// SPDX-License-Identifier: GPL-2.0-or-later /* * lm85.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com> * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de> * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com> * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de> * * Chip details at <http://www.national.com/ds/LM/LM85.pdf> */ #include <linux/module.h> #include <linux/of_device.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-vid.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/util_macros.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; enum chips { lm85, lm96000, adm1027, adt7463, adt7468, emc6d100, emc6d102, emc6d103, emc6d103s }; /* The LM85 registers */ #define LM85_REG_IN(nr) (0x20 + (nr)) #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2) #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2) #define LM85_REG_TEMP(nr) (0x25 + (nr)) #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2) #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2) /* Fan speeds are LSB, MSB (2 bytes) */ #define LM85_REG_FAN(nr) (0x28 + (nr) * 2) #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2) #define LM85_REG_PWM(nr) (0x30 + (nr)) #define LM85_REG_COMPANY 0x3e #define LM85_REG_VERSTEP 0x3f #define ADT7468_REG_CFG5 0x7c #define ADT7468_OFF64 (1 << 0) #define ADT7468_HFPWM (1 << 1) #define IS_ADT7468_OFF64(data) \ ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64)) #define IS_ADT7468_HFPWM(data) \ ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM)) /* These are the recognized values for the above regs */ #define LM85_COMPANY_NATIONAL 0x01 #define LM85_COMPANY_ANALOG_DEV 0x41 #define LM85_COMPANY_SMSC 0x5c #define LM85_VERSTEP_LM85C 0x60 #define LM85_VERSTEP_LM85B 0x62 #define LM85_VERSTEP_LM96000_1 0x68 #define LM85_VERSTEP_LM96000_2 0x69 #define LM85_VERSTEP_ADM1027 0x60 #define LM85_VERSTEP_ADT7463 0x62 #define LM85_VERSTEP_ADT7463C 0x6A #define LM85_VERSTEP_ADT7468_1 0x71 #define LM85_VERSTEP_ADT7468_2 0x72 #define LM85_VERSTEP_EMC6D100_A0 0x60 #define LM85_VERSTEP_EMC6D100_A1 0x61 #define LM85_VERSTEP_EMC6D102 0x65 #define LM85_VERSTEP_EMC6D103_A0 0x68 #define LM85_VERSTEP_EMC6D103_A1 0x69 #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */ #define LM85_REG_CONFIG 0x40 #define LM85_REG_ALARM1 0x41 #define LM85_REG_ALARM2 0x42 #define LM85_REG_VID 0x43 /* Automated FAN control */ #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr)) #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr)) #define LM85_REG_AFAN_SPIKE1 0x62 #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr)) #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr)) #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr)) #define LM85_REG_AFAN_HYST1 0x6d #define LM85_REG_AFAN_HYST2 0x6e #define ADM1027_REG_EXTEND_ADC1 0x76 #define ADM1027_REG_EXTEND_ADC2 0x77 #define EMC6D100_REG_ALARM3 0x7d /* IN5, IN6 and IN7 */ #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5)) #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2) #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2) #define EMC6D102_REG_EXTEND_ADC1 0x85 #define EMC6D102_REG_EXTEND_ADC2 0x86 #define EMC6D102_REG_EXTEND_ADC3 0x87 #define EMC6D102_REG_EXTEND_ADC4 0x88 /* * Conversions. Rounding and limit checking is only done on the TO_REG * variants. Note that you should be a bit careful with which arguments * these macros are called: arguments may be evaluated more than once. */ /* IN are scaled according to built-in resistors */ static const int lm85_scaling[] = { /* .001 Volts */ 2500, 2250, 3300, 5000, 12000, 3300, 1500, 1800 /*EMC6D100*/ }; #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from)) #define INS_TO_REG(n, val) \ SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \ lm85_scaling[n], 192) #define INSEXT_FROM_REG(n, val, ext) \ SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n]) #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n]) /* FAN speed is measured using 90kHz clock */ static inline u16 FAN_TO_REG(unsigned long val) { if (!val) return 0xffff; return clamp_val(5400000 / val, 1, 0xfffe); } #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \ 5400000 / (val)) /* Temperature is reported in .001 degC increments */ #define TEMP_TO_REG(val) \ DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000) #define TEMPEXT_FROM_REG(val, ext) \ SCALE(((val) << 4) + (ext), 16, 1000) #define TEMP_FROM_REG(val) ((val) * 1000) #define PWM_TO_REG(val) clamp_val(val, 0, 255) #define PWM_FROM_REG(val) (val) /* * ZONEs have the following parameters: * Limit (low) temp, 1. degC * Hysteresis (below limit), 1. degC (0-15) * Range of speed control, .1 degC (2-80) * Critical (high) temp, 1. degC * * FAN PWMs have the following parameters: * Reference Zone, 1, 2, 3, etc. * Spinup time, .05 sec * PWM value at limit/low temp, 1 count * PWM Frequency, 1. Hz * PWM is Min or OFF below limit, flag * Invert PWM output, flag * * Some chips filter the temp, others the fan. * Filter constant (or disabled) .1 seconds */ /* These are the zone temperature range encodings in .001 degree C */ static const int lm85_range_map[] = { 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000, 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000 }; static int RANGE_TO_REG(long range) { return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map)); } #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f] /* These are the PWM frequency encodings */ static const int lm85_freq_map[] = { /* 1 Hz */ 10, 15, 23, 30, 38, 47, 61, 94 }; static const int lm96000_freq_map[] = { /* 1 Hz */ 10, 15, 23, 30, 38, 47, 61, 94, 22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000 }; static const int adm1027_freq_map[] = { /* 1 Hz */ 11, 15, 22, 29, 35, 44, 59, 88 }; static int FREQ_TO_REG(const int *map, unsigned int map_size, unsigned long freq) { return find_closest(freq, map, map_size); } static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg) { return map[reg % map_size]; } /* * Since we can't use strings, I'm abusing these numbers * to stand in for the following meanings: * 1 -- PWM responds to Zone 1 * 2 -- PWM responds to Zone 2 * 3 -- PWM responds to Zone 3 * 23 -- PWM responds to the higher temp of Zone 2 or 3 * 123 -- PWM responds to highest of Zone 1, 2, or 3 * 0 -- PWM is always at 0% (ie, off) * -1 -- PWM is always at 100% * -2 -- PWM responds to manual control */ static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 }; #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5] static int ZONE_TO_REG(int zone) { int i; for (i = 0; i <= 7; ++i) if (zone == lm85_zone_map[i]) break; if (i > 7) /* Not found. */ i = 3; /* Always 100% */ return i << 5; } #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15) #define HYST_FROM_REG(val) ((val) * 1000) /* * Chip sampling rates * * Some sensors are not updated more frequently than once per second * so it doesn't make sense to read them more often than that. * We cache the results and return the saved data if the driver * is called again before a second has elapsed. * * Also, there is significant configuration data for this chip * given the automatic PWM fan control that is possible. There * are about 47 bytes of config data to only 22 bytes of actual * readings. So, we keep the config data up to date in the cache * when it is written and only sample it once every 1 *minute* */ #define LM85_DATA_INTERVAL (HZ + HZ / 2) #define LM85_CONFIG_INTERVAL (1 * 60 * HZ) /* * LM85 can automatically adjust fan speeds based on temperature * This structure encapsulates an entire Zone config. There are * three zones (one for each temperature input) on the lm85 */ struct lm85_zone { s8 limit; /* Low temp limit */ u8 hyst; /* Low limit hysteresis. (0-15) */ u8 range; /* Temp range, encoded */ s8 critical; /* "All fans ON" temp limit */ u8 max_desired; /* * Actual "max" temperature specified. Preserved * to prevent "drift" as other autofan control * values change. */ }; struct lm85_autofan { u8 config; /* Register value */ u8 min_pwm; /* Minimum PWM value, encoded */ u8 min_off; /* Min PWM or OFF below "limit", flag */ }; /* * For each registered chip, we need to keep some data in memory. * The structure is dynamically allocated. */ struct lm85_data { struct i2c_client *client; const struct attribute_group *groups[6]; const int *freq_map; unsigned int freq_map_size; enum chips type; bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */ struct mutex update_lock; int valid; /* !=0 if following fields are valid */ unsigned long last_reading; /* In jiffies */ unsigned long last_config; /* In jiffies */ u8 in[8]; /* Register value */ u8 in_max[8]; /* Register value */ u8 in_min[8]; /* Register value */ s8 temp[3]; /* Register value */ s8 temp_min[3]; /* Register value */ s8 temp_max[3]; /* Register value */ u16 fan[4]; /* Register value */ u16 fan_min[4]; /* Register value */ u8 pwm[3]; /* Register value */ u8 pwm_freq[3]; /* Register encoding */ u8 temp_ext[3]; /* Decoded values */ u8 in_ext[8]; /* Decoded values */ u8 vid; /* Register value */ u8 vrm; /* VRM version */ u32 alarms; /* Register encoding, combined */ u8 cfg5; /* Config Register 5 on ADT7468 */ struct lm85_autofan autofan[3]; struct lm85_zone zone[3]; }; static int lm85_read_value(struct i2c_client *client, u8 reg) { int res; /* What size location is it? */ switch (reg) { case LM85_REG_FAN(0): /* Read WORD data */ case LM85_REG_FAN(1): case LM85_REG_FAN(2): case LM85_REG_FAN(3): case LM85_REG_FAN_MIN(0): case LM85_REG_FAN_MIN(1): case LM85_REG_FAN_MIN(2): case LM85_REG_FAN_MIN(3): case LM85_REG_ALARM1: /* Read both bytes at once */ res = i2c_smbus_read_byte_data(client, reg) & 0xff; res |= i2c_smbus_read_byte_data(client, reg + 1) << 8; break; default: /* Read BYTE data */ res = i2c_smbus_read_byte_data(client, reg); break; } return res; } static void lm85_write_value(struct i2c_client *client, u8 reg, int value) { switch (reg) { case LM85_REG_FAN(0): /* Write WORD data */ case LM85_REG_FAN(1): case LM85_REG_FAN(2): case LM85_REG_FAN(3): case LM85_REG_FAN_MIN(0): case LM85_REG_FAN_MIN(1): case LM85_REG_FAN_MIN(2): case LM85_REG_FAN_MIN(3): /* NOTE: ALARM is read only, so not included here */ i2c_smbus_write_byte_data(client, reg, value & 0xff); i2c_smbus_write_byte_data(client, reg + 1, value >> 8); break; default: /* Write BYTE data */ i2c_smbus_write_byte_data(client, reg, value); break; } } static struct lm85_data *lm85_update_device(struct device *dev) { struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int i; mutex_lock(&data->update_lock); if (!data->valid || time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) { /* Things that change quickly */ dev_dbg(&client->dev, "Reading sensor values\n"); /* * Have to read extended bits first to "freeze" the * more significant bits that are read later. * There are 2 additional resolution bits per channel and we * have room for 4, so we shift them to the left. */ if (data->type == adm1027 || data->type == adt7463 || data->type == adt7468) { int ext1 = lm85_read_value(client, ADM1027_REG_EXTEND_ADC1); int ext2 = lm85_read_value(client, ADM1027_REG_EXTEND_ADC2); int val = (ext1 << 8) + ext2; for (i = 0; i <= 4; i++) data->in_ext[i] = ((val >> (i * 2)) & 0x03) << 2; for (i = 0; i <= 2; i++) data->temp_ext[i] = (val >> ((i + 4) * 2)) & 0x0c; } data->vid = lm85_read_value(client, LM85_REG_VID); for (i = 0; i <= 3; ++i) { data->in[i] = lm85_read_value(client, LM85_REG_IN(i)); data->fan[i] = lm85_read_value(client, LM85_REG_FAN(i)); } if (!data->has_vid5) data->in[4] = lm85_read_value(client, LM85_REG_IN(4)); if (data->type == adt7468) data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5); for (i = 0; i <= 2; ++i) { data->temp[i] = lm85_read_value(client, LM85_REG_TEMP(i)); data->pwm[i] = lm85_read_value(client, LM85_REG_PWM(i)); if (IS_ADT7468_OFF64(data)) data->temp[i] -= 64; } data->alarms = lm85_read_value(client, LM85_REG_ALARM1); if (data->type == emc6d100) { /* Three more voltage sensors */ for (i = 5; i <= 7; ++i) { data->in[i] = lm85_read_value(client, EMC6D100_REG_IN(i)); } /* More alarm bits */ data->alarms |= lm85_read_value(client, EMC6D100_REG_ALARM3) << 16; } else if (data->type == emc6d102 || data->type == emc6d103 || data->type == emc6d103s) { /* * Have to read LSB bits after the MSB ones because * the reading of the MSB bits has frozen the * LSBs (backward from the ADM1027). */ int ext1 = lm85_read_value(client, EMC6D102_REG_EXTEND_ADC1); int ext2 = lm85_read_value(client, EMC6D102_REG_EXTEND_ADC2); int ext3 = lm85_read_value(client, EMC6D102_REG_EXTEND_ADC3); int ext4 = lm85_read_value(client, EMC6D102_REG_EXTEND_ADC4); data->in_ext[0] = ext3 & 0x0f; data->in_ext[1] = ext4 & 0x0f; data->in_ext[2] = ext4 >> 4; data->in_ext[3] = ext3 >> 4; data->in_ext[4] = ext2 >> 4; data->temp_ext[0] = ext1 & 0x0f; data->temp_ext[1] = ext2 & 0x0f; data->temp_ext[2] = ext1 >> 4; } data->last_reading = jiffies; } /* last_reading */ if (!data->valid || time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) { /* Things that don't change often */ dev_dbg(&client->dev, "Reading config values\n"); for (i = 0; i <= 3; ++i) { data->in_min[i] = lm85_read_value(client, LM85_REG_IN_MIN(i)); data->in_max[i] = lm85_read_value(client, LM85_REG_IN_MAX(i)); data->fan_min[i] = lm85_read_value(client, LM85_REG_FAN_MIN(i)); } if (!data->has_vid5) { data->in_min[4] = lm85_read_value(client, LM85_REG_IN_MIN(4)); data->in_max[4] = lm85_read_value(client, LM85_REG_IN_MAX(4)); } if (data->type == emc6d100) { for (i = 5; i <= 7; ++i) { data->in_min[i] = lm85_read_value(client, EMC6D100_REG_IN_MIN(i)); data->in_max[i] = lm85_read_value(client, EMC6D100_REG_IN_MAX(i)); } } for (i = 0; i <= 2; ++i) { int val; data->temp_min[i] = lm85_read_value(client, LM85_REG_TEMP_MIN(i)); data->temp_max[i] = lm85_read_value(client, LM85_REG_TEMP_MAX(i)); data->autofan[i].config = lm85_read_value(client, LM85_REG_AFAN_CONFIG(i)); val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i)); data->pwm_freq[i] = val % data->freq_map_size; data->zone[i].range = val >> 4; data->autofan[i].min_pwm = lm85_read_value(client, LM85_REG_AFAN_MINPWM(i)); data->zone[i].limit = lm85_read_value(client, LM85_REG_AFAN_LIMIT(i)); data->zone[i].critical = lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i)); if (IS_ADT7468_OFF64(data)) { data->temp_min[i] -= 64; data->temp_max[i] -= 64; data->zone[i].limit -= 64; data->zone[i].critical -= 64; } } if (data->type != emc6d103s) { i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); data->autofan[0].min_off = (i & 0x20) != 0; data->autofan[1].min_off = (i & 0x40) != 0; data->autofan[2].min_off = (i & 0x80) != 0; i = lm85_read_value(client, LM85_REG_AFAN_HYST1); data->zone[0].hyst = i >> 4; data->zone[1].hyst = i & 0x0f; i = lm85_read_value(client, LM85_REG_AFAN_HYST2); data->zone[2].hyst = i >> 4; } data->last_config = jiffies; } /* last_config */ data->valid = 1; mutex_unlock(&data->update_lock); return data; } /* 4 Fans */ static ssize_t fan_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr])); } static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr])); } static ssize_t fan_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val); lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0); static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1); static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2); static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2); static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3); static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3); /* vid, vrm, alarms */ static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm85_data *data = lm85_update_device(dev); int vid; if (data->has_vid5) { /* 6-pin VID (VRM 10) */ vid = vid_from_reg(data->vid & 0x3f, data->vrm); } else { /* 5-pin VID (VRM 9) */ vid = vid_from_reg(data->vid & 0x1f, data->vrm); } return sprintf(buf, "%d\n", vid); } static DEVICE_ATTR_RO(cpu0_vid); static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm85_data *data = dev_get_drvdata(dev); return sprintf(buf, "%ld\n", (long) data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct lm85_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 255) return -EINVAL; data->vrm = val; return count; } static DEVICE_ATTR_RW(vrm); static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%u\n", data->alarms); } static DEVICE_ATTR_RO(alarms); static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%u\n", (data->alarms >> nr) & 1); } static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0); static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1); static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2); static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3); static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8); static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18); static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16); static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17); static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4); static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14); static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5); static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6); static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15); static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10); static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11); static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12); static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13); /* pwm */ static ssize_t pwm_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); } static ssize_t pwm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->pwm[nr] = PWM_TO_REG(val); lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t pwm_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); int pwm_zone, enable; pwm_zone = ZONE_FROM_REG(data->autofan[nr].config); switch (pwm_zone) { case -1: /* PWM is always at 100% */ enable = 0; break; case 0: /* PWM is always at 0% */ case -2: /* PWM responds to manual control */ enable = 1; break; default: /* PWM in automatic mode */ enable = 2; } return sprintf(buf, "%d\n", enable); } static ssize_t pwm_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u8 config; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; switch (val) { case 0: config = 3; break; case 1: config = 7; break; case 2: /* * Here we have to choose arbitrarily one of the 5 possible * configurations; I go for the safest */ config = 6; break; default: return -EINVAL; } mutex_lock(&data->update_lock); data->autofan[nr].config = lm85_read_value(client, LM85_REG_AFAN_CONFIG(nr)); data->autofan[nr].config = (data->autofan[nr].config & ~0xe0) | (config << 5); lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), data->autofan[nr].config); mutex_unlock(&data->update_lock); return count; } static ssize_t pwm_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); int freq; if (IS_ADT7468_HFPWM(data)) freq = 22500; else freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size, data->pwm_freq[nr]); return sprintf(buf, "%d\n", freq); } static ssize_t pwm_freq_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); /* * The ADT7468 has a special high-frequency PWM output mode, * where all PWM outputs are driven by a 22.5 kHz clock. * This might confuse the user, but there's not much we can do. */ if (data->type == adt7468 && val >= 11300) { /* High freq. mode */ data->cfg5 &= ~ADT7468_HFPWM; lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); } else { /* Low freq. mode */ data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, data->freq_map_size, val); lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), (data->zone[nr].range << 4) | data->pwm_freq[nr]); if (data->type == adt7468) { data->cfg5 |= ADT7468_HFPWM; lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5); } } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0); static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0); static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0); static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1); static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1); static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1); static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2); static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2); static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2); /* Voltages */ static ssize_t in_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr], data->in_ext[nr])); } static ssize_t in_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr])); } static ssize_t in_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[nr] = INS_TO_REG(nr, val); lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t in_max_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr])); } static ssize_t in_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[nr] = INS_TO_REG(nr, val); lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0); static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0); static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0); static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1); static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1); static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1); static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2); static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2); static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2); static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3); static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3); static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3); static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4); static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4); static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4); static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5); static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5); static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5); static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6); static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6); static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6); static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7); static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7); static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7); /* Temps */ static ssize_t temp_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr], data->temp_ext[nr])); } static ssize_t temp_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); } static ssize_t temp_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; if (IS_ADT7468_OFF64(data)) val += 64; mutex_lock(&data->update_lock); data->temp_min[nr] = TEMP_TO_REG(val); lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_max_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); } static ssize_t temp_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; if (IS_ADT7468_OFF64(data)) val += 64; mutex_lock(&data->update_lock); data->temp_max[nr] = TEMP_TO_REG(val); lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2); static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); /* Automatic PWM control */ static ssize_t pwm_auto_channels_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config)); } static ssize_t pwm_auto_channels_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->autofan[nr].config = (data->autofan[nr].config & (~0xe0)) | ZONE_TO_REG(val); lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), data->autofan[nr].config); mutex_unlock(&data->update_lock); return count; } static ssize_t pwm_auto_pwm_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm)); } static ssize_t pwm_auto_pwm_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->autofan[nr].min_pwm = PWM_TO_REG(val); lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr), data->autofan[nr].min_pwm); mutex_unlock(&data->update_lock); return count; } static ssize_t pwm_auto_pwm_minctl_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", data->autofan[nr].min_off); } static ssize_t pwm_auto_pwm_minctl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u8 tmp; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->autofan[nr].min_off = val; tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1); tmp &= ~(0x20 << nr); if (data->autofan[nr].min_off) tmp |= 0x20 << nr; lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0); static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0); static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2); /* Temperature settings for automatic PWM control */ static ssize_t temp_auto_temp_off_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) - HYST_FROM_REG(data->zone[nr].hyst)); } static ssize_t temp_auto_temp_off_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int min; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); min = TEMP_FROM_REG(data->zone[nr].limit); data->zone[nr].hyst = HYST_TO_REG(min - val); if (nr == 0 || nr == 1) { lm85_write_value(client, LM85_REG_AFAN_HYST1, (data->zone[0].hyst << 4) | data->zone[1].hyst); } else { lm85_write_value(client, LM85_REG_AFAN_HYST2, (data->zone[2].hyst << 4)); } mutex_unlock(&data->update_lock); return count; } static ssize_t temp_auto_temp_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit)); } static ssize_t temp_auto_temp_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->zone[nr].limit = TEMP_TO_REG(val); lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr), data->zone[nr].limit); /* Update temp_auto_max and temp_auto_range */ data->zone[nr].range = RANGE_TO_REG( TEMP_FROM_REG(data->zone[nr].max_desired) - TEMP_FROM_REG(data->zone[nr].limit)); lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), ((data->zone[nr].range & 0x0f) << 4) | data->pwm_freq[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_auto_temp_max_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) + RANGE_FROM_REG(data->zone[nr].range)); } static ssize_t temp_auto_temp_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int min; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); min = TEMP_FROM_REG(data->zone[nr].limit); data->zone[nr].max_desired = TEMP_TO_REG(val); data->zone[nr].range = RANGE_TO_REG( val - min); lm85_write_value(client, LM85_REG_AFAN_RANGE(nr), ((data->zone[nr].range & 0x0f) << 4) | data->pwm_freq[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_auto_temp_crit_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = lm85_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical)); } static ssize_t temp_auto_temp_crit_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm85_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->zone[nr].critical = TEMP_TO_REG(val); lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr), data->zone[nr].critical); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0); static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0); static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0); static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0); static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1); static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1); static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1); static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1); static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2); static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2); static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2); static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2); static struct attribute *lm85_attributes[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_fan4_alarm.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm3_enable.dev_attr.attr, &sensor_dev_attr_pwm1_freq.dev_attr.attr, &sensor_dev_attr_pwm2_freq.dev_attr.attr, &sensor_dev_attr_pwm3_freq.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_temp1_fault.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr, &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr, &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr, &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr, &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr, &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr, &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr, &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr, &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr, &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr, &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr, &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr, &dev_attr_vrm.attr, &dev_attr_cpu0_vid.attr, &dev_attr_alarms.attr, NULL }; static const struct attribute_group lm85_group = { .attrs = lm85_attributes, }; static struct attribute *lm85_attributes_minctl[] = { &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr, &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr, &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr, NULL }; static const struct attribute_group lm85_group_minctl = { .attrs = lm85_attributes_minctl, }; static struct attribute *lm85_attributes_temp_off[] = { &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr, &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr, &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr, NULL }; static const struct attribute_group lm85_group_temp_off = { .attrs = lm85_attributes_temp_off, }; static struct attribute *lm85_attributes_in4[] = { &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm85_group_in4 = { .attrs = lm85_attributes_in4, }; static struct attribute *lm85_attributes_in567[] = { &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_in7_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm85_group_in567 = { .attrs = lm85_attributes_in567, }; static void lm85_init_client(struct i2c_client *client) { int value; /* Start monitoring if needed */ value = lm85_read_value(client, LM85_REG_CONFIG); if (!(value & 0x01)) { dev_info(&client->dev, "Starting monitoring\n"); lm85_write_value(client, LM85_REG_CONFIG, value | 0x01); } /* Warn about unusual configuration bits */ if (value & 0x02) dev_warn(&client->dev, "Device configuration is locked\n"); if (!(value & 0x04)) dev_warn(&client->dev, "Device is not ready\n"); } static int lm85_is_fake(struct i2c_client *client) { /* * Differenciate between real LM96000 and Winbond WPCD377I. The latter * emulate the former except that it has no hardware monitoring function * so the readings are always 0. */ int i; u8 in_temp, fan; for (i = 0; i < 8; i++) { in_temp = i2c_smbus_read_byte_data(client, 0x20 + i); fan = i2c_smbus_read_byte_data(client, 0x28 + i); if (in_temp != 0x00 || fan != 0xff) return 0; } return 1; } /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int address = client->addr; const char *type_name = NULL; int company, verstep; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { /* We need to be able to do byte I/O */ return -ENODEV; } /* Determine the chip type */ company = lm85_read_value(client, LM85_REG_COMPANY); verstep = lm85_read_value(client, LM85_REG_VERSTEP); dev_dbg(&adapter->dev, "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n", address, company, verstep); if (company == LM85_COMPANY_NATIONAL) { switch (verstep) { case LM85_VERSTEP_LM85C: type_name = "lm85c"; break; case LM85_VERSTEP_LM85B: type_name = "lm85b"; break; case LM85_VERSTEP_LM96000_1: case LM85_VERSTEP_LM96000_2: /* Check for Winbond WPCD377I */ if (lm85_is_fake(client)) { dev_dbg(&adapter->dev, "Found Winbond WPCD377I, ignoring\n"); return -ENODEV; } type_name = "lm96000"; break; } } else if (company == LM85_COMPANY_ANALOG_DEV) { switch (verstep) { case LM85_VERSTEP_ADM1027: type_name = "adm1027"; break; case LM85_VERSTEP_ADT7463: case LM85_VERSTEP_ADT7463C: type_name = "adt7463"; break; case LM85_VERSTEP_ADT7468_1: case LM85_VERSTEP_ADT7468_2: type_name = "adt7468"; break; } } else if (company == LM85_COMPANY_SMSC) { switch (verstep) { case LM85_VERSTEP_EMC6D100_A0: case LM85_VERSTEP_EMC6D100_A1: /* Note: we can't tell a '100 from a '101 */ type_name = "emc6d100"; break; case LM85_VERSTEP_EMC6D102: type_name = "emc6d102"; break; case LM85_VERSTEP_EMC6D103_A0: case LM85_VERSTEP_EMC6D103_A1: type_name = "emc6d103"; break; case LM85_VERSTEP_EMC6D103S: type_name = "emc6d103s"; break; } } if (!type_name) return -ENODEV; strlcpy(info->type, type_name, I2C_NAME_SIZE); return 0; } static const struct i2c_device_id lm85_id[]; static int lm85_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct device *hwmon_dev; struct lm85_data *data; int idx = 0; data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; if (client->dev.of_node) data->type = (enum chips)of_device_get_match_data(&client->dev); else data->type = i2c_match_id(lm85_id, client)->driver_data; mutex_init(&data->update_lock); /* Fill in the chip specific driver values */ switch (data->type) { case adm1027: case adt7463: case adt7468: case emc6d100: case emc6d102: case emc6d103: case emc6d103s: data->freq_map = adm1027_freq_map; data->freq_map_size = ARRAY_SIZE(adm1027_freq_map); break; case lm96000: data->freq_map = lm96000_freq_map; data->freq_map_size = ARRAY_SIZE(lm96000_freq_map); break; default: data->freq_map = lm85_freq_map; data->freq_map_size = ARRAY_SIZE(lm85_freq_map); } /* Set the VRM version */ data->vrm = vid_which_vrm(); /* Initialize the LM85 chip */ lm85_init_client(client); /* sysfs hooks */ data->groups[idx++] = &lm85_group; /* minctl and temp_off exist on all chips except emc6d103s */ if (data->type != emc6d103s) { data->groups[idx++] = &lm85_group_minctl; data->groups[idx++] = &lm85_group_temp_off; } /* * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used * as a sixth digital VID input rather than an analog input. */ if (data->type == adt7463 || data->type == adt7468) { u8 vid = lm85_read_value(client, LM85_REG_VID); if (vid & 0x80) data->has_vid5 = true; } if (!data->has_vid5) data->groups[idx++] = &lm85_group_in4; /* The EMC6D100 has 3 additional voltage inputs */ if (data->type == emc6d100) data->groups[idx++] = &lm85_group_in567; hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, data->groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id lm85_id[] = { { "adm1027", adm1027 }, { "adt7463", adt7463 }, { "adt7468", adt7468 }, { "lm85", lm85 }, { "lm85b", lm85 }, { "lm85c", lm85 }, { "lm96000", lm96000 }, { "emc6d100", emc6d100 }, { "emc6d101", emc6d100 }, { "emc6d102", emc6d102 }, { "emc6d103", emc6d103 }, { "emc6d103s", emc6d103s }, { } }; MODULE_DEVICE_TABLE(i2c, lm85_id); static const struct of_device_id __maybe_unused lm85_of_match[] = { { .compatible = "adi,adm1027", .data = (void *)adm1027 }, { .compatible = "adi,adt7463", .data = (void *)adt7463 }, { .compatible = "adi,adt7468", .data = (void *)adt7468 }, { .compatible = "national,lm85", .data = (void *)lm85 }, { .compatible = "national,lm85b", .data = (void *)lm85 }, { .compatible = "national,lm85c", .data = (void *)lm85 }, { .compatible = "ti,lm96000", .data = (void *)lm96000 }, { .compatible = "smsc,emc6d100", .data = (void *)emc6d100 }, { .compatible = "smsc,emc6d101", .data = (void *)emc6d100 }, { .compatible = "smsc,emc6d102", .data = (void *)emc6d102 }, { .compatible = "smsc,emc6d103", .data = (void *)emc6d103 }, { .compatible = "smsc,emc6d103s", .data = (void *)emc6d103s }, { }, }; MODULE_DEVICE_TABLE(of, lm85_of_match); static struct i2c_driver lm85_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm85", .of_match_table = of_match_ptr(lm85_of_match), }, .probe_new = lm85_probe, .id_table = lm85_id, .detect = lm85_detect, .address_list = normal_i2c, }; module_i2c_driver(lm85_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, " "Margit Schubert-While <margitsw@t-online.de>, " "Justin Thiessen <jthiessen@penguincomputing.com>"); MODULE_DESCRIPTION("LM85-B, LM85-C driver");