// SPDX-License-Identifier: GPL-2.0-or-later /* * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com> */ /* * This driver supports the sensor part of the first and second revision of * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because * of lack of specs the CPU/RAM voltage & frequency control is not supported! */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/mutex.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/dmi.h> #include <linux/io.h> /* Banks */ #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */ #define ABIT_UGURU_MAX_BANK1_SENSORS 16 /* * Warning if you increase one of the 2 MAX defines below to 10 or higher you * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */ /* max nr of sensors in bank2, currently mb's with max 6 fans are known */ #define ABIT_UGURU_MAX_BANK2_SENSORS 6 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ #define ABIT_UGURU_MAX_PWMS 5 /* uGuru sensor bank 1 flags */ /* Alarm if: */ #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ /* uGuru sensor bank 2 flags */ /* Alarm if: */ #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ /* uGuru sensor bank common flags */ #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ /* uGuru fan PWM (speed control) flags */ #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ /* Values used for conversion */ #define ABIT_UGURU_FAN_MAX 15300 /* RPM */ /* Bank1 sensor types */ #define ABIT_UGURU_IN_SENSOR 0 #define ABIT_UGURU_TEMP_SENSOR 1 #define ABIT_UGURU_NC 2 /* * In many cases we need to wait for the uGuru to reach a certain status, most * of the time it will reach this status within 30 - 90 ISA reads, and thus we * can best busy wait. This define gives the total amount of reads to try. */ #define ABIT_UGURU_WAIT_TIMEOUT 125 /* * However sometimes older versions of the uGuru seem to be distracted and they * do not respond for a long time. To handle this we sleep before each of the * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. */ #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5 /* * Normally all expected status in abituguru_ready, are reported after the * first read, but sometimes not and we need to poll. */ #define ABIT_UGURU_READY_TIMEOUT 5 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ #define ABIT_UGURU_MAX_RETRIES 3 #define ABIT_UGURU_RETRY_DELAY (HZ/5) /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */ #define ABIT_UGURU_MAX_TIMEOUTS 2 /* utility macros */ #define ABIT_UGURU_NAME "abituguru" #define ABIT_UGURU_DEBUG(level, format, arg...) \ do { \ if (level <= verbose) \ pr_debug(format , ## arg); \ } while (0) /* Macros to help calculate the sysfs_names array length */ /* * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0, * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */ #define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14) /* * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0, * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */ #define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16) /* * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0, * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */ #define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14) /* * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0, * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */ #define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22) /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */ #define ABITUGURU_SYSFS_NAMES_LENGTH ( \ ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \ ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \ ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH) /* * All the macros below are named identical to the oguru and oguru2 programs * reverse engineered by Olle Sandberg, hence the names might not be 100% * logical. I could come up with better names, but I prefer keeping the names * identical so that this driver can be compared with his work more easily. */ /* Two i/o-ports are used by uGuru */ #define ABIT_UGURU_BASE 0x00E0 /* Used to tell uGuru what to read and to read the actual data */ #define ABIT_UGURU_CMD 0x00 /* Mostly used to check if uGuru is busy */ #define ABIT_UGURU_DATA 0x04 #define ABIT_UGURU_REGION_LENGTH 5 /* uGuru status' */ #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ /* Constants */ /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; /* * Min / Max allowed values for sensor2 (fan) alarm threshold, these values * correspond to 300-3000 RPM */ static const u8 abituguru_bank2_min_threshold = 5; static const u8 abituguru_bank2_max_threshold = 50; /* * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 * are temperature trip points. */ static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; /* * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a * special case the minimum allowed pwm% setting for this is 30% (77) on * some MB's this special case is handled in the code! */ static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; /* Insmod parameters */ static bool force; module_param(force, bool, 0); MODULE_PARM_DESC(force, "Set to one to force detection."); static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; module_param_array(bank1_types, int, NULL, 0); MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n" " -1 autodetect\n" " 0 volt sensor\n" " 1 temp sensor\n" " 2 not connected"); static int fan_sensors; module_param(fan_sensors, int, 0); MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " "(0 = autodetect)"); static int pwms; module_param(pwms, int, 0); MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " "(0 = autodetect)"); /* Default verbose is 2, since this driver is still in the testing phase */ static int verbose = 2; module_param(verbose, int, 0644); MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" " 0 normal output\n" " 1 + verbose error reporting\n" " 2 + sensors type probing info\n" " 3 + retryable error reporting"); /* * For the Abit uGuru, we need to keep some data in memory. * The structure is dynamically allocated, at the same time when a new * abituguru device is allocated. */ struct abituguru_data { struct device *hwmon_dev; /* hwmon registered device */ struct mutex update_lock; /* protect access to data and uGuru */ unsigned long last_updated; /* In jiffies */ unsigned short addr; /* uguru base address */ char uguru_ready; /* is the uguru in ready state? */ unsigned char update_timeouts; /* * number of update timeouts since last * successful update */ /* * The sysfs attr and their names are generated automatically, for bank1 * we cannot use a predefined array because we don't know beforehand * of a sensor is a volt or a temp sensor, for bank2 and the pwms its * easier todo things the same way. For in sensors we have 9 (temp 7) * sysfs entries per sensor, for bank2 and pwms 6. */ struct sensor_device_attribute_2 sysfs_attr[ ABIT_UGURU_MAX_BANK1_SENSORS * 9 + ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; /* Buffer to store the dynamically generated sysfs names */ char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH]; /* Bank 1 data */ /* number of and addresses of [0] in, [1] temp sensors */ u8 bank1_sensors[2]; u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS]; u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS]; /* * This array holds 3 entries per sensor for the bank 1 sensor settings * (flags, min, max for voltage / flags, warn, shutdown for temp). */ u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3]; /* * Maximum value for each sensor used for scaling in mV/millidegrees * Celsius. */ int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS]; /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ u8 bank2_sensors; /* actual number of bank2 sensors found */ u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ /* Alarms 2 bytes for bank1, 1 byte for bank2 */ u8 alarms[3]; /* Fan PWM (speed control) 5 bytes per PWM */ u8 pwms; /* actual number of pwms found */ u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; }; static const char *never_happen = "This should never happen."; static const char *report_this = "Please report this to the abituguru maintainer (see MAINTAINERS)"; /* wait till the uguru is in the specified state */ static int abituguru_wait(struct abituguru_data *data, u8 state) { int timeout = ABIT_UGURU_WAIT_TIMEOUT; while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { timeout--; if (timeout == 0) return -EBUSY; /* * sleep a bit before our last few tries, see the comment on * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. */ if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP) msleep(0); } return 0; } /* Put the uguru in ready for input state */ static int abituguru_ready(struct abituguru_data *data) { int timeout = ABIT_UGURU_READY_TIMEOUT; if (data->uguru_ready) return 0; /* Reset? / Prepare for next read/write cycle */ outb(0x00, data->addr + ABIT_UGURU_DATA); /* Wait till the uguru is ready */ if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for ready state\n"); return -EIO; } /* Cmd port MUST be read now and should contain 0xAC */ while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { timeout--; if (timeout == 0) { ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after ready command\n"); return -EIO; } msleep(0); } /* * After this the ABIT_UGURU_DATA port should contain * ABIT_UGURU_STATUS_INPUT */ timeout = ABIT_UGURU_READY_TIMEOUT; while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { timeout--; if (timeout == 0) { ABIT_UGURU_DEBUG(1, "state != more input after ready command\n"); return -EIO; } msleep(0); } data->uguru_ready = 1; return 0; } /* * Send the bank and then sensor address to the uGuru for the next read/write * cycle. This function gets called as the first part of a read/write by * abituguru_read and abituguru_write. This function should never be * called by any other function. */ static int abituguru_send_address(struct abituguru_data *data, u8 bank_addr, u8 sensor_addr, int retries) { /* * assume the caller does error handling itself if it has not requested * any retries, and thus be quiet. */ int report_errors = retries; for (;;) { /* * Make sure the uguru is ready and then send the bank address, * after this the uguru is no longer "ready". */ if (abituguru_ready(data) != 0) return -EIO; outb(bank_addr, data->addr + ABIT_UGURU_DATA); data->uguru_ready = 0; /* * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again * and send the sensor addr */ if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { if (retries) { ABIT_UGURU_DEBUG(3, "timeout exceeded " "waiting for more input state, %d " "tries remaining\n", retries); set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(ABIT_UGURU_RETRY_DELAY); retries--; continue; } if (report_errors) ABIT_UGURU_DEBUG(1, "timeout exceeded " "waiting for more input state " "(bank: %d)\n", (int)bank_addr); return -EBUSY; } outb(sensor_addr, data->addr + ABIT_UGURU_CMD); return 0; } } /* * Read count bytes from sensor sensor_addr in bank bank_addr and store the * result in buf, retry the send address part of the read retries times. */ static int abituguru_read(struct abituguru_data *data, u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) { int i; /* Send the address */ i = abituguru_send_address(data, bank_addr, sensor_addr, retries); if (i) return i; /* And read the data */ for (i = 0; i < count; i++) { if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { ABIT_UGURU_DEBUG(retries ? 1 : 3, "timeout exceeded waiting for " "read state (bank: %d, sensor: %d)\n", (int)bank_addr, (int)sensor_addr); break; } buf[i] = inb(data->addr + ABIT_UGURU_CMD); } /* Last put the chip back in ready state */ abituguru_ready(data); return i; } /* * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */ static int abituguru_write(struct abituguru_data *data, u8 bank_addr, u8 sensor_addr, u8 *buf, int count) { /* * We use the ready timeout as we have to wait for 0xAC just like the * ready function */ int i, timeout = ABIT_UGURU_READY_TIMEOUT; /* Send the address */ i = abituguru_send_address(data, bank_addr, sensor_addr, ABIT_UGURU_MAX_RETRIES); if (i) return i; /* And write the data */ for (i = 0; i < count; i++) { if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " "write state (bank: %d, sensor: %d)\n", (int)bank_addr, (int)sensor_addr); break; } outb(buf[i], data->addr + ABIT_UGURU_CMD); } /* * Now we need to wait till the chip is ready to be read again, * so that we can read 0xAC as confirmation that our write has * succeeded. */ if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " "after write (bank: %d, sensor: %d)\n", (int)bank_addr, (int)sensor_addr); return -EIO; } /* Cmd port MUST be read now and should contain 0xAC */ while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { timeout--; if (timeout == 0) { ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after " "write (bank: %d, sensor: %d)\n", (int)bank_addr, (int)sensor_addr); return -EIO; } msleep(0); } /* Last put the chip back in ready state */ abituguru_ready(data); return i; } /* * Detect sensor type. Temp and Volt sensors are enabled with * different masks and will ignore enable masks not meant for them. * This enables us to test what kind of sensor we're dealing with. * By setting the alarm thresholds so that we will always get an * alarm for sensor type X and then enabling the sensor as sensor type * X, if we then get an alarm it is a sensor of type X. */ static int abituguru_detect_bank1_sensor_type(struct abituguru_data *data, u8 sensor_addr) { u8 val, test_flag, buf[3]; int i, ret = -ENODEV; /* error is the most common used retval :| */ /* If overriden by the user return the user selected type */ if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR && bank1_types[sensor_addr] <= ABIT_UGURU_NC) { ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor " "%d because of \"bank1_types\" module param\n", bank1_types[sensor_addr], (int)sensor_addr); return bank1_types[sensor_addr]; } /* First read the sensor and the current settings */ if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, 1, ABIT_UGURU_MAX_RETRIES) != 1) return -ENODEV; /* Test val is sane / usable for sensor type detection. */ if ((val < 10u) || (val > 250u)) { pr_warn("bank1-sensor: %d reading (%d) too close to limits, " "unable to determine sensor type, skipping sensor\n", (int)sensor_addr, (int)val); /* * assume no sensor is there for sensors for which we can't * determine the sensor type because their reading is too close * to their limits, this usually means no sensor is there. */ return ABIT_UGURU_NC; } ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); /* * Volt sensor test, enable volt low alarm, set min value ridiculously * high, or vica versa if the reading is very high. If its a volt * sensor this should always give us an alarm. */ if (val <= 240u) { buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; buf[1] = 245; buf[2] = 250; test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG; } else { buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE; buf[1] = 5; buf[2] = 10; test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG; } if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, buf, 3) != 3) goto abituguru_detect_bank1_sensor_type_exit; /* * Now we need 20 ms to give the uguru time to read the sensors * and raise a voltage alarm */ set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ/50); /* Check for alarm and check the alarm is a volt low alarm. */ if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, ABIT_UGURU_MAX_RETRIES) != 3) goto abituguru_detect_bank1_sensor_type_exit; if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, sensor_addr, buf, 3, ABIT_UGURU_MAX_RETRIES) != 3) goto abituguru_detect_bank1_sensor_type_exit; if (buf[0] & test_flag) { ABIT_UGURU_DEBUG(2, " found volt sensor\n"); ret = ABIT_UGURU_IN_SENSOR; goto abituguru_detect_bank1_sensor_type_exit; } else ABIT_UGURU_DEBUG(2, " alarm raised during volt " "sensor test, but volt range flag not set\n"); } else ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " "test\n"); /* * Temp sensor test, enable sensor as a temp sensor, set beep value * ridiculously low (but not too low, otherwise uguru ignores it). * If its a temp sensor this should always give us an alarm. */ buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; buf[1] = 5; buf[2] = 10; if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, buf, 3) != 3) goto abituguru_detect_bank1_sensor_type_exit; /* * Now we need 50 ms to give the uguru time to read the sensors * and raise a temp alarm */ set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ/20); /* Check for alarm and check the alarm is a temp high alarm. */ if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, ABIT_UGURU_MAX_RETRIES) != 3) goto abituguru_detect_bank1_sensor_type_exit; if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, sensor_addr, buf, 3, ABIT_UGURU_MAX_RETRIES) != 3) goto abituguru_detect_bank1_sensor_type_exit; if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { ABIT_UGURU_DEBUG(2, " found temp sensor\n"); ret = ABIT_UGURU_TEMP_SENSOR; goto abituguru_detect_bank1_sensor_type_exit; } else ABIT_UGURU_DEBUG(2, " alarm raised during temp " "sensor test, but temp high flag not set\n"); } else ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " "test\n"); ret = ABIT_UGURU_NC; abituguru_detect_bank1_sensor_type_exit: /* * Restore original settings, failing here is really BAD, it has been * reported that some BIOS-es hang when entering the uGuru menu with * invalid settings present in the uGuru, so we try this 3 times. */ for (i = 0; i < 3; i++) if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, data->bank1_settings[sensor_addr], 3) == 3) break; if (i == 3) { pr_err("Fatal error could not restore original settings. %s %s\n", never_happen, report_this); return -ENODEV; } return ret; } /* * These functions try to find out how many sensors there are in bank2 and how * many pwms there are. The purpose of this is to make sure that we don't give * the user the possibility to change settings for non-existent sensors / pwm. * The uGuru will happily read / write whatever memory happens to be after the * memory storing the PWM settings when reading/writing to a PWM which is not * there. Notice even if we detect a PWM which doesn't exist we normally won't * write to it, unless the user tries to change the settings. * * Although the uGuru allows reading (settings) from non existing bank2 * sensors, my version of the uGuru does seem to stop writing to them, the * write function above aborts in this case with: * "CMD reg does not hold 0xAC after write" * * Notice these 2 tests are non destructive iow read-only tests, otherwise * they would defeat their purpose. Although for the bank2_sensors detection a * read/write test would be feasible because of the reaction above, I've * however opted to stay on the safe side. */ static void abituguru_detect_no_bank2_sensors(struct abituguru_data *data) { int i; if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) { data->bank2_sensors = fan_sensors; ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " "\"fan_sensors\" module param\n", (int)data->bank2_sensors); return; } ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { /* * 0x89 are the known used bits: * -0x80 enable shutdown * -0x08 enable beep * -0x01 enable alarm * All other bits should be 0, but on some motherboards * 0x40 (bit 6) is also high for some of the fans?? */ if (data->bank2_settings[i][0] & ~0xC9) { ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " "to be a fan sensor: settings[0] = %02X\n", i, (unsigned int)data->bank2_settings[i][0]); break; } /* check if the threshold is within the allowed range */ if (data->bank2_settings[i][1] < abituguru_bank2_min_threshold) { ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " "to be a fan sensor: the threshold (%d) is " "below the minimum (%d)\n", i, (int)data->bank2_settings[i][1], (int)abituguru_bank2_min_threshold); break; } if (data->bank2_settings[i][1] > abituguru_bank2_max_threshold) { ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " "to be a fan sensor: the threshold (%d) is " "above the maximum (%d)\n", i, (int)data->bank2_settings[i][1], (int)abituguru_bank2_max_threshold); break; } } data->bank2_sensors = i; ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", (int)data->bank2_sensors); } static void abituguru_detect_no_pwms(struct abituguru_data *data) { int i, j; if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) { data->pwms = pwms; ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " "\"pwms\" module param\n", (int)data->pwms); return; } ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { /* * 0x80 is the enable bit and the low * nibble is which temp sensor to use, * the other bits should be 0 */ if (data->pwm_settings[i][0] & ~0x8F) { ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " "to be a pwm channel: settings[0] = %02X\n", i, (unsigned int)data->pwm_settings[i][0]); break; } /* * the low nibble must correspond to one of the temp sensors * we've found */ for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; j++) { if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == (data->pwm_settings[i][0] & 0x0F)) break; } if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " "to be a pwm channel: %d is not a valid temp " "sensor address\n", i, data->pwm_settings[i][0] & 0x0F); break; } /* check if all other settings are within the allowed range */ for (j = 1; j < 5; j++) { u8 min; /* special case pwm1 min pwm% */ if ((i == 0) && ((j == 1) || (j == 2))) min = 77; else min = abituguru_pwm_min[j]; if (data->pwm_settings[i][j] < min) { ABIT_UGURU_DEBUG(2, " pwm channel %d does " "not seem to be a pwm channel: " "setting %d (%d) is below the minimum " "value (%d)\n", i, j, (int)data->pwm_settings[i][j], (int)min); goto abituguru_detect_no_pwms_exit; } if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { ABIT_UGURU_DEBUG(2, " pwm channel %d does " "not seem to be a pwm channel: " "setting %d (%d) is above the maximum " "value (%d)\n", i, j, (int)data->pwm_settings[i][j], (int)abituguru_pwm_max[j]); goto abituguru_detect_no_pwms_exit; } } /* check that min temp < max temp and min pwm < max pwm */ if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " "to be a pwm channel: min pwm (%d) >= " "max pwm (%d)\n", i, (int)data->pwm_settings[i][1], (int)data->pwm_settings[i][2]); break; } if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " "to be a pwm channel: min temp (%d) >= " "max temp (%d)\n", i, (int)data->pwm_settings[i][3], (int)data->pwm_settings[i][4]); break; } } abituguru_detect_no_pwms_exit: data->pwms = i; ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); } /* * Following are the sysfs callback functions. These functions expect: * sensor_device_attribute_2->index: sensor address/offset in the bank * sensor_device_attribute_2->nr: register offset, bitmask or NA. */ static struct abituguru_data *abituguru_update_device(struct device *dev); static ssize_t show_bank1_value(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = abituguru_update_device(dev); if (!data) return -EIO; return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * data->bank1_max_value[attr->index] + 128) / 255); } static ssize_t show_bank1_setting(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", (data->bank1_settings[attr->index][attr->nr] * data->bank1_max_value[attr->index] + 128) / 255); } static ssize_t show_bank2_value(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = abituguru_update_device(dev); if (!data) return -EIO; return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * ABIT_UGURU_FAN_MAX + 128) / 255); } static ssize_t show_bank2_setting(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", (data->bank2_settings[attr->index][attr->nr] * ABIT_UGURU_FAN_MAX + 128) / 255); } static ssize_t store_bank1_setting(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); unsigned long val; ssize_t ret; ret = kstrtoul(buf, 10, &val); if (ret) return ret; ret = count; val = (val * 255 + data->bank1_max_value[attr->index] / 2) / data->bank1_max_value[attr->index]; if (val > 255) return -EINVAL; mutex_lock(&data->update_lock); if (data->bank1_settings[attr->index][attr->nr] != val) { u8 orig_val = data->bank1_settings[attr->index][attr->nr]; data->bank1_settings[attr->index][attr->nr] = val; if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, data->bank1_settings[attr->index], 3) <= attr->nr) { data->bank1_settings[attr->index][attr->nr] = orig_val; ret = -EIO; } } mutex_unlock(&data->update_lock); return ret; } static ssize_t store_bank2_setting(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); unsigned long val; ssize_t ret; ret = kstrtoul(buf, 10, &val); if (ret) return ret; ret = count; val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX; /* this check can be done before taking the lock */ if (val < abituguru_bank2_min_threshold || val > abituguru_bank2_max_threshold) return -EINVAL; mutex_lock(&data->update_lock); if (data->bank2_settings[attr->index][attr->nr] != val) { u8 orig_val = data->bank2_settings[attr->index][attr->nr]; data->bank2_settings[attr->index][attr->nr] = val; if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, data->bank2_settings[attr->index], 2) <= attr->nr) { data->bank2_settings[attr->index][attr->nr] = orig_val; ret = -EIO; } } mutex_unlock(&data->update_lock); return ret; } static ssize_t show_bank1_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = abituguru_update_device(dev); if (!data) return -EIO; /* * See if the alarm bit for this sensor is set, and if the * alarm matches the type of alarm we're looking for (for volt * it can be either low or high). The type is stored in a few * readonly bits in the settings part of the relevant sensor. * The bitmask of the type is passed to us in attr->nr. */ if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && (data->bank1_settings[attr->index][0] & attr->nr)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t show_bank2_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = abituguru_update_device(dev); if (!data) return -EIO; if (data->alarms[2] & (0x01 << attr->index)) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t show_bank1_mask(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); if (data->bank1_settings[attr->index][0] & attr->nr) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t show_bank2_mask(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); if (data->bank2_settings[attr->index][0] & attr->nr) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t store_bank1_mask(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); ssize_t ret; u8 orig_val; unsigned long mask; ret = kstrtoul(buf, 10, &mask); if (ret) return ret; ret = count; mutex_lock(&data->update_lock); orig_val = data->bank1_settings[attr->index][0]; if (mask) data->bank1_settings[attr->index][0] |= attr->nr; else data->bank1_settings[attr->index][0] &= ~attr->nr; if ((data->bank1_settings[attr->index][0] != orig_val) && (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, data->bank1_settings[attr->index], 3) < 1)) { data->bank1_settings[attr->index][0] = orig_val; ret = -EIO; } mutex_unlock(&data->update_lock); return ret; } static ssize_t store_bank2_mask(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); ssize_t ret; u8 orig_val; unsigned long mask; ret = kstrtoul(buf, 10, &mask); if (ret) return ret; ret = count; mutex_lock(&data->update_lock); orig_val = data->bank2_settings[attr->index][0]; if (mask) data->bank2_settings[attr->index][0] |= attr->nr; else data->bank2_settings[attr->index][0] &= ~attr->nr; if ((data->bank2_settings[attr->index][0] != orig_val) && (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, data->bank2_settings[attr->index], 2) < 1)) { data->bank2_settings[attr->index][0] = orig_val; ret = -EIO; } mutex_unlock(&data->update_lock); return ret; } /* Fan PWM (speed control) */ static ssize_t show_pwm_setting(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * abituguru_pwm_settings_multiplier[attr->nr]); } static ssize_t store_pwm_setting(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); u8 min; unsigned long val; ssize_t ret; ret = kstrtoul(buf, 10, &val); if (ret) return ret; ret = count; val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) / abituguru_pwm_settings_multiplier[attr->nr]; /* special case pwm1 min pwm% */ if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) min = 77; else min = abituguru_pwm_min[attr->nr]; /* this check can be done before taking the lock */ if (val < min || val > abituguru_pwm_max[attr->nr]) return -EINVAL; mutex_lock(&data->update_lock); /* this check needs to be done after taking the lock */ if ((attr->nr & 1) && (val >= data->pwm_settings[attr->index][attr->nr + 1])) ret = -EINVAL; else if (!(attr->nr & 1) && (val <= data->pwm_settings[attr->index][attr->nr - 1])) ret = -EINVAL; else if (data->pwm_settings[attr->index][attr->nr] != val) { u8 orig_val = data->pwm_settings[attr->index][attr->nr]; data->pwm_settings[attr->index][attr->nr] = val; if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, data->pwm_settings[attr->index], 5) <= attr->nr) { data->pwm_settings[attr->index][attr->nr] = orig_val; ret = -EIO; } } mutex_unlock(&data->update_lock); return ret; } static ssize_t show_pwm_sensor(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); int i; /* * We need to walk to the temp sensor addresses to find what * the userspace id of the configured temp sensor is. */ for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == (data->pwm_settings[attr->index][0] & 0x0F)) return sprintf(buf, "%d\n", i+1); return -ENXIO; } static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); ssize_t ret; unsigned long val; u8 orig_val; u8 address; ret = kstrtoul(buf, 10, &val); if (ret) return ret; if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) return -EINVAL; val -= 1; ret = count; mutex_lock(&data->update_lock); orig_val = data->pwm_settings[attr->index][0]; address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; data->pwm_settings[attr->index][0] &= 0xF0; data->pwm_settings[attr->index][0] |= address; if (data->pwm_settings[attr->index][0] != orig_val) { if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, data->pwm_settings[attr->index], 5) < 1) { data->pwm_settings[attr->index][0] = orig_val; ret = -EIO; } } mutex_unlock(&data->update_lock); return ret; } static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); int res = 0; if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) res = 2; return sprintf(buf, "%d\n", res); } static ssize_t store_pwm_enable(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct abituguru_data *data = dev_get_drvdata(dev); u8 orig_val; ssize_t ret; unsigned long user_val; ret = kstrtoul(buf, 10, &user_val); if (ret) return ret; ret = count; mutex_lock(&data->update_lock); orig_val = data->pwm_settings[attr->index][0]; switch (user_val) { case 0: data->pwm_settings[attr->index][0] &= ~ABIT_UGURU_FAN_PWM_ENABLE; break; case 2: data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE; break; default: ret = -EINVAL; } if ((data->pwm_settings[attr->index][0] != orig_val) && (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, data->pwm_settings[attr->index], 5) < 1)) { data->pwm_settings[attr->index][0] = orig_val; ret = -EIO; } mutex_unlock(&data->update_lock); return ret; } static ssize_t show_name(struct device *dev, struct device_attribute *devattr, char *buf) { return sprintf(buf, "%s\n", ABIT_UGURU_NAME); } /* Sysfs attr templates, the real entries are generated automatically. */ static const struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { { SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, store_bank1_setting, 1, 0), SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, store_bank1_setting, 2, 0), SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), }, { SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, store_bank1_setting, 1, 0), SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, store_bank1_setting, 2, 0), SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), } }; static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, store_bank2_setting, 1, 0), SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), }; static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, store_pwm_enable, 0, 0), SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, store_pwm_sensor, 0, 0), SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, store_pwm_setting, 1, 0), SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, store_pwm_setting, 2, 0), SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, store_pwm_setting, 3, 0), SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, store_pwm_setting, 4, 0), }; static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), }; static int abituguru_probe(struct platform_device *pdev) { struct abituguru_data *data; int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV; char *sysfs_filename; /* * El weirdo probe order, to keep the sysfs order identical to the * BIOS and window-appliction listing order. */ static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = { 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02, 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data), GFP_KERNEL); if (!data) return -ENOMEM; data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; mutex_init(&data->update_lock); platform_set_drvdata(pdev, data); /* See if the uGuru is ready */ if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) data->uguru_ready = 1; /* * Completely read the uGuru this has 2 purposes: * - testread / see if one really is there. * - make an in memory copy of all the uguru settings for future use. */ if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) goto abituguru_probe_error; for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, &data->bank1_value[i], 1, ABIT_UGURU_MAX_RETRIES) != 1) goto abituguru_probe_error; if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, data->bank1_settings[i], 3, ABIT_UGURU_MAX_RETRIES) != 3) goto abituguru_probe_error; } /* * Note: We don't know how many bank2 sensors / pwms there really are, * but in order to "detect" this we need to read the maximum amount * anyways. If we read sensors/pwms not there we'll just read crap * this can't hurt. We need the detection because we don't want * unwanted writes, which will hurt! */ for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, &data->bank2_value[i], 1, ABIT_UGURU_MAX_RETRIES) != 1) goto abituguru_probe_error; if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, data->bank2_settings[i], 2, ABIT_UGURU_MAX_RETRIES) != 2) goto abituguru_probe_error; } for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, data->pwm_settings[i], 5, ABIT_UGURU_MAX_RETRIES) != 5) goto abituguru_probe_error; } data->last_updated = jiffies; /* Detect sensor types and fill the sysfs attr for bank1 */ sysfs_attr_i = 0; sysfs_filename = data->sysfs_names; sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH; for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); if (res < 0) goto abituguru_probe_error; if (res == ABIT_UGURU_NC) continue; /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */ for (j = 0; j < (res ? 7 : 9); j++) { used = snprintf(sysfs_filename, sysfs_names_free, abituguru_sysfs_bank1_templ[res][j].dev_attr. attr.name, data->bank1_sensors[res] + res) + 1; data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_bank1_templ[res][j]; data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = sysfs_filename; data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; sysfs_filename += used; sysfs_names_free -= used; sysfs_attr_i++; } data->bank1_max_value[probe_order[i]] = abituguru_bank1_max_value[res]; data->bank1_address[res][data->bank1_sensors[res]] = probe_order[i]; data->bank1_sensors[res]++; } /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ abituguru_detect_no_bank2_sensors(data); for (i = 0; i < data->bank2_sensors; i++) { for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) { used = snprintf(sysfs_filename, sysfs_names_free, abituguru_sysfs_fan_templ[j].dev_attr.attr.name, i + 1) + 1; data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_fan_templ[j]; data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = sysfs_filename; data->sysfs_attr[sysfs_attr_i].index = i; sysfs_filename += used; sysfs_names_free -= used; sysfs_attr_i++; } } /* Detect number of sensors and fill the sysfs attr for pwms */ abituguru_detect_no_pwms(data); for (i = 0; i < data->pwms; i++) { for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) { used = snprintf(sysfs_filename, sysfs_names_free, abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, i + 1) + 1; data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_pwm_templ[j]; data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = sysfs_filename; data->sysfs_attr[sysfs_attr_i].index = i; sysfs_filename += used; sysfs_names_free -= used; sysfs_attr_i++; } } /* Fail safe check, this should never happen! */ if (sysfs_names_free < 0) { pr_err("Fatal error ran out of space for sysfs attr names. %s %s", never_happen, report_this); res = -ENAMETOOLONG; goto abituguru_probe_error; } pr_info("found Abit uGuru\n"); /* Register sysfs hooks */ for (i = 0; i < sysfs_attr_i; i++) { res = device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); if (res) goto abituguru_probe_error; } for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { res = device_create_file(&pdev->dev, &abituguru_sysfs_attr[i].dev_attr); if (res) goto abituguru_probe_error; } data->hwmon_dev = hwmon_device_register(&pdev->dev); if (!IS_ERR(data->hwmon_dev)) return 0; /* success */ res = PTR_ERR(data->hwmon_dev); abituguru_probe_error: for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) device_remove_file(&pdev->dev, &abituguru_sysfs_attr[i].dev_attr); return res; } static int abituguru_remove(struct platform_device *pdev) { int i; struct abituguru_data *data = platform_get_drvdata(pdev); hwmon_device_unregister(data->hwmon_dev); for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) device_remove_file(&pdev->dev, &abituguru_sysfs_attr[i].dev_attr); return 0; } static struct abituguru_data *abituguru_update_device(struct device *dev) { int i, err; struct abituguru_data *data = dev_get_drvdata(dev); /* fake a complete successful read if no update necessary. */ char success = 1; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ)) { success = 0; err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, data->alarms, 3, 0); if (err != 3) goto LEAVE_UPDATE; for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, &data->bank1_value[i], 1, 0); if (err != 1) goto LEAVE_UPDATE; err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, i, data->bank1_settings[i], 3, 0); if (err != 3) goto LEAVE_UPDATE; } for (i = 0; i < data->bank2_sensors; i++) { err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, &data->bank2_value[i], 1, 0); if (err != 1) goto LEAVE_UPDATE; } /* success! */ success = 1; data->update_timeouts = 0; LEAVE_UPDATE: /* handle timeout condition */ if (!success && (err == -EBUSY || err >= 0)) { /* No overflow please */ if (data->update_timeouts < 255u) data->update_timeouts++; if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { ABIT_UGURU_DEBUG(3, "timeout exceeded, will " "try again next update\n"); /* Just a timeout, fake a successful read */ success = 1; } else ABIT_UGURU_DEBUG(1, "timeout exceeded %d " "times waiting for more input state\n", (int)data->update_timeouts); } /* On success set last_updated */ if (success) data->last_updated = jiffies; } mutex_unlock(&data->update_lock); if (success) return data; else return NULL; } #ifdef CONFIG_PM_SLEEP static int abituguru_suspend(struct device *dev) { struct abituguru_data *data = dev_get_drvdata(dev); /* * make sure all communications with the uguru are done and no new * ones are started */ mutex_lock(&data->update_lock); return 0; } static int abituguru_resume(struct device *dev) { struct abituguru_data *data = dev_get_drvdata(dev); /* See if the uGuru is still ready */ if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) data->uguru_ready = 0; mutex_unlock(&data->update_lock); return 0; } static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume); #define ABIT_UGURU_PM (&abituguru_pm) #else #define ABIT_UGURU_PM NULL #endif /* CONFIG_PM */ static struct platform_driver abituguru_driver = { .driver = { .name = ABIT_UGURU_NAME, .pm = ABIT_UGURU_PM, }, .probe = abituguru_probe, .remove = abituguru_remove, }; static int __init abituguru_detect(void) { /* * See if there is an uguru there. After a reboot uGuru will hold 0x00 * at DATA and 0xAC, when this driver has already been loaded once * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either * scenario but some will hold 0x00. * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08 * after reading CMD first, so CMD must be read first! */ u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); if (((data_val == 0x00) || (data_val == 0x08)) && ((cmd_val == 0x00) || (cmd_val == 0xAC))) return ABIT_UGURU_BASE; ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); if (force) { pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n"); return ABIT_UGURU_BASE; } /* No uGuru found */ return -ENODEV; } static struct platform_device *abituguru_pdev; static int __init abituguru_init(void) { int address, err; struct resource res = { .flags = IORESOURCE_IO }; const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR); /* safety check, refuse to load on non Abit motherboards */ if (!force && (!board_vendor || strcmp(board_vendor, "http://www.abit.com.tw/"))) return -ENODEV; address = abituguru_detect(); if (address < 0) return address; err = platform_driver_register(&abituguru_driver); if (err) goto exit; abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); if (!abituguru_pdev) { pr_err("Device allocation failed\n"); err = -ENOMEM; goto exit_driver_unregister; } res.start = address; res.end = address + ABIT_UGURU_REGION_LENGTH - 1; res.name = ABIT_UGURU_NAME; err = platform_device_add_resources(abituguru_pdev, &res, 1); if (err) { pr_err("Device resource addition failed (%d)\n", err); goto exit_device_put; } err = platform_device_add(abituguru_pdev); if (err) { pr_err("Device addition failed (%d)\n", err); goto exit_device_put; } return 0; exit_device_put: platform_device_put(abituguru_pdev); exit_driver_unregister: platform_driver_unregister(&abituguru_driver); exit: return err; } static void __exit abituguru_exit(void) { platform_device_unregister(abituguru_pdev); platform_driver_unregister(&abituguru_driver); } MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); MODULE_DESCRIPTION("Abit uGuru Sensor device"); MODULE_LICENSE("GPL"); module_init(abituguru_init); module_exit(abituguru_exit);