON(!send_ioctx); srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; cmd = &send_ioctx->cmd; cmd->tag = srp_cmd->tag; switch (srp_cmd->task_attr) { case SRP_CMD_SIMPLE_Q: cmd->sam_task_attr = TCM_SIMPLE_TAG; break; case SRP_CMD_ORDERED_Q: default: cmd->sam_task_attr = TCM_ORDERED_TAG; break; case SRP_CMD_HEAD_OF_Q: cmd->sam_task_attr = TCM_HEAD_TAG; break; case SRP_CMD_ACA: cmd->sam_task_attr = TCM_ACA_TAG; break; } rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir, &sg, &sg_cnt, &data_len, ch->imm_data_offset); if (rc) { if (rc != -EAGAIN) { pr_err("0x%llx: parsing SRP descriptor table failed.\n", srp_cmd->tag); } goto busy; } rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0], scsilun_to_int(&srp_cmd->lun), data_len, TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); if (rc != 0) { pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, srp_cmd->tag); goto busy; } if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0, GFP_KERNEL)) return; target_submit(cmd); return; busy: target_send_busy(cmd); } static int srp_tmr_to_tcm(int fn) { switch (fn) { case SRP_TSK_ABORT_TASK: return TMR_ABORT_TASK; case SRP_TSK_ABORT_TASK_SET: return TMR_ABORT_TASK_SET; case SRP_TSK_CLEAR_TASK_SET: return TMR_CLEAR_TASK_SET; case SRP_TSK_LUN_RESET: return TMR_LUN_RESET; case SRP_TSK_CLEAR_ACA: return TMR_CLEAR_ACA; default: return -1; } } /** * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit * @ch: SRPT RDMA channel. * @recv_ioctx: Receive I/O context. * @send_ioctx: Send I/O context. * * Returns 0 if and only if the request will be processed by the target core. * * For more information about SRP_TSK_MGMT information units, see also section * 6.7 in the SRP r16a document. */ static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *send_ioctx) { struct srp_tsk_mgmt *srp_tsk; struct se_cmd *cmd; struct se_session *sess = ch->sess; int tcm_tmr; int rc; BUG_ON(!send_ioctx); srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; cmd = &send_ioctx->cmd; pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n", srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch, ch->sess); srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); send_ioctx->cmd.tag = srp_tsk->tag; tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag, TARGET_SCF_ACK_KREF); if (rc != 0) { send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; cmd->se_tfo->queue_tm_rsp(cmd); } return; } /** * srpt_handle_new_iu - process a newly received information unit * @ch: RDMA channel through which the information unit has been received. * @recv_ioctx: Receive I/O context associated with the information unit. */ static bool srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx) { struct srpt_send_ioctx *send_ioctx = NULL; struct srp_cmd *srp_cmd; bool res = false; u8 opcode; BUG_ON(!ch); BUG_ON(!recv_ioctx); if (unlikely(ch->state == CH_CONNECTING)) goto push; ib_dma_sync_single_for_cpu(ch->sport->sdev->device, recv_ioctx->ioctx.dma, recv_ioctx->ioctx.offset + srp_max_req_size, DMA_FROM_DEVICE); srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset; opcode = srp_cmd->opcode; if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) { send_ioctx = srpt_get_send_ioctx(ch); if (unlikely(!send_ioctx)) goto push; } if (!list_empty(&recv_ioctx->wait_list)) { WARN_ON_ONCE(!ch->processing_wait_list); list_del_init(&recv_ioctx->wait_list); } switch (opcode) { case SRP_CMD: srpt_handle_cmd(ch, recv_ioctx, send_ioctx); break; case SRP_TSK_MGMT: srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); break; case SRP_I_LOGOUT: pr_err("Not yet implemented: SRP_I_LOGOUT\n"); break; case SRP_CRED_RSP: pr_debug("received SRP_CRED_RSP\n"); break; case SRP_AER_RSP: pr_debug("received SRP_AER_RSP\n"); break; case SRP_RSP: pr_err("Received SRP_RSP\n"); break; default: pr_err("received IU with unknown opcode 0x%x\n", opcode); break; } if (!send_ioctx || !send_ioctx->recv_ioctx) srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); res = true; out: return res; push: if (list_empty(&recv_ioctx->wait_list)) { WARN_ON_ONCE(ch->processing_wait_list); list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); } goto out; } static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) { struct srpt_rdma_ch *ch = wc->qp->qp_context; struct srpt_recv_ioctx *ioctx = container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); if (wc->status == IB_WC_SUCCESS) { int req_lim; req_lim = atomic_dec_return(&ch->req_lim); if (unlikely(req_lim < 0)) pr_err("req_lim = %d < 0\n", req_lim); ioctx->byte_len = wc->byte_len; srpt_handle_new_iu(ch, ioctx); } else { pr_info_ratelimited("receiving failed for ioctx %p with status %d\n", ioctx, wc->status); } } /* * This function must be called from the context in which RDMA completions are * processed because it accesses the wait list without protection against * access from other threads. */ static void srpt_process_wait_list(struct srpt_rdma_ch *ch) { struct srpt_recv_ioctx *recv_ioctx, *tmp; WARN_ON_ONCE(ch->state == CH_CONNECTING); if (list_empty(&ch->cmd_wait_list)) return; WARN_ON_ONCE(ch->processing_wait_list); ch->processing_wait_list = true; list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list, wait_list) { if (!srpt_handle_new_iu(ch, recv_ioctx)) break; } ch->processing_wait_list = false; } /** * srpt_send_done - send completion callback * @cq: Completion queue. * @wc: Work completion. * * Note: Although this has not yet been observed during tests, at least in * theory it is possible that the srpt_get_send_ioctx() call invoked by * srpt_handle_new_iu() fails. This is possible because the req_lim_delta * value in each response is set to one, and it is possible that this response * makes the initiator send a new request before the send completion for that * response has been processed. This could e.g. happen if the call to * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or * if IB retransmission causes generation of the send completion to be * delayed. Incoming information units for which srpt_get_send_ioctx() fails * are queued on cmd_wait_list. The code below processes these delayed * requests one at a time. */ static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) { struct srpt_rdma_ch *ch = wc->qp->qp_context; struct srpt_send_ioctx *ioctx = container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); enum srpt_command_state state; state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && state != SRPT_STATE_MGMT_RSP_SENT); atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); if (wc->status != IB_WC_SUCCESS) pr_info("sending response for ioctx 0x%p failed with status %d\n", ioctx, wc->status); if (state != SRPT_STATE_DONE) { transport_generic_free_cmd(&ioctx->cmd, 0); } else { pr_err("IB completion has been received too late for wr_id = %u.\n", ioctx->ioctx.index); } srpt_process_wait_list(ch); } /** * srpt_create_ch_ib - create receive and send completion queues * @ch: SRPT RDMA channel. */ static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) { struct ib_qp_init_attr *qp_init; struct srpt_port *sport = ch->sport; struct srpt_device *sdev = sport->sdev; const struct ib_device_attr *attrs = &sdev->device->attrs; int sq_size = sport->port_attrib.srp_sq_size; int i, ret; WARN_ON(ch->rq_size < 1); ret = -ENOMEM; qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); if (!qp_init) goto out; retry: ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1, IB_POLL_WORKQUEUE); if (IS_ERR(ch->cq)) { ret = PTR_ERR(ch->cq); pr_err("failed to create CQ cqe= %d ret= %d\n", ch->rq_size + sq_size, ret); goto out; } ch->cq_size = ch->rq_size + sq_size; qp_init->qp_context = (void *)ch; qp_init->event_handler = (void(*)(struct ib_event *, void*))srpt_qp_event; qp_init->send_cq = ch->cq; qp_init->recv_cq = ch->cq; qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; qp_init->qp_type = IB_QPT_RC; /* * We divide up our send queue size into half SEND WRs to send the * completions, and half R/W contexts to actually do the RDMA * READ/WRITE transfers. Note that we need to allocate CQ slots for * both both, as RDMA contexts will also post completions for the * RDMA READ case. */ qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr); qp_init->cap.max_rdma_ctxs = sq_size / 2; qp_init->cap.max_send_sge = attrs->max_send_sge; qp_init->cap.max_recv_sge = 1; qp_init->port_num = ch->sport->port; if (sdev->use_srq) qp_init->srq = sdev->srq; else qp_init->cap.max_recv_wr = ch->rq_size; if (ch->using_rdma_cm) { ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init); ch->qp = ch->rdma_cm.cm_id->qp; } else { ch->qp = ib_create_qp(sdev->pd, qp_init); if (!IS_ERR(ch->qp)) { ret = srpt_init_ch_qp(ch, ch->qp); if (ret) ib_destroy_qp(ch->qp); } else { ret = PTR_ERR(ch->qp); } } if (ret) { bool retry = sq_size > MIN_SRPT_SQ_SIZE; if (retry) { pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n", sq_size, ret); ib_cq_pool_put(ch->cq, ch->cq_size); sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE); goto retry; } else { pr_err("failed to create queue pair with sq_size = %d (%d)\n", sq_size, ret); goto err_destroy_cq; } } atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n", __func__, ch->cq->cqe, qp_init->cap.max_send_sge, qp_init->cap.max_send_wr, ch); if (!sdev->use_srq) for (i = 0; i < ch->rq_size; i++) srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]); out: kfree(qp_init); return ret; err_destroy_cq: ch->qp = NULL; ib_cq_pool_put(ch->cq, ch->cq_size); goto out; } static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) { ib_destroy_qp(ch->qp); ib_cq_pool_put(ch->cq, ch->cq_size); } /** * srpt_close_ch - close a RDMA channel * @ch: SRPT RDMA channel. * * Make sure all resources associated with the channel will be deallocated at * an appropriate time. * * Returns true if and only if the channel state has been modified into * CH_DRAINING. */ static bool srpt_close_ch(struct srpt_rdma_ch *ch) { int ret; if (!srpt_set_ch_state(ch, CH_DRAINING)) { pr_debug("%s: already closed\n", ch->sess_name); return false; } kref_get(&ch->kref); ret = srpt_ch_qp_err(ch); if (ret < 0) pr_err("%s-%d: changing queue pair into error state failed: %d\n", ch->sess_name, ch->qp->qp_num, ret); ret = srpt_zerolength_write(ch); if (ret < 0) { pr_err("%s-%d: queuing zero-length write failed: %d\n", ch->sess_name, ch->qp->qp_num, ret); if (srpt_set_ch_state(ch, CH_DISCONNECTED)) schedule_work(&ch->release_work); else WARN_ON_ONCE(true); } kref_put(&ch->kref, srpt_free_ch); return true; } /* * Change the channel state into CH_DISCONNECTING. If a channel has not yet * reached the connected state, close it. If a channel is in the connected * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is * the responsibility of the caller to ensure that this function is not * invoked concurrently with the code that accepts a connection. This means * that this function must either be invoked from inside a CM callback * function or that it must be invoked with the srpt_port.mutex held. */ static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) { int ret; if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) return -ENOTCONN; if (ch->using_rdma_cm) { ret = rdma_disconnect(ch->rdma_cm.cm_id); } else { ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0); if (ret < 0) ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0); } if (ret < 0 && srpt_close_ch(ch)) ret = 0; return ret; } /* Send DREQ and wait for DREP. */ static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch) { DECLARE_COMPLETION_ONSTACK(closed); struct srpt_port *sport = ch->sport; pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, ch->state); ch->closed = &closed; mutex_lock(&sport->mutex); srpt_disconnect_ch(ch); mutex_unlock(&sport->mutex); while (wait_for_completion_timeout(&closed, 5 * HZ) == 0) pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, ch->sess_name, ch->qp->qp_num, ch->state); } static void __srpt_close_all_ch(struct srpt_port *sport) { struct srpt_nexus *nexus; struct srpt_rdma_ch *ch; lockdep_assert_held(&sport->mutex); list_for_each_entry(nexus, &sport->nexus_list, entry) { list_for_each_entry(ch, &nexus->ch_list, list) { if (srpt_disconnect_ch(ch) >= 0) pr_info("Closing channel %s-%d because target %s_%d has been disabled\n", ch->sess_name, ch->qp->qp_num, dev_name(&sport->sdev->device->dev), sport->port); srpt_close_ch(ch); } } } /* * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if * it does not yet exist. */ static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport, const u8 i_port_id[16], const u8 t_port_id[16]) { struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n; for (;;) { mutex_lock(&sport->mutex); list_for_each_entry(n, &sport->nexus_list, entry) { if (memcmp(n->i_port_id, i_port_id, 16) == 0 && memcmp(n->t_port_id, t_port_id, 16) == 0) { nexus = n; break; } } if (!nexus && tmp_nexus) { list_add_tail_rcu(&tmp_nexus->entry, &sport->nexus_list); swap(nexus, tmp_nexus); } mutex_unlock(&sport->mutex); if (nexus) break; tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL); if (!tmp_nexus) { nexus = ERR_PTR(-ENOMEM); break; } INIT_LIST_HEAD(&tmp_nexus->ch_list); memcpy(tmp_nexus->i_port_id, i_port_id, 16); memcpy(tmp_nexus->t_port_id, t_port_id, 16); } kfree(tmp_nexus); return nexus; } static void srpt_set_enabled(struct srpt_port *sport, bool enabled) __must_hold(&sport->mutex) { lockdep_assert_held(&sport->mutex); if (sport->enabled == enabled) return; sport->enabled = enabled; if (!enabled) __srpt_close_all_ch(sport); } static void srpt_drop_sport_ref(struct srpt_port *sport) { if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels) complete(sport->freed_channels); } static void srpt_free_ch(struct kref *kref) { struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); srpt_drop_sport_ref(ch->sport); kfree_rcu(ch, rcu); } /* * Shut down the SCSI target session, tell the connection manager to * disconnect the associated RDMA channel, transition the QP to the error * state and remove the channel from the channel list. This function is * typically called from inside srpt_zerolength_write_done(). Concurrent * srpt_zerolength_write() calls from inside srpt_close_ch() are possible * as long as the channel is on sport->nexus_list. */ static void srpt_release_channel_work(struct work_struct *w) { struct srpt_rdma_ch *ch; struct srpt_device *sdev; struct srpt_port *sport; struct se_session *se_sess; ch = container_of(w, struct srpt_rdma_ch, release_work); pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num); sdev = ch->sport->sdev; BUG_ON(!sdev); se_sess = ch->sess; BUG_ON(!se_sess); target_stop_session(se_sess); target_wait_for_sess_cmds(se_sess); target_remove_session(se_sess); ch->sess = NULL; if (ch->using_rdma_cm) rdma_destroy_id(ch->rdma_cm.cm_id); else ib_destroy_cm_id(ch->ib_cm.cm_id); sport = ch->sport; mutex_lock(&sport->mutex); list_del_rcu(&ch->list); mutex_unlock(&sport->mutex); if (ch->closed) complete(ch->closed); srpt_destroy_ch_ib(ch); srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, ch->sport->sdev, ch->rq_size, ch->rsp_buf_cache, DMA_TO_DEVICE); kmem_cache_destroy(ch->rsp_buf_cache); srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, sdev, ch->rq_size, ch->req_buf_cache, DMA_FROM_DEVICE); kmem_cache_destroy(ch->req_buf_cache); kref_put(&ch->kref, srpt_free_ch); } /** * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED * @sdev: HCA through which the login request was received. * @ib_cm_id: IB/CM connection identifier in case of IB/CM. * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM. * @port_num: Port through which the REQ message was received. * @pkey: P_Key of the incoming connection. * @req: SRP login request. * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted * the login request. * * Ownership of the cm_id is transferred to the target session if this * function returns zero. Otherwise the caller remains the owner of cm_id. */ static int srpt_cm_req_recv(struct srpt_device *const sdev, struct ib_cm_id *ib_cm_id, struct rdma_cm_id *rdma_cm_id, u8 port_num, __be16 pkey, const struct srp_login_req *req, const char *src_addr) { struct srpt_port *sport = &sdev->port[port_num - 1]; struct srpt_nexus *nexus; struct srp_login_rsp *rsp = NULL; struct srp_login_rej *rej = NULL; union { struct rdma_conn_param rdma_cm; struct ib_cm_rep_param ib_cm; } *rep_param = NULL; struct srpt_rdma_ch *ch = NULL; char i_port_id[36]; u32 it_iu_len; int i, tag_num, tag_size, ret; struct srpt_tpg *stpg; WARN_ON_ONCE(irqs_disabled()); it_iu_len = be32_to_cpu(req->req_it_iu_len); pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n", req->initiator_port_id, req->target_port_id, it_iu_len, port_num, &sport->gid, be16_to_cpu(pkey)); nexus = srpt_get_nexus(sport, req->initiator_port_id, req->target_port_id); if (IS_ERR(nexus)) { ret = PTR_ERR(nexus); goto out; } ret = -ENOMEM; rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); rej = kzalloc(sizeof(*rej), GFP_KERNEL); rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); if (!rsp || !rej || !rep_param) goto out; ret = -EINVAL; if (it_iu_len > srp_max_req_size || it_iu_len < 64) { rej->reason = cpu_to_be32( SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n", it_iu_len, 64, srp_max_req_size); goto reject; } if (!sport->enabled) { rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n", dev_name(&sport->sdev->device->dev), port_num); goto reject; } if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) || *(__be64 *)(req->target_port_id + 8) != cpu_to_be64(srpt_service_guid)) { rej->reason = cpu_to_be32( SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n"); goto reject; } ret = -ENOMEM; ch = kzalloc(sizeof(*ch), GFP_KERNEL); if (!ch) { rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); pr_err("rejected SRP_LOGIN_REQ because out of memory.\n"); goto reject; } kref_init(&ch->kref); ch->pkey = be16_to_cpu(pkey); ch->nexus = nexus; ch->zw_cqe.done = srpt_zerolength_write_done; INIT_WORK(&ch->release_work, srpt_release_channel_work); ch->sport = sport; if (rdma_cm_id) { ch->using_rdma_cm = true; ch->rdma_cm.cm_id = rdma_cm_id; rdma_cm_id->context = ch; } else { ch->ib_cm.cm_id = ib_cm_id; ib_cm_id->context = ch; } /* * ch->rq_size should be at least as large as the initiator queue * depth to avoid that the initiator driver has to report QUEUE_FULL * to the SCSI mid-layer. */ ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); spin_lock_init(&ch->spinlock); ch->state = CH_CONNECTING; INIT_LIST_HEAD(&ch->cmd_wait_list); ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size; ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size, 512, 0, NULL); if (!ch->rsp_buf_cache) goto free_ch; ch->ioctx_ring = (struct srpt_send_ioctx **) srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, sizeof(*ch->ioctx_ring[0]), ch->rsp_buf_cache, 0, DMA_TO_DEVICE); if (!ch->ioctx_ring) { pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n"); rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); goto free_rsp_cache; } for (i = 0; i < ch->rq_size; i++) ch->ioctx_ring[i]->ch = ch; if (!sdev->use_srq) { u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ? be16_to_cpu(req->imm_data_offset) : 0; u16 alignment_offset; u32 req_sz; if (req->req_flags & SRP_IMMED_REQUESTED) pr_debug("imm_data_offset = %d\n", be16_to_cpu(req->imm_data_offset)); if (imm_data_offset >= sizeof(struct srp_cmd)) { ch->imm_data_offset = imm_data_offset; rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP; } else { ch->imm_data_offset = 0; } alignment_offset = round_up(imm_data_offset, 512) - imm_data_offset; req_sz = alignment_offset + imm_data_offset + srp_max_req_size; ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz, 512, 0, NULL); if (!ch->req_buf_cache) goto free_rsp_ring; ch->ioctx_recv_ring = (struct srpt_recv_ioctx **) srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, sizeof(*ch->ioctx_recv_ring[0]), ch->req_buf_cache, alignment_offset, DMA_FROM_DEVICE); if (!ch->ioctx_recv_ring) { pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n"); rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); goto free_recv_cache; } for (i = 0; i < ch->rq_size; i++) INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list); } ret = srpt_create_ch_ib(ch); if (ret) { rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n"); goto free_recv_ring; } strscpy(ch->sess_name, src_addr, sizeof(ch->sess_name)); snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx", be64_to_cpu(*(__be64 *)nexus->i_port_id), be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8))); pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name, i_port_id); tag_num = ch->rq_size; tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */ if (sport->guid_id) { mutex_lock(&sport->guid_id->mutex); list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) { if (!IS_ERR_OR_NULL(ch->sess)) break; ch->sess = target_setup_session(&stpg->tpg, tag_num, tag_size, TARGET_PROT_NORMAL, ch->sess_name, ch, NULL); } mutex_unlock(&sport->guid_id->mutex); } if (sport->gid_id) { mutex_lock(&sport->gid_id->mutex); list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) { if (!IS_ERR_OR_NULL(ch->sess)) break; ch->sess = target_setup_session(&stpg->tpg, tag_num, tag_size, TARGET_PROT_NORMAL, i_port_id, ch, NULL); if (!IS_ERR_OR_NULL(ch->sess)) break; /* Retry without leading "0x" */ ch->sess = target_setup_session(&stpg->tpg, tag_num, tag_size, TARGET_PROT_NORMAL, i_port_id + 2, ch, NULL); } mutex_unlock(&sport->gid_id->mutex); } if (IS_ERR_OR_NULL(ch->sess)) { WARN_ON_ONCE(ch->sess == NULL); ret = PTR_ERR(ch->sess); ch->sess = NULL; pr_info("Rejected login for initiator %s: ret = %d.\n", ch->sess_name, ret); rej->reason = cpu_to_be32(ret == -ENOMEM ? SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); goto destroy_ib; } /* * Once a session has been created destruction of srpt_rdma_ch objects * will decrement sport->refcount. Hence increment sport->refcount now. */ atomic_inc(&sport->refcount); mutex_lock(&sport->mutex); if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { struct srpt_rdma_ch *ch2; list_for_each_entry(ch2, &nexus->ch_list, list) { if (srpt_disconnect_ch(ch2) < 0) continue; pr_info("Relogin - closed existing channel %s\n", ch2->sess_name); rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED; } } else { rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; } list_add_tail_rcu(&ch->list, &nexus->ch_list); if (!sport->enabled) { rej->reason = cpu_to_be32( SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n", dev_name(&sdev->device->dev), port_num); mutex_unlock(&sport->mutex); ret = -EINVAL; goto reject; } mutex_unlock(&sport->mutex); ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp); if (ret) { rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n", ret); goto reject; } pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess, ch->sess_name, ch); /* create srp_login_response */ rsp->opcode = SRP_LOGIN_RSP; rsp->tag = req->tag; rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size); rsp->max_ti_iu_len = req->req_it_iu_len; ch->max_ti_iu_len = it_iu_len; rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | SRP_BUF_FORMAT_INDIRECT); rsp->req_lim_delta = cpu_to_be32(ch->rq_size); atomic_set(&ch->req_lim, ch->rq_size); atomic_set(&ch->req_lim_delta, 0); /* create cm reply */ if (ch->using_rdma_cm) { rep_param->rdma_cm.private_data = (void *)rsp; rep_param->rdma_cm.private_data_len = sizeof(*rsp); rep_param->rdma_cm.rnr_retry_count = 7; rep_param->rdma_cm.flow_control = 1; rep_param->rdma_cm.responder_resources = 4; rep_param->rdma_cm.initiator_depth = 4; } else { rep_param->ib_cm.qp_num = ch->qp->qp_num; rep_param->ib_cm.private_data = (void *)rsp; rep_param->ib_cm.private_data_len = sizeof(*rsp); rep_param->ib_cm.rnr_retry_count = 7; rep_param->ib_cm.flow_control = 1; rep_param->ib_cm.failover_accepted = 0; rep_param->ib_cm.srq = 1; rep_param->ib_cm.responder_resources = 4; rep_param->ib_cm.initiator_depth = 4; } /* * Hold the sport mutex while accepting a connection to avoid that * srpt_disconnect_ch() is invoked concurrently with this code. */ mutex_lock(&sport->mutex); if (sport->enabled && ch->state == CH_CONNECTING) { if (ch->using_rdma_cm) ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm); else ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm); } else { ret = -EINVAL; } mutex_unlock(&sport->mutex); switch (ret) { case 0: break; case -EINVAL: goto reject; default: rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n", ret); goto reject; } goto out; destroy_ib: srpt_destroy_ch_ib(ch); free_recv_ring: srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, ch->sport->sdev, ch->rq_size, ch->req_buf_cache, DMA_FROM_DEVICE); free_recv_cache: kmem_cache_destroy(ch->req_buf_cache); free_rsp_ring: srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, ch->sport->sdev, ch->rq_size, ch->rsp_buf_cache, DMA_TO_DEVICE); free_rsp_cache: kmem_cache_destroy(ch->rsp_buf_cache); free_ch: if (rdma_cm_id) rdma_cm_id->context = NULL; else ib_cm_id->context = NULL; kfree(ch); ch = NULL; WARN_ON_ONCE(ret == 0); reject: pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason)); rej->opcode = SRP_LOGIN_REJ; rej->tag = req->tag; rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | SRP_BUF_FORMAT_INDIRECT); if (rdma_cm_id) rdma_reject(rdma_cm_id, rej, sizeof(*rej), IB_CM_REJ_CONSUMER_DEFINED); else ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, rej, sizeof(*rej)); if (ch && ch->sess) { srpt_close_ch(ch); /* * Tell the caller not to free cm_id since * srpt_release_channel_work() will do that. */ ret = 0; } out: kfree(rep_param); kfree(rsp); kfree(rej); return ret; } static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id, const struct ib_cm_req_event_param *param, void *private_data) { char sguid[40]; srpt_format_guid(sguid, sizeof(sguid), ¶m->primary_path->dgid.global.interface_id); return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port, param->primary_path->pkey, private_data, sguid); } static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct srpt_device *sdev; struct srp_login_req req; const struct srp_login_req_rdma *req_rdma; struct sa_path_rec *path_rec = cm_id->route.path_rec; char src_addr[40]; sdev = ib_get_client_data(cm_id->device, &srpt_client); if (!sdev) return -ECONNREFUSED; if (event->param.conn.private_data_len < sizeof(*req_rdma)) return -EINVAL; /* Transform srp_login_req_rdma into srp_login_req. */ req_rdma = event->param.conn.private_data; memset(&req, 0, sizeof(req)); req.opcode = req_rdma->opcode; req.tag = req_rdma->tag; req.req_it_iu_len = req_rdma->req_it_iu_len; req.req_buf_fmt = req_rdma->req_buf_fmt; req.req_flags = req_rdma->req_flags; memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16); memcpy(req.target_port_id, req_rdma->target_port_id, 16); req.imm_data_offset = req_rdma->imm_data_offset; snprintf(src_addr, sizeof(src_addr), "%pIS", &cm_id->route.addr.src_addr); return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num, path_rec ? path_rec->pkey : 0, &req, src_addr); } static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, enum ib_cm_rej_reason reason, const u8 *private_data, u8 private_data_len) { char *priv = NULL; int i; if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, GFP_KERNEL))) { for (i = 0; i < private_data_len; i++) sprintf(priv + 3 * i, " %02x", private_data[i]); } pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", ch->sess_name, ch->qp->qp_num, reason, private_data_len ? "; private data" : "", priv ? priv : " (?)"); kfree(priv); } /** * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event * @ch: SRPT RDMA channel. * * An RTU (ready to use) message indicates that the connection has been * established and that the recipient may begin transmitting. */ static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) { int ret; ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp); if (ret < 0) { pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name, ch->qp->qp_num); srpt_close_ch(ch); return; } /* * Note: calling srpt_close_ch() if the transition to the LIVE state * fails is not necessary since that means that that function has * already been invoked from another thread. */ if (!srpt_set_ch_state(ch, CH_LIVE)) { pr_err("%s-%d: channel transition to LIVE state failed\n", ch->sess_name, ch->qp->qp_num); return; } /* Trigger wait list processing. */ ret = srpt_zerolength_write(ch); WARN_ONCE(ret < 0, "%d\n", ret); } /** * srpt_cm_handler - IB connection manager callback function * @cm_id: IB/CM connection identifier. * @event: IB/CM event. * * A non-zero return value will cause the caller destroy the CM ID. * * Note: srpt_cm_handler() must only return a non-zero value when transferring * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning * a non-zero value in any other case will trigger a race with the * ib_destroy_cm_id() call in srpt_release_channel(). */ static int srpt_cm_handler(struct ib_cm_id *cm_id, const struct ib_cm_event *event) { struct srpt_rdma_ch *ch = cm_id->context; int ret; ret = 0; switch (event->event) { case IB_CM_REQ_RECEIVED: ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd, event->private_data); break; case IB_CM_REJ_RECEIVED: srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, event->private_data, IB_CM_REJ_PRIVATE_DATA_SIZE); break; case IB_CM_RTU_RECEIVED: case IB_CM_USER_ESTABLISHED: srpt_cm_rtu_recv(ch); break; case IB_CM_DREQ_RECEIVED: srpt_disconnect_ch(ch); break; case IB_CM_DREP_RECEIVED: pr_info("Received CM DREP message for ch %s-%d.\n", ch->sess_name, ch->qp->qp_num); srpt_close_ch(ch); break; case IB_CM_TIMEWAIT_EXIT: pr_info("Received CM TimeWait exit for ch %s-%d.\n", ch->sess_name, ch->qp->qp_num); srpt_close_ch(ch); break; case IB_CM_REP_ERROR: pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, ch->qp->qp_num); break; case IB_CM_DREQ_ERROR: pr_info("Received CM DREQ ERROR event.\n"); break; case IB_CM_MRA_RECEIVED: pr_info("Received CM MRA event\n"); break; default: pr_err("received unrecognized CM event %d\n", event->event); break; } return ret; } static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct srpt_rdma_ch *ch = cm_id->context; int ret = 0; switch (event->event) { case RDMA_CM_EVENT_CONNECT_REQUEST: ret = srpt_rdma_cm_req_recv(cm_id, event); break; case RDMA_CM_EVENT_REJECTED: srpt_cm_rej_recv(ch, event->status, event->param.conn.private_data, event->param.conn.private_data_len); break; case RDMA_CM_EVENT_ESTABLISHED: srpt_cm_rtu_recv(ch); break; case RDMA_CM_EVENT_DISCONNECTED: if (ch->state < CH_DISCONNECTING) srpt_disconnect_ch(ch); else srpt_close_ch(ch); break; case RDMA_CM_EVENT_TIMEWAIT_EXIT: srpt_close_ch(ch); break; case RDMA_CM_EVENT_UNREACHABLE: pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, ch->qp->qp_num); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: case RDMA_CM_EVENT_ADDR_CHANGE: break; default: pr_err("received unrecognized RDMA CM event %d\n", event->event); break; } return ret; } /* * srpt_write_pending - Start data transfer from initiator to target (write). */ static int srpt_write_pending(struct se_cmd *se_cmd) { struct srpt_send_ioctx *ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); struct srpt_rdma_ch *ch = ioctx->ch; struct ib_send_wr *first_wr = NULL; struct ib_cqe *cqe = &ioctx->rdma_cqe; enum srpt_command_state new_state; int ret, i; if (ioctx->recv_ioctx) { srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); target_execute_cmd(&ioctx->cmd); return 0; } new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); WARN_ON(new_state == SRPT_STATE_DONE); if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { pr_warn("%s: IB send queue full (needed %d)\n", __func__, ioctx->n_rdma); ret = -ENOMEM; goto out_undo; } cqe->done = srpt_rdma_read_done; for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, cqe, first_wr); cqe = NULL; } ret = ib_post_send(ch->qp, first_wr, NULL); if (ret) { pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", __func__, ret, ioctx->n_rdma, atomic_read(&ch->sq_wr_avail)); goto out_undo; } return 0; out_undo: atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); return ret; } static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) { switch (tcm_mgmt_status) { case TMR_FUNCTION_COMPLETE: return SRP_TSK_MGMT_SUCCESS; case TMR_FUNCTION_REJECTED: return SRP_TSK_MGMT_FUNC_NOT_SUPP; } return SRP_TSK_MGMT_FAILED; } /** * srpt_queue_response - transmit the response to a SCSI command * @cmd: SCSI target command. * * Callback function called by the TCM core. Must not block since it can be * invoked on the context of the IB completion handler. */ static void srpt_queue_response(struct se_cmd *cmd) { struct srpt_send_ioctx *ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); struct srpt_rdma_ch *ch = ioctx->ch; struct srpt_device *sdev = ch->sport->sdev; struct ib_send_wr send_wr, *first_wr = &send_wr; struct ib_sge sge; enum srpt_command_state state; int resp_len, ret, i; u8 srp_tm_status; state = ioctx->state; switch (state) { case SRPT_STATE_NEW: case SRPT_STATE_DATA_IN: ioctx->state = SRPT_STATE_CMD_RSP_SENT; break; case SRPT_STATE_MGMT: ioctx->state = SRPT_STATE_MGMT_RSP_SENT; break; default: WARN(true, "ch %p; cmd %d: unexpected command state %d\n", ch, ioctx->ioctx.index, ioctx->state); break; } if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT)) return; /* For read commands, transfer the data to the initiator. */ if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && ioctx->cmd.data_length && !ioctx->queue_status_only) { for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, NULL, first_wr); } } if (state != SRPT_STATE_MGMT) resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, cmd->scsi_status); else { srp_tm_status = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, ioctx->cmd.tag); } atomic_inc(&ch->req_lim); if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, &ch->sq_wr_avail) < 0)) { pr_warn("%s: IB send queue full (needed %d)\n", __func__, ioctx->n_rdma); goto out; } ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, DMA_TO_DEVICE); sge.addr = ioctx->ioctx.dma; sge.length = resp_len; sge.lkey = sdev->lkey; ioctx->ioctx.cqe.done = srpt_send_done; send_wr.next = NULL; send_wr.wr_cqe = &ioctx->ioctx.cqe; send_wr.sg_list = &sge; send_wr.num_sge = 1; send_wr.opcode = IB_WR_SEND; send_wr.send_flags = IB_SEND_SIGNALED; ret = ib_post_send(ch->qp, first_wr, NULL); if (ret < 0) { pr_err("%s: sending cmd response failed for tag %llu (%d)\n", __func__, ioctx->cmd.tag, ret); goto out; } return; out: atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); atomic_dec(&ch->req_lim); srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); target_put_sess_cmd(&ioctx->cmd); } static int srpt_queue_data_in(struct se_cmd *cmd) { srpt_queue_response(cmd); return 0; } static void srpt_queue_tm_rsp(struct se_cmd *cmd) { srpt_queue_response(cmd); } /* * This function is called for aborted commands if no response is sent to the * initiator. Make sure that the credits freed by aborting a command are * returned to the initiator the next time a response is sent by incrementing * ch->req_lim_delta. */ static void srpt_aborted_task(struct se_cmd *cmd) { struct srpt_send_ioctx *ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); struct srpt_rdma_ch *ch = ioctx->ch; atomic_inc(&ch->req_lim_delta); } static int srpt_queue_status(struct se_cmd *cmd) { struct srpt_send_ioctx *ioctx; ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); BUG_ON(ioctx->sense_data != cmd->sense_buffer); if (cmd->se_cmd_flags & (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); ioctx->queue_status_only = true; srpt_queue_response(cmd); return 0; } static void srpt_refresh_port_work(struct work_struct *work) { struct srpt_port *sport = container_of(work, struct srpt_port, work); srpt_refresh_port(sport); } /** * srpt_release_sport - disable login and wait for associated channels * @sport: SRPT HCA port. */ static int srpt_release_sport(struct srpt_port *sport) { DECLARE_COMPLETION_ONSTACK(c); struct srpt_nexus *nexus, *next_n; struct srpt_rdma_ch *ch; WARN_ON_ONCE(irqs_disabled()); sport->freed_channels = &c; mutex_lock(&sport->mutex); srpt_set_enabled(sport, false); mutex_unlock(&sport->mutex); while (atomic_read(&sport->refcount) > 0 && wait_for_completion_timeout(&c, 5 * HZ) <= 0) { pr_info("%s_%d: waiting for unregistration of %d sessions ...\n", dev_name(&sport->sdev->device->dev), sport->port, atomic_read(&sport->refcount)); rcu_read_lock(); list_for_each_entry(nexus, &sport->nexus_list, entry) { list_for_each_entry(ch, &nexus->ch_list, list) { pr_info("%s-%d: state %s\n", ch->sess_name, ch->qp->qp_num, get_ch_state_name(ch->state)); } } rcu_read_unlock(); } mutex_lock(&sport->mutex); list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) { list_del(&nexus->entry); kfree_rcu(nexus, rcu); } mutex_unlock(&sport->mutex); return 0; } struct port_and_port_id { struct srpt_port *sport; struct srpt_port_id **port_id; }; static struct port_and_port_id __srpt_lookup_port(const char *name) { struct ib_device *dev; struct srpt_device *sdev; struct srpt_port *sport; int i; list_for_each_entry(sdev, &srpt_dev_list, list) { dev = sdev->device; if (!dev) continue; for (i = 0; i < dev->phys_port_cnt; i++) { sport = &sdev->port[i]; if (strcmp(sport->guid_name, name) == 0) { kref_get(&sdev->refcnt); return (struct port_and_port_id){ sport, &sport->guid_id}; } if (strcmp(sport->gid_name, name) == 0) { kref_get(&sdev->refcnt); return (struct port_and_port_id){ sport, &sport->gid_id}; } } } return (struct port_and_port_id){}; } /** * srpt_lookup_port() - Look up an RDMA port by name * @name: ASCII port name * * Increments the RDMA port reference count if an RDMA port pointer is returned. * The caller must drop that reference count by calling srpt_port_put_ref(). */ static struct port_and_port_id srpt_lookup_port(const char *name) { struct port_and_port_id papi; spin_lock(&srpt_dev_lock); papi = __srpt_lookup_port(name); spin_unlock(&srpt_dev_lock); return papi; } static void srpt_free_srq(struct srpt_device *sdev) { if (!sdev->srq) return; ib_destroy_srq(sdev->srq); srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, sdev->srq_size, sdev->req_buf_cache, DMA_FROM_DEVICE); kmem_cache_destroy(sdev->req_buf_cache); sdev->srq = NULL; } static int srpt_alloc_srq(struct srpt_device *sdev) { struct ib_srq_init_attr srq_attr = { .event_handler = srpt_srq_event, .srq_context = (void *)sdev, .attr.max_wr = sdev->srq_size, .attr.max_sge = 1, .srq_type = IB_SRQT_BASIC, }; struct ib_device *device = sdev->device; struct ib_srq *srq; int i; WARN_ON_ONCE(sdev->srq); srq = ib_create_srq(sdev->pd, &srq_attr); if (IS_ERR(srq)) { pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq)); return PTR_ERR(srq); } pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size, sdev->device->attrs.max_srq_wr, dev_name(&device->dev)); sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf", srp_max_req_size, 0, 0, NULL); if (!sdev->req_buf_cache) goto free_srq; sdev->ioctx_ring = (struct srpt_recv_ioctx **) srpt_alloc_ioctx_ring(sdev, sdev->srq_size, sizeof(*sdev->ioctx_ring[0]), sdev->req_buf_cache, 0, DMA_FROM_DEVICE); if (!sdev->ioctx_ring) goto free_cache; sdev->use_srq = true; sdev->srq = srq; for (i = 0; i < sdev->srq_size; ++i) { INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list); srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]); } return 0; free_cache: kmem_cache_destroy(sdev->req_buf_cache); free_srq: ib_destroy_srq(srq); return -ENOMEM; } static int srpt_use_srq(struct srpt_device *sdev, bool use_srq) { struct ib_device *device = sdev->device; int ret = 0; if (!use_srq) { srpt_free_srq(sdev); sdev->use_srq = false; } else if (use_srq && !sdev->srq) { ret = srpt_alloc_srq(sdev); } pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, dev_name(&device->dev), sdev->use_srq, ret); return ret; } static void srpt_free_sdev(struct kref *refcnt) { struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt); kfree(sdev); } static void srpt_sdev_put(struct srpt_device *sdev) { kref_put(&sdev->refcnt, srpt_free_sdev); } /** * srpt_add_one - InfiniBand device addition callback function * @device: Describes a HCA. */ static int srpt_add_one(struct ib_device *device) { struct srpt_device *sdev; struct srpt_port *sport; int ret; u32 i; pr_debug("device = %p\n", device); sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt), GFP_KERNEL); if (!sdev) return -ENOMEM; kref_init(&sdev->refcnt); sdev->device = device; mutex_init(&sdev->sdev_mutex); sdev->pd = ib_alloc_pd(device, 0); if (IS_ERR(sdev->pd)) { ret = PTR_ERR(sdev->pd); goto free_dev; } sdev->lkey = sdev->pd->local_dma_lkey; sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq); if (!srpt_service_guid) srpt_service_guid = be64_to_cpu(device->node_guid); if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND) sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); if (IS_ERR(sdev->cm_id)) { pr_info("ib_create_cm_id() failed: %ld\n", PTR_ERR(sdev->cm_id)); ret = PTR_ERR(sdev->cm_id); sdev->cm_id = NULL; if (!rdma_cm_id) goto err_ring; } /* print out target login information */ pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n", srpt_service_guid, srpt_service_guid, srpt_service_guid); /* * We do not have a consistent service_id (ie. also id_ext of target_id) * to identify this target. We currently use the guid of the first HCA * in the system as service_id; therefore, the target_id will change * if this HCA is gone bad and replaced by different HCA */ ret = sdev->cm_id ? ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid)) : 0; if (ret < 0) { pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret, sdev->cm_id->state); goto err_cm; } INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, srpt_event_handler); ib_register_event_handler(&sdev->event_handler); for (i = 1; i <= sdev->device->phys_port_cnt; i++) { sport = &sdev->port[i - 1]; INIT_LIST_HEAD(&sport->nexus_list); mutex_init(&sport->mutex); sport->sdev = sdev; sport->port = i; sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; sport->port_attrib.use_srq = false; INIT_WORK(&sport->work, srpt_refresh_port_work); ret = srpt_refresh_port(sport); if (ret) { pr_err("MAD registration failed for %s-%d.\n", dev_name(&sdev->device->dev), i); i--; goto err_port; } } spin_lock(&srpt_dev_lock); list_add_tail(&sdev->list, &srpt_dev_list); spin_unlock(&srpt_dev_lock); ib_set_client_data(device, &srpt_client, sdev); pr_debug("added %s.\n", dev_name(&device->dev)); return 0; err_port: srpt_unregister_mad_agent(sdev, i); ib_unregister_event_handler(&sdev->event_handler); err_cm: if (sdev->cm_id) ib_destroy_cm_id(sdev->cm_id); err_ring: srpt_free_srq(sdev); ib_dealloc_pd(sdev->pd); free_dev: srpt_sdev_put(sdev); pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev)); return ret; } /** * srpt_remove_one - InfiniBand device removal callback function * @device: Describes a HCA. * @client_data: The value passed as the third argument to ib_set_client_data(). */ static void srpt_remove_one(struct ib_device *device, void *client_data) { struct srpt_device *sdev = client_data; int i; srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt); ib_unregister_event_handler(&sdev->event_handler); /* Cancel any work queued by the just unregistered IB event handler. */ for (i = 0; i < sdev->device->phys_port_cnt; i++) cancel_work_sync(&sdev->port[i].work); if (sdev->cm_id) ib_destroy_cm_id(sdev->cm_id); ib_set_client_data(device, &srpt_client, NULL); /* * Unregistering a target must happen after destroying sdev->cm_id * such that no new SRP_LOGIN_REQ information units can arrive while * destroying the target. */ spin_lock(&srpt_dev_lock); list_del(&sdev->list); spin_unlock(&srpt_dev_lock); for (i = 0; i < sdev->device->phys_port_cnt; i++) srpt_release_sport(&sdev->port[i]); srpt_free_srq(sdev); ib_dealloc_pd(sdev->pd); srpt_sdev_put(sdev); } static struct ib_client srpt_client = { .name = DRV_NAME, .add = srpt_add_one, .remove = srpt_remove_one }; static int srpt_check_true(struct se_portal_group *se_tpg) { return 1; } static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) { return tpg->se_tpg_wwn->priv; } static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn) { struct srpt_port *sport = wwn->priv; if (sport->guid_id && &sport->guid_id->wwn == wwn) return sport->guid_id; if (sport->gid_id && &sport->gid_id->wwn == wwn) return sport->gid_id; WARN_ON_ONCE(true); return NULL; } static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) { struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); return stpg->sport_id->name; } static u16 srpt_get_tag(struct se_portal_group *tpg) { return 1; } static void srpt_release_cmd(struct se_cmd *se_cmd) { struct srpt_send_ioctx *ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); struct srpt_rdma_ch *ch = ioctx->ch; struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx; WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && !(ioctx->cmd.transport_state & CMD_T_ABORTED)); if (recv_ioctx) { WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list)); ioctx->recv_ioctx = NULL; srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); } if (ioctx->n_rw_ctx) { srpt_free_rw_ctxs(ch, ioctx); ioctx->n_rw_ctx = 0; } target_free_tag(se_cmd->se_sess, se_cmd); } /** * srpt_close_session - forcibly close a session * @se_sess: SCSI target session. * * Callback function invoked by the TCM core to clean up sessions associated * with a node ACL when the user invokes * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id */ static void srpt_close_session(struct se_session *se_sess) { struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; srpt_disconnect_ch_sync(ch); } /* Note: only used from inside debug printk's by the TCM core. */ static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) { struct srpt_send_ioctx *ioctx; ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); return ioctx->state; } static int srpt_parse_guid(u64 *guid, const char *name) { u16 w[4]; int ret = -EINVAL; if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) goto out; *guid = get_unaligned_be64(w); ret = 0; out: return ret; } /** * srpt_parse_i_port_id - parse an initiator port ID * @name: ASCII representation of a 128-bit initiator port ID. * @i_port_id: Binary 128-bit port ID. */ static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) { const char *p; unsigned len, count, leading_zero_bytes; int ret; p = name; if (strncasecmp(p, "0x", 2) == 0) p += 2; ret = -EINVAL; len = strlen(p); if (len % 2) goto out; count = min(len / 2, 16U); leading_zero_bytes = 16 - count; memset(i_port_id, 0, leading_zero_bytes); ret = hex2bin(i_port_id + leading_zero_bytes, p, count); out: return ret; } /* * configfs callback function invoked for mkdir * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id * * i_port_id must be an initiator port GUID, GID or IP address. See also the * target_alloc_session() calls in this driver. Examples of valid initiator * port IDs: * 0x0000000000000000505400fffe4a0b7b * 0000000000000000505400fffe4a0b7b * 5054:00ff:fe4a:0b7b * 192.168.122.76 */ static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) { struct sockaddr_storage sa; u64 guid; u8 i_port_id[16]; int ret; ret = srpt_parse_guid(&guid, name); if (ret < 0) ret = srpt_parse_i_port_id(i_port_id, name); if (ret < 0) ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL, &sa); if (ret < 0) pr_err("invalid initiator port ID %s\n", name); return ret; } static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, char *page) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size); } static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, const char *page, size_t count) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); unsigned long val; int ret; ret = kstrtoul(page, 0, &val); if (ret < 0) { pr_err("kstrtoul() failed with ret: %d\n", ret); return -EINVAL; } if (val > MAX_SRPT_RDMA_SIZE) { pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, MAX_SRPT_RDMA_SIZE); return -EINVAL; } if (val < DEFAULT_MAX_RDMA_SIZE) { pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", val, DEFAULT_MAX_RDMA_SIZE); return -EINVAL; } sport->port_attrib.srp_max_rdma_size = val; return count; } static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, char *page) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size); } static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, const char *page, size_t count) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); unsigned long val; int ret; ret = kstrtoul(page, 0, &val); if (ret < 0) { pr_err("kstrtoul() failed with ret: %d\n", ret); return -EINVAL; } if (val > MAX_SRPT_RSP_SIZE) { pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, MAX_SRPT_RSP_SIZE); return -EINVAL; } if (val < MIN_MAX_RSP_SIZE) { pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, MIN_MAX_RSP_SIZE); return -EINVAL; } sport->port_attrib.srp_max_rsp_size = val; return count; } static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, char *page) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size); } static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, const char *page, size_t count) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); unsigned long val; int ret; ret = kstrtoul(page, 0, &val); if (ret < 0) { pr_err("kstrtoul() failed with ret: %d\n", ret); return -EINVAL; } if (val > MAX_SRPT_SRQ_SIZE) { pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, MAX_SRPT_SRQ_SIZE); return -EINVAL; } if (val < MIN_SRPT_SRQ_SIZE) { pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, MIN_SRPT_SRQ_SIZE); return -EINVAL; } sport->port_attrib.srp_sq_size = val; return count; } static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item, char *page) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq); } static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item, const char *page, size_t count) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); struct srpt_device *sdev = sport->sdev; unsigned long val; bool enabled; int ret; ret = kstrtoul(page, 0, &val); if (ret < 0) return ret; if (val != !!val) return -EINVAL; ret = mutex_lock_interruptible(&sdev->sdev_mutex); if (ret < 0) return ret; ret = mutex_lock_interruptible(&sport->mutex); if (ret < 0) goto unlock_sdev; enabled = sport->enabled; /* Log out all initiator systems before changing 'use_srq'. */ srpt_set_enabled(sport, false); sport->port_attrib.use_srq = val; srpt_use_srq(sdev, sport->port_attrib.use_srq); srpt_set_enabled(sport, enabled); ret = count; mutex_unlock(&sport->mutex); unlock_sdev: mutex_unlock(&sdev->sdev_mutex); return ret; } CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq); static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { &srpt_tpg_attrib_attr_srp_max_rdma_size, &srpt_tpg_attrib_attr_srp_max_rsp_size, &srpt_tpg_attrib_attr_srp_sq_size, &srpt_tpg_attrib_attr_use_srq, NULL, }; static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr) { struct rdma_cm_id *rdma_cm_id; int ret; rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler, NULL, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(rdma_cm_id)) { pr_err("RDMA/CM ID creation failed: %ld\n", PTR_ERR(rdma_cm_id)); goto out; } ret = rdma_bind_addr(rdma_cm_id, listen_addr); if (ret) { char addr_str[64]; snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr); pr_err("Binding RDMA/CM ID to address %s failed: %d\n", addr_str, ret); rdma_destroy_id(rdma_cm_id); rdma_cm_id = ERR_PTR(ret); goto out; } ret = rdma_listen(rdma_cm_id, 128); if (ret) { pr_err("rdma_listen() failed: %d\n", ret); rdma_destroy_id(rdma_cm_id); rdma_cm_id = ERR_PTR(ret); } out: return rdma_cm_id; } static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page) { return sysfs_emit(page, "%d\n", rdma_cm_port); } static ssize_t srpt_rdma_cm_port_store(struct config_item *item, const char *page, size_t count) { struct sockaddr_in addr4 = { .sin_family = AF_INET }; struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 }; struct rdma_cm_id *new_id = NULL; u16 val; int ret; ret = kstrtou16(page, 0, &val); if (ret < 0) return ret; ret = count; if (rdma_cm_port == val) goto out; if (val) { addr6.sin6_port = cpu_to_be16(val); new_id = srpt_create_rdma_id((struct sockaddr *)&addr6); if (IS_ERR(new_id)) { addr4.sin_port = cpu_to_be16(val); new_id = srpt_create_rdma_id((struct sockaddr *)&addr4); if (IS_ERR(new_id)) { ret = PTR_ERR(new_id); goto out; } } } mutex_lock(&rdma_cm_mutex); rdma_cm_port = val; swap(rdma_cm_id, new_id); mutex_unlock(&rdma_cm_mutex); if (new_id) rdma_destroy_id(new_id); ret = count; out: return ret; } CONFIGFS_ATTR(srpt_, rdma_cm_port); static struct configfs_attribute *srpt_da_attrs[] = { &srpt_attr_rdma_cm_port, NULL, }; static int srpt_enable_tpg(struct se_portal_group *se_tpg, bool enable) { struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); mutex_lock(&sport->mutex); srpt_set_enabled(sport, enable); mutex_unlock(&sport->mutex); return 0; } /** * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg * @wwn: Corresponds to $driver/$port. * @name: $tpg. */ static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, const char *name) { struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn); struct srpt_tpg *stpg; int res = -ENOMEM; stpg = kzalloc(sizeof(*stpg), GFP_KERNEL); if (!stpg) return ERR_PTR(res); stpg->sport_id = sport_id; res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP); if (res) { kfree(stpg); return ERR_PTR(res); } mutex_lock(&sport_id->mutex); list_add_tail(&stpg->entry, &sport_id->tpg_list); mutex_unlock(&sport_id->mutex); return &stpg->tpg; } /** * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg * @tpg: Target portal group to deregister. */ static void srpt_drop_tpg(struct se_portal_group *tpg) { struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg); struct srpt_port_id *sport_id = stpg->sport_id; struct srpt_port *sport = srpt_tpg_to_sport(tpg); mutex_lock(&sport_id->mutex); list_del(&stpg->entry); mutex_unlock(&sport_id->mutex); sport->enabled = false; core_tpg_deregister(tpg); kfree(stpg); } /** * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port * @tf: Not used. * @group: Not used. * @name: $port. */ static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, struct config_group *group, const char *name) { struct port_and_port_id papi = srpt_lookup_port(name); struct srpt_port *sport = papi.sport; struct srpt_port_id *port_id; if (!papi.port_id) return ERR_PTR(-EINVAL); if (*papi.port_id) { /* Attempt to create a directory that already exists. */ WARN_ON_ONCE(true); return &(*papi.port_id)->wwn; } port_id = kzalloc(sizeof(*port_id), GFP_KERNEL); if (!port_id) { srpt_sdev_put(sport->sdev); return ERR_PTR(-ENOMEM); } mutex_init(&port_id->mutex); INIT_LIST_HEAD(&port_id->tpg_list); port_id->wwn.priv = sport; memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name : sport->gid_name, ARRAY_SIZE(port_id->name)); *papi.port_id = port_id; return &port_id->wwn; } /** * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port * @wwn: $port. */ static void srpt_drop_tport(struct se_wwn *wwn) { struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn); struct srpt_port *sport = wwn->priv; if (sport->guid_id == port_id) sport->guid_id = NULL; else if (sport->gid_id == port_id) sport->gid_id = NULL; else WARN_ON_ONCE(true); srpt_sdev_put(sport->sdev); kfree(port_id); } static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) { return sysfs_emit(buf, "\n"); } CONFIGFS_ATTR_RO(srpt_wwn_, version); static struct configfs_attribute *srpt_wwn_attrs[] = { &srpt_wwn_attr_version, NULL, }; static const struct target_core_fabric_ops srpt_template = { .module = THIS_MODULE, .fabric_name = "srpt", .tpg_get_wwn = srpt_get_fabric_wwn, .tpg_get_tag = srpt_get_tag, .tpg_check_demo_mode_cache = srpt_check_true, .tpg_check_demo_mode_write_protect = srpt_check_true, .release_cmd = srpt_release_cmd, .check_stop_free = srpt_check_stop_free, .close_session = srpt_close_session, .sess_get_initiator_sid = NULL, .write_pending = srpt_write_pending, .get_cmd_state = srpt_get_tcm_cmd_state, .queue_data_in = srpt_queue_data_in, .queue_status = srpt_queue_status, .queue_tm_rsp = srpt_queue_tm_rsp, .aborted_task = srpt_aborted_task, /* * Setup function pointers for generic logic in * target_core_fabric_configfs.c */ .fabric_make_wwn = srpt_make_tport, .fabric_drop_wwn = srpt_drop_tport, .fabric_make_tpg = srpt_make_tpg, .fabric_enable_tpg = srpt_enable_tpg, .fabric_drop_tpg = srpt_drop_tpg, .fabric_init_nodeacl = srpt_init_nodeacl, .tfc_discovery_attrs = srpt_da_attrs, .tfc_wwn_attrs = srpt_wwn_attrs, .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, .default_submit_type = TARGET_DIRECT_SUBMIT, .direct_submit_supp = 1, }; /** * srpt_init_module - kernel module initialization * * Note: Since ib_register_client() registers callback functions, and since at * least one of these callback functions (srpt_add_one()) calls target core * functions, this driver must be registered with the target core before * ib_register_client() is called. */ static int __init srpt_init_module(void) { int ret; ret = -EINVAL; if (srp_max_req_size < MIN_MAX_REQ_SIZE) { pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n", srp_max_req_size, MIN_MAX_REQ_SIZE); goto out; } if (srpt_srq_size < MIN_SRPT_SRQ_SIZE || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n", srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); goto out; } ret = target_register_template(&srpt_template); if (ret) goto out; ret = ib_register_client(&srpt_client); if (ret) { pr_err("couldn't register IB client\n"); goto out_unregister_target; } return 0; out_unregister_target: target_unregister_template(&srpt_template); out: return ret; } static void __exit srpt_cleanup_module(void) { if (rdma_cm_id) rdma_destroy_id(rdma_cm_id); ib_unregister_client(&srpt_client); target_unregister_template(&srpt_template); } module_init(srpt_init_module); module_exit(srpt_cleanup_module);