/* * Copyright(c) 2015 - 2017 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include "hfi.h" #include "mad.h" #include "qp.h" #include "verbs_txreq.h" #include "trace.h" /* * Validate a RWQE and fill in the SGE state. * Return 1 if OK. */ static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) { int i, j, ret; struct ib_wc wc; struct rvt_lkey_table *rkt; struct rvt_pd *pd; struct rvt_sge_state *ss; rkt = &to_idev(qp->ibqp.device)->rdi.lkey_table; pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); ss = &qp->r_sge; ss->sg_list = qp->r_sg_list; qp->r_len = 0; for (i = j = 0; i < wqe->num_sge; i++) { if (wqe->sg_list[i].length == 0) continue; /* Check LKEY */ if (!rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, &wqe->sg_list[i], IB_ACCESS_LOCAL_WRITE)) goto bad_lkey; qp->r_len += wqe->sg_list[i].length; j++; } ss->num_sge = j; ss->total_len = qp->r_len; ret = 1; goto bail; bad_lkey: while (j) { struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; rvt_put_mr(sge->mr); } ss->num_sge = 0; memset(&wc, 0, sizeof(wc)); wc.wr_id = wqe->wr_id; wc.status = IB_WC_LOC_PROT_ERR; wc.opcode = IB_WC_RECV; wc.qp = &qp->ibqp; /* Signal solicited completion event. */ rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); ret = 0; bail: return ret; } /** * hfi1_rvt_get_rwqe - copy the next RWQE into the QP's RWQE * @qp: the QP * @wr_id_only: update qp->r_wr_id only, not qp->r_sge * * Return -1 if there is a local error, 0 if no RWQE is available, * otherwise return 1. * * Can be called from interrupt level. */ int hfi1_rvt_get_rwqe(struct rvt_qp *qp, int wr_id_only) { unsigned long flags; struct rvt_rq *rq; struct rvt_rwq *wq; struct rvt_srq *srq; struct rvt_rwqe *wqe; void (*handler)(struct ib_event *, void *); u32 tail; int ret; if (qp->ibqp.srq) { srq = ibsrq_to_rvtsrq(qp->ibqp.srq); handler = srq->ibsrq.event_handler; rq = &srq->rq; } else { srq = NULL; handler = NULL; rq = &qp->r_rq; } spin_lock_irqsave(&rq->lock, flags); if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { ret = 0; goto unlock; } wq = rq->wq; tail = wq->tail; /* Validate tail before using it since it is user writable. */ if (tail >= rq->size) tail = 0; if (unlikely(tail == wq->head)) { ret = 0; goto unlock; } /* Make sure entry is read after head index is read. */ smp_rmb(); wqe = rvt_get_rwqe_ptr(rq, tail); /* * Even though we update the tail index in memory, the verbs * consumer is not supposed to post more entries until a * completion is generated. */ if (++tail >= rq->size) tail = 0; wq->tail = tail; if (!wr_id_only && !init_sge(qp, wqe)) { ret = -1; goto unlock; } qp->r_wr_id = wqe->wr_id; ret = 1; set_bit(RVT_R_WRID_VALID, &qp->r_aflags); if (handler) { u32 n; /* * Validate head pointer value and compute * the number of remaining WQEs. */ n = wq->head; if (n >= rq->size) n = 0; if (n < tail) n += rq->size - tail; else n -= tail; if (n < srq->limit) { struct ib_event ev; srq->limit = 0; spin_unlock_irqrestore(&rq->lock, flags); ev.device = qp->ibqp.device; ev.element.srq = qp->ibqp.srq; ev.event = IB_EVENT_SRQ_LIMIT_REACHED; handler(&ev, srq->ibsrq.srq_context); goto bail; } } unlock: spin_unlock_irqrestore(&rq->lock, flags); bail: return ret; } static int gid_ok(union ib_gid *gid, __be64 gid_prefix, __be64 id) { return (gid->global.interface_id == id && (gid->global.subnet_prefix == gid_prefix || gid->global.subnet_prefix == IB_DEFAULT_GID_PREFIX)); } /* * * This should be called with the QP r_lock held. * * The s_lock will be acquired around the hfi1_migrate_qp() call. */ int hfi1_ruc_check_hdr(struct hfi1_ibport *ibp, struct ib_header *hdr, int has_grh, struct rvt_qp *qp, u32 bth0) { __be64 guid; unsigned long flags; u8 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)]; if (qp->s_mig_state == IB_MIG_ARMED && (bth0 & IB_BTH_MIG_REQ)) { if (!has_grh) { if (rdma_ah_get_ah_flags(&qp->alt_ah_attr) & IB_AH_GRH) goto err; } else { const struct ib_global_route *grh; if (!(rdma_ah_get_ah_flags(&qp->alt_ah_attr) & IB_AH_GRH)) goto err; grh = rdma_ah_read_grh(&qp->alt_ah_attr); guid = get_sguid(ibp, grh->sgid_index); if (!gid_ok(&hdr->u.l.grh.dgid, ibp->rvp.gid_prefix, guid)) goto err; if (!gid_ok( &hdr->u.l.grh.sgid, grh->dgid.global.subnet_prefix, grh->dgid.global.interface_id)) goto err; } if (unlikely(rcv_pkey_check(ppd_from_ibp(ibp), (u16)bth0, sc5, ib_get_slid(hdr)))) { hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_P_KEY, (u16)bth0, ib_get_sl(hdr), 0, qp->ibqp.qp_num, ib_get_slid(hdr), ib_get_dlid(hdr)); goto err; } /* Validate the SLID. See Ch. 9.6.1.5 and 17.2.8 */ if (ib_get_slid(hdr) != rdma_ah_get_dlid(&qp->alt_ah_attr) || ppd_from_ibp(ibp)->port != rdma_ah_get_port_num(&qp->alt_ah_attr)) goto err; spin_lock_irqsave(&qp->s_lock, flags); hfi1_migrate_qp(qp); spin_unlock_irqrestore(&qp->s_lock, flags); } else { if (!has_grh) { if (rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) goto err; } else { const struct ib_global_route *grh; if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH)) goto err; grh = rdma_ah_read_grh(&qp->remote_ah_attr); guid = get_sguid(ibp, grh->sgid_index); if (!gid_ok(&hdr->u.l.grh.dgid, ibp->rvp.gid_prefix, guid)) goto err; if (!gid_ok( &hdr->u.l.grh.sgid, grh->dgid.global.subnet_prefix, grh->dgid.global.interface_id)) goto err; } if (unlikely(rcv_pkey_check(ppd_from_ibp(ibp), (u16)bth0, sc5, ib_get_slid(hdr)))) { hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_P_KEY, (u16)bth0, ib_get_sl(hdr), 0, qp->ibqp.qp_num, ib_get_slid(hdr), ib_get_dlid(hdr)); goto err; } /* Validate the SLID. See Ch. 9.6.1.5 */ if (ib_get_slid(hdr) != rdma_ah_get_dlid(&qp->remote_ah_attr) || ppd_from_ibp(ibp)->port != qp->port_num) goto err; if (qp->s_mig_state == IB_MIG_REARM && !(bth0 & IB_BTH_MIG_REQ)) qp->s_mig_state = IB_MIG_ARMED; } return 0; err: return 1; } /** * ruc_loopback - handle UC and RC loopback requests * @sqp: the sending QP * * This is called from hfi1_do_send() to * forward a WQE addressed to the same HFI. * Note that although we are single threaded due to the send engine, we still * have to protect against post_send(). We don't have to worry about * receive interrupts since this is a connected protocol and all packets * will pass through here. */ static void ruc_loopback(struct rvt_qp *sqp) { struct hfi1_ibport *ibp = to_iport(sqp->ibqp.device, sqp->port_num); struct rvt_qp *qp; struct rvt_swqe *wqe; struct rvt_sge *sge; unsigned long flags; struct ib_wc wc; u64 sdata; atomic64_t *maddr; enum ib_wc_status send_status; bool release; int ret; bool copy_last = false; int local_ops = 0; rcu_read_lock(); /* * Note that we check the responder QP state after * checking the requester's state. */ qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), &ibp->rvp, sqp->remote_qpn); spin_lock_irqsave(&sqp->s_lock, flags); /* Return if we are already busy processing a work request. */ if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) goto unlock; sqp->s_flags |= RVT_S_BUSY; again: smp_read_barrier_depends(); /* see post_one_send() */ if (sqp->s_last == ACCESS_ONCE(sqp->s_head)) goto clr_busy; wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); /* Return if it is not OK to start a new work request. */ if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) goto clr_busy; /* We are in the error state, flush the work request. */ send_status = IB_WC_WR_FLUSH_ERR; goto flush_send; } /* * We can rely on the entry not changing without the s_lock * being held until we update s_last. * We increment s_cur to indicate s_last is in progress. */ if (sqp->s_last == sqp->s_cur) { if (++sqp->s_cur >= sqp->s_size) sqp->s_cur = 0; } spin_unlock_irqrestore(&sqp->s_lock, flags); if (!qp || !(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || qp->ibqp.qp_type != sqp->ibqp.qp_type) { ibp->rvp.n_pkt_drops++; /* * For RC, the requester would timeout and retry so * shortcut the timeouts and just signal too many retries. */ if (sqp->ibqp.qp_type == IB_QPT_RC) send_status = IB_WC_RETRY_EXC_ERR; else send_status = IB_WC_SUCCESS; goto serr; } memset(&wc, 0, sizeof(wc)); send_status = IB_WC_SUCCESS; release = true; sqp->s_sge.sge = wqe->sg_list[0]; sqp->s_sge.sg_list = wqe->sg_list + 1; sqp->s_sge.num_sge = wqe->wr.num_sge; sqp->s_len = wqe->length; switch (wqe->wr.opcode) { case IB_WR_REG_MR: goto send_comp; case IB_WR_LOCAL_INV: if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { if (rvt_invalidate_rkey(sqp, wqe->wr.ex.invalidate_rkey)) send_status = IB_WC_LOC_PROT_ERR; local_ops = 1; } goto send_comp; case IB_WR_SEND_WITH_INV: if (!rvt_invalidate_rkey(qp, wqe->wr.ex.invalidate_rkey)) { wc.wc_flags = IB_WC_WITH_INVALIDATE; wc.ex.invalidate_rkey = wqe->wr.ex.invalidate_rkey; } goto send; case IB_WR_SEND_WITH_IMM: wc.wc_flags = IB_WC_WITH_IMM; wc.ex.imm_data = wqe->wr.ex.imm_data; /* FALLTHROUGH */ case IB_WR_SEND: send: ret = hfi1_rvt_get_rwqe(qp, 0); if (ret < 0) goto op_err; if (!ret) goto rnr_nak; break; case IB_WR_RDMA_WRITE_WITH_IMM: if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) goto inv_err; wc.wc_flags = IB_WC_WITH_IMM; wc.ex.imm_data = wqe->wr.ex.imm_data; ret = hfi1_rvt_get_rwqe(qp, 1); if (ret < 0) goto op_err; if (!ret) goto rnr_nak; /* skip copy_last set and qp_access_flags recheck */ goto do_write; case IB_WR_RDMA_WRITE: copy_last = rvt_is_user_qp(qp); if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) goto inv_err; do_write: if (wqe->length == 0) break; if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, wqe->rdma_wr.remote_addr, wqe->rdma_wr.rkey, IB_ACCESS_REMOTE_WRITE))) goto acc_err; qp->r_sge.sg_list = NULL; qp->r_sge.num_sge = 1; qp->r_sge.total_len = wqe->length; break; case IB_WR_RDMA_READ: if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) goto inv_err; if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, wqe->rdma_wr.remote_addr, wqe->rdma_wr.rkey, IB_ACCESS_REMOTE_READ))) goto acc_err; release = false; sqp->s_sge.sg_list = NULL; sqp->s_sge.num_sge = 1; qp->r_sge.sge = wqe->sg_list[0]; qp->r_sge.sg_list = wqe->sg_list + 1; qp->r_sge.num_sge = wqe->wr.num_sge; qp->r_sge.total_len = wqe->length; break; case IB_WR_ATOMIC_CMP_AND_SWP: case IB_WR_ATOMIC_FETCH_AND_ADD: if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) goto inv_err; if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), wqe->atomic_wr.remote_addr, wqe->atomic_wr.rkey, IB_ACCESS_REMOTE_ATOMIC))) goto acc_err; /* Perform atomic OP and save result. */ maddr = (atomic64_t *)qp->r_sge.sge.vaddr; sdata = wqe->atomic_wr.compare_add; *(u64 *)sqp->s_sge.sge.vaddr = (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? (u64)atomic64_add_return(sdata, maddr) - sdata : (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, sdata, wqe->atomic_wr.swap); rvt_put_mr(qp->r_sge.sge.mr); qp->r_sge.num_sge = 0; goto send_comp; default: send_status = IB_WC_LOC_QP_OP_ERR; goto serr; } sge = &sqp->s_sge.sge; while (sqp->s_len) { u32 len = sqp->s_len; if (len > sge->length) len = sge->length; if (len > sge->sge_length) len = sge->sge_length; WARN_ON_ONCE(len == 0); hfi1_copy_sge(&qp->r_sge, sge->vaddr, len, release, copy_last); sge->vaddr += len; sge->length -= len; sge->sge_length -= len; if (sge->sge_length == 0) { if (!release) rvt_put_mr(sge->mr); if (--sqp->s_sge.num_sge) *sge = *sqp->s_sge.sg_list++; } else if (sge->length == 0 && sge->mr->lkey) { if (++sge->n >= RVT_SEGSZ) { if (++sge->m >= sge->mr->mapsz) break; sge->n = 0; } sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr; sge->length = sge->mr->map[sge->m]->segs[sge->n].length; } sqp->s_len -= len; } if (release) rvt_put_ss(&qp->r_sge); if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) goto send_comp; if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; else wc.opcode = IB_WC_RECV; wc.wr_id = qp->r_wr_id; wc.status = IB_WC_SUCCESS; wc.byte_len = wqe->length; wc.qp = &qp->ibqp; wc.src_qp = qp->remote_qpn; wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr); wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); wc.port_num = 1; /* Signal completion event if the solicited bit is set. */ rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); send_comp: spin_lock_irqsave(&sqp->s_lock, flags); ibp->rvp.n_loop_pkts++; flush_send: sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; hfi1_send_complete(sqp, wqe, send_status); if (local_ops) { atomic_dec(&sqp->local_ops_pending); local_ops = 0; } goto again; rnr_nak: /* Handle RNR NAK */ if (qp->ibqp.qp_type == IB_QPT_UC) goto send_comp; ibp->rvp.n_rnr_naks++; /* * Note: we don't need the s_lock held since the BUSY flag * makes this single threaded. */ if (sqp->s_rnr_retry == 0) { send_status = IB_WC_RNR_RETRY_EXC_ERR; goto serr; } if (sqp->s_rnr_retry_cnt < 7) sqp->s_rnr_retry--; spin_lock_irqsave(&sqp->s_lock, flags); if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) goto clr_busy; rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << IB_AETH_CREDIT_SHIFT); goto clr_busy; op_err: send_status = IB_WC_REM_OP_ERR; wc.status = IB_WC_LOC_QP_OP_ERR; goto err; inv_err: send_status = IB_WC_REM_INV_REQ_ERR; wc.status = IB_WC_LOC_QP_OP_ERR; goto err; acc_err: send_status = IB_WC_REM_ACCESS_ERR; wc.status = IB_WC_LOC_PROT_ERR; err: /* responder goes to error state */ rvt_rc_error(qp, wc.status); serr: spin_lock_irqsave(&sqp->s_lock, flags); hfi1_send_complete(sqp, wqe, send_status); if (sqp->ibqp.qp_type == IB_QPT_RC) { int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); sqp->s_flags &= ~RVT_S_BUSY; spin_unlock_irqrestore(&sqp->s_lock, flags); if (lastwqe) { struct ib_event ev; ev.device = sqp->ibqp.device; ev.element.qp = &sqp->ibqp; ev.event = IB_EVENT_QP_LAST_WQE_REACHED; sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); } goto done; } clr_busy: sqp->s_flags &= ~RVT_S_BUSY; unlock: spin_unlock_irqrestore(&sqp->s_lock, flags); done: rcu_read_unlock(); } /** * hfi1_make_grh - construct a GRH header * @ibp: a pointer to the IB port * @hdr: a pointer to the GRH header being constructed * @grh: the global route address to send to * @hwords: the number of 32 bit words of header being sent * @nwords: the number of 32 bit words of data being sent * * Return the size of the header in 32 bit words. */ u32 hfi1_make_grh(struct hfi1_ibport *ibp, struct ib_grh *hdr, const struct ib_global_route *grh, u32 hwords, u32 nwords) { hdr->version_tclass_flow = cpu_to_be32((IB_GRH_VERSION << IB_GRH_VERSION_SHIFT) | (grh->traffic_class << IB_GRH_TCLASS_SHIFT) | (grh->flow_label << IB_GRH_FLOW_SHIFT)); hdr->paylen = cpu_to_be16((hwords - 2 + nwords + SIZE_OF_CRC) << 2); /* next_hdr is defined by C8-7 in ch. 8.4.1 */ hdr->next_hdr = IB_GRH_NEXT_HDR; hdr->hop_limit = grh->hop_limit; /* The SGID is 32-bit aligned. */ hdr->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; hdr->sgid.global.interface_id = grh->sgid_index < HFI1_GUIDS_PER_PORT ? get_sguid(ibp, grh->sgid_index) : get_sguid(ibp, HFI1_PORT_GUID_INDEX); hdr->dgid = grh->dgid; /* GRH header size in 32-bit words. */ return sizeof(struct ib_grh) / sizeof(u32); } #define BTH2_OFFSET (offsetof(struct hfi1_sdma_header, hdr.u.oth.bth[2]) / 4) /** * build_ahg - create ahg in s_ahg * @qp: a pointer to QP * @npsn: the next PSN for the request/response * * This routine handles the AHG by allocating an ahg entry and causing the * copy of the first middle. * * Subsequent middles use the copied entry, editing the * PSN with 1 or 2 edits. */ static inline void build_ahg(struct rvt_qp *qp, u32 npsn) { struct hfi1_qp_priv *priv = qp->priv; if (unlikely(qp->s_flags & RVT_S_AHG_CLEAR)) clear_ahg(qp); if (!(qp->s_flags & RVT_S_AHG_VALID)) { /* first middle that needs copy */ if (qp->s_ahgidx < 0) qp->s_ahgidx = sdma_ahg_alloc(priv->s_sde); if (qp->s_ahgidx >= 0) { qp->s_ahgpsn = npsn; priv->s_ahg->tx_flags |= SDMA_TXREQ_F_AHG_COPY; /* save to protect a change in another thread */ priv->s_ahg->ahgidx = qp->s_ahgidx; qp->s_flags |= RVT_S_AHG_VALID; } } else { /* subsequent middle after valid */ if (qp->s_ahgidx >= 0) { priv->s_ahg->tx_flags |= SDMA_TXREQ_F_USE_AHG; priv->s_ahg->ahgidx = qp->s_ahgidx; priv->s_ahg->ahgcount++; priv->s_ahg->ahgdesc[0] = sdma_build_ahg_descriptor( (__force u16)cpu_to_be16((u16)npsn), BTH2_OFFSET, 16, 16); if ((npsn & 0xffff0000) != (qp->s_ahgpsn & 0xffff0000)) { priv->s_ahg->ahgcount++; priv->s_ahg->ahgdesc[1] = sdma_build_ahg_descriptor( (__force u16)cpu_to_be16( (u16)(npsn >> 16)), BTH2_OFFSET, 0, 16); } } } } void hfi1_make_ruc_header(struct rvt_qp *qp, struct ib_other_headers *ohdr, u32 bth0, u32 bth2, int middle, struct hfi1_pkt_state *ps) { struct hfi1_qp_priv *priv = qp->priv; struct hfi1_ibport *ibp = ps->ibp; u16 lrh0; u32 nwords; u32 extra_bytes; u32 bth1; /* Construct the header. */ extra_bytes = -ps->s_txreq->s_cur_size & 3; nwords = (ps->s_txreq->s_cur_size + extra_bytes) >> 2; lrh0 = HFI1_LRH_BTH; if (unlikely(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH)) { qp->s_hdrwords += hfi1_make_grh(ibp, &ps->s_txreq->phdr.hdr.u.l.grh, rdma_ah_read_grh(&qp->remote_ah_attr), qp->s_hdrwords, nwords); lrh0 = HFI1_LRH_GRH; middle = 0; } lrh0 |= (priv->s_sc & 0xf) << 12 | (rdma_ah_get_sl(&qp->remote_ah_attr) & 0xf) << 4; /* * reset s_ahg/AHG fields * * This insures that the ahgentry/ahgcount * are at a non-AHG default to protect * build_verbs_tx_desc() from using * an include ahgidx. * * build_ahg() will modify as appropriate * to use the AHG feature. */ priv->s_ahg->tx_flags = 0; priv->s_ahg->ahgcount = 0; priv->s_ahg->ahgidx = 0; if (qp->s_mig_state == IB_MIG_MIGRATED) bth0 |= IB_BTH_MIG_REQ; else middle = 0; if (middle) build_ahg(qp, bth2); else qp->s_flags &= ~RVT_S_AHG_VALID; ps->s_txreq->phdr.hdr.lrh[0] = cpu_to_be16(lrh0); ps->s_txreq->phdr.hdr.lrh[1] = cpu_to_be16(rdma_ah_get_dlid(&qp->remote_ah_attr)); ps->s_txreq->phdr.hdr.lrh[2] = cpu_to_be16(qp->s_hdrwords + nwords + SIZE_OF_CRC); ps->s_txreq->phdr.hdr.lrh[3] = cpu_to_be16(ppd_from_ibp(ibp)->lid | rdma_ah_get_path_bits(&qp->remote_ah_attr)); bth0 |= hfi1_get_pkey(ibp, qp->s_pkey_index); bth0 |= extra_bytes << 20; ohdr->bth[0] = cpu_to_be32(bth0); bth1 = qp->remote_qpn; if (qp->s_flags & RVT_S_ECN) { qp->s_flags &= ~RVT_S_ECN; /* we recently received a FECN, so return a BECN */ bth1 |= (IB_BECN_MASK << IB_BECN_SHIFT); } ohdr->bth[1] = cpu_to_be32(bth1); ohdr->bth[2] = cpu_to_be32(bth2); } /* when sending, force a reschedule every one of these periods */ #define SEND_RESCHED_TIMEOUT (5 * HZ) /* 5s in jiffies */ /** * schedule_send_yield - test for a yield required for QP send engine * @timeout: Final time for timeout slice for jiffies * @qp: a pointer to QP * @ps: a pointer to a structure with commonly lookup values for * the the send engine progress * * This routine checks if the time slice for the QP has expired * for RC QPs, if so an additional work entry is queued. At this * point, other QPs have an opportunity to be scheduled. It * returns true if a yield is required, otherwise, false * is returned. */ static bool schedule_send_yield(struct rvt_qp *qp, struct hfi1_pkt_state *ps) { if (unlikely(time_after(jiffies, ps->timeout))) { if (!ps->in_thread || workqueue_congested(ps->cpu, ps->ppd->hfi1_wq)) { spin_lock_irqsave(&qp->s_lock, ps->flags); qp->s_flags &= ~RVT_S_BUSY; hfi1_schedule_send(qp); spin_unlock_irqrestore(&qp->s_lock, ps->flags); this_cpu_inc(*ps->ppd->dd->send_schedule); trace_hfi1_rc_expired_time_slice(qp, true); return true; } cond_resched(); this_cpu_inc(*ps->ppd->dd->send_schedule); ps->timeout = jiffies + ps->timeout_int; } trace_hfi1_rc_expired_time_slice(qp, false); return false; } void hfi1_do_send_from_rvt(struct rvt_qp *qp) { hfi1_do_send(qp, false); } void _hfi1_do_send(struct work_struct *work) { struct iowait *wait = container_of(work, struct iowait, iowork); struct rvt_qp *qp = iowait_to_qp(wait); hfi1_do_send(qp, true); } /** * hfi1_do_send - perform a send on a QP * @work: contains a pointer to the QP * @in_thread: true if in a workqueue thread * * Process entries in the send work queue until credit or queue is * exhausted. Only allow one CPU to send a packet per QP. * Otherwise, two threads could send packets out of order. */ void hfi1_do_send(struct rvt_qp *qp, bool in_thread) { struct hfi1_pkt_state ps; struct hfi1_qp_priv *priv = qp->priv; int (*make_req)(struct rvt_qp *qp, struct hfi1_pkt_state *ps); ps.dev = to_idev(qp->ibqp.device); ps.ibp = to_iport(qp->ibqp.device, qp->port_num); ps.ppd = ppd_from_ibp(ps.ibp); ps.in_thread = in_thread; trace_hfi1_rc_do_send(qp, in_thread); switch (qp->ibqp.qp_type) { case IB_QPT_RC: if (!loopback && ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ps.ppd->lmc) - 1)) == ps.ppd->lid)) { ruc_loopback(qp); return; } make_req = hfi1_make_rc_req; ps.timeout_int = qp->timeout_jiffies; break; case IB_QPT_UC: if (!loopback && ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ps.ppd->lmc) - 1)) == ps.ppd->lid)) { ruc_loopback(qp); return; } make_req = hfi1_make_uc_req; ps.timeout_int = SEND_RESCHED_TIMEOUT; break; default: make_req = hfi1_make_ud_req; ps.timeout_int = SEND_RESCHED_TIMEOUT; } spin_lock_irqsave(&qp->s_lock, ps.flags); /* Return if we are already busy processing a work request. */ if (!hfi1_send_ok(qp)) { spin_unlock_irqrestore(&qp->s_lock, ps.flags); return; } qp->s_flags |= RVT_S_BUSY; ps.timeout_int = ps.timeout_int / 8; ps.timeout = jiffies + ps.timeout_int; ps.cpu = priv->s_sde ? priv->s_sde->cpu : cpumask_first(cpumask_of_node(ps.ppd->dd->node)); /* insure a pre-built packet is handled */ ps.s_txreq = get_waiting_verbs_txreq(qp); do { /* Check for a constructed packet to be sent. */ if (qp->s_hdrwords != 0) { spin_unlock_irqrestore(&qp->s_lock, ps.flags); /* * If the packet cannot be sent now, return and * the send engine will be woken up later. */ if (hfi1_verbs_send(qp, &ps)) return; /* Record that s_ahg is empty. */ qp->s_hdrwords = 0; /* allow other tasks to run */ if (schedule_send_yield(qp, &ps)) return; spin_lock_irqsave(&qp->s_lock, ps.flags); } } while (make_req(qp, &ps)); spin_unlock_irqrestore(&qp->s_lock, ps.flags); } /* * This should be called with s_lock held. */ void hfi1_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, enum ib_wc_status status) { u32 old_last, last; if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) return; last = qp->s_last; old_last = last; trace_hfi1_qp_send_completion(qp, wqe, last); if (++last >= qp->s_size) last = 0; trace_hfi1_qp_send_completion(qp, wqe, last); qp->s_last = last; /* See post_send() */ barrier(); rvt_put_swqe(wqe); if (qp->ibqp.qp_type == IB_QPT_UD || qp->ibqp.qp_type == IB_QPT_SMI || qp->ibqp.qp_type == IB_QPT_GSI) atomic_dec(&ibah_to_rvtah(wqe->ud_wr.ah)->refcount); rvt_qp_swqe_complete(qp, wqe, ib_hfi1_wc_opcode[wqe->wr.opcode], status); if (qp->s_acked == old_last) qp->s_acked = last; if (qp->s_cur == old_last) qp->s_cur = last; if (qp->s_tail == old_last) qp->s_tail = last; if (qp->state == IB_QPS_SQD && last == qp->s_cur) qp->s_draining = 0; }