// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 VeriSilicon Holdings Co., Ltd. * * refer to bridge/synopsys/dw-mipi-dsi.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if KERNEL_VERSION(5, 5, 0) <= LINUX_VERSION_CODE #include #else #include #endif #include "dw_mipi_dsi.h" #define DSI_VERSION 0x00 #define DSI_PWR_UP 0x04 #define RESET 0 #define POWERUP BIT(0) #define DSI_CLKMGR_CFG 0x08 #define TO_CLK_DIVISION(div) (((div) & 0xff) << 8) #define TX_ESC_CLK_DIVISION(div) ((div) & 0xff) #define DSI_DPI_VCID 0x0c #define DPI_VCID(vcid) ((vcid) & 0x3) #define DSI_DPI_COLOR_CODING 0x10 #define LOOSELY18_EN BIT(8) #define DPI_COLOR_CODING_16BIT_1 0x0 #define DPI_COLOR_CODING_16BIT_2 0x1 #define DPI_COLOR_CODING_16BIT_3 0x2 #define DPI_COLOR_CODING_18BIT_1 0x3 #define DPI_COLOR_CODING_18BIT_2 0x4 #define DPI_COLOR_CODING_24BIT 0x5 #define DSI_DPI_CFG_POL 0x14 #define COLORM_ACTIVE_LOW BIT(4) #define SHUTD_ACTIVE_LOW BIT(3) #define HSYNC_ACTIVE_LOW BIT(2) #define VSYNC_ACTIVE_LOW BIT(1) #define DATAEN_ACTIVE_LOW BIT(0) #define DSI_DPI_LP_CMD_TIM 0x18 #define OUTVACT_LPCMD_TIME(p) (((p) & 0xff) << 16) #define INVACT_LPCMD_TIME(p) ((p) & 0xff) #define DSI_DBI_VCID 0x1c #define DSI_DBI_CFG 0x20 #define DSI_DBI_PARTITIONING_EN 0x24 #define DSI_DBI_CMDSIZE 0x28 #define DSI_PCKHDL_CFG 0x2c #define EOTP_TX_LP_EN BIT(5) #define CRC_RX_EN BIT(4) #define ECC_RX_EN BIT(3) #define BTA_EN BIT(2) #define EOTP_RX_EN BIT(1) #define EOTP_TX_EN BIT(0) #define DSI_GEN_VCID 0x30 #define DSI_MODE_CFG 0x34 #define ENABLE_VIDEO_MODE 0 #define ENABLE_CMD_MODE BIT(0) #define DSI_VID_MODE_CFG 0x38 #define ENABLE_LOW_POWER (0x3f << 8) #define ENABLE_LOW_POWER_MASK (0x3f << 8) #define VID_MODE_TYPE_NON_BURST_SYNC_PULSES 0x0 #define VID_MODE_TYPE_NON_BURST_SYNC_EVENTS 0x1 #define VID_MODE_TYPE_BURST 0x2 #define VID_MODE_TYPE_MASK 0x3 #define DSI_VID_PKT_SIZE 0x3c #define VID_PKT_SIZE(p) ((p) & 0x3fff) #define DSI_VID_NUM_CHUNKS 0x40 #define VID_NUM_CHUNKS(c) ((c) & 0x1fff) #define DSI_VID_NULL_SIZE 0x44 #define VID_NULL_SIZE(b) ((b) & 0x1fff) #define DSI_VID_HSA_TIME 0x48 #define DSI_VID_HBP_TIME 0x4c #define DSI_VID_HLINE_TIME 0x50 #define DSI_VID_VSA_LINES 0x54 #define DSI_VID_VBP_LINES 0x58 #define DSI_VID_VFP_LINES 0x5c #define DSI_VID_VACTIVE_LINES 0x60 #define DSI_EDPI_CMD_SIZE 0x64 #define DSI_CMD_MODE_CFG 0x68 #define MAX_RD_PKT_SIZE_LP BIT(24) #define DCS_LW_TX_LP BIT(19) #define DCS_SR_0P_TX_LP BIT(18) #define DCS_SW_1P_TX_LP BIT(17) #define DCS_SW_0P_TX_LP BIT(16) #define GEN_LW_TX_LP BIT(14) #define GEN_SR_2P_TX_LP BIT(13) #define GEN_SR_1P_TX_LP BIT(12) #define GEN_SR_0P_TX_LP BIT(11) #define GEN_SW_2P_TX_LP BIT(10) #define GEN_SW_1P_TX_LP BIT(9) #define GEN_SW_0P_TX_LP BIT(8) #define ACK_RQST_EN BIT(1) #define TEAR_FX_EN BIT(0) #define CMD_MODE_ALL_LP (MAX_RD_PKT_SIZE_LP | \ DCS_LW_TX_LP | \ DCS_SR_0P_TX_LP | \ DCS_SW_1P_TX_LP | \ DCS_SW_0P_TX_LP | \ GEN_LW_TX_LP | \ GEN_SR_2P_TX_LP | \ GEN_SR_1P_TX_LP | \ GEN_SR_0P_TX_LP | \ GEN_SW_2P_TX_LP | \ GEN_SW_1P_TX_LP | \ GEN_SW_0P_TX_LP) #define DSI_GEN_HDR 0x6c #define DSI_GEN_PLD_DATA 0x70 #define DSI_CMD_PKT_STATUS 0x74 #define GEN_RD_CMD_BUSY BIT(6) #define GEN_PLD_R_FULL BIT(5) #define GEN_PLD_R_EMPTY BIT(4) #define GEN_PLD_W_FULL BIT(3) #define GEN_PLD_W_EMPTY BIT(2) #define GEN_CMD_FULL BIT(1) #define GEN_CMD_EMPTY BIT(0) #define DSI_TO_CNT_CFG 0x78 #define HSTX_TO_CNT(p) (((p) & 0xffff) << 16) #define LPRX_TO_CNT(p) ((p) & 0xffff) #define DSI_HS_RD_TO_CNT 0x7c #define DSI_LP_RD_TO_CNT 0x80 #define DSI_HS_WR_TO_CNT 0x84 #define DSI_LP_WR_TO_CNT 0x88 #define DSI_BTA_TO_CNT 0x8c #define DSI_LPCLK_CTRL 0x94 #define AUTO_CLKLANE_CTRL BIT(1) #define PHY_TXREQUESTCLKHS BIT(0) #define DSI_PHY_TMR_LPCLK_CFG 0x98 #define PHY_CLKHS2LP_TIME(lbcc) (((lbcc) & 0x3ff) << 16) #define PHY_CLKLP2HS_TIME(lbcc) ((lbcc) & 0x3ff) #define DSI_PHY_TMR_CFG 0x9c #define PHY_HS2LP_TIME(lbcc) (((lbcc) & 0x3ff) << 16) #define PHY_LP2HS_TIME(lbcc) ((lbcc) & 0x3ff) #define DSI_PHY_RSTZ 0xa0 #define PHY_DISFORCEPLL 0 #define PHY_ENFORCEPLL BIT(3) #define PHY_DISABLECLK 0 #define PHY_ENABLECLK BIT(2) #define PHY_RSTZ 0 #define PHY_UNRSTZ BIT(1) #define PHY_SHUTDOWNZ 0 #define PHY_UNSHUTDOWNZ BIT(0) #define DSI_PHY_IF_CFG 0xa4 #define PHY_STOP_WAIT_TIME(cycle) (((cycle) & 0xff) << 8) #define N_LANES(n) (((n) - 1) & 0x3) #define DSI_PHY_ULPS_CTRL 0xa8 #define DSI_PHY_TX_TRIGGERS 0xac #define DSI_PHY_STATUS 0xb0 #define PHY_STOP_STATE_CLK_LANE BIT(2) #define PHY_LOCK BIT(0) #define DSI_INT_ST0 0xbc #define DSI_INT_ST1 0xc0 #define DSI_INT_MSK0 0xc4 #define DSI_INT_MSK1 0xc8 #define DSI_PHY_TMR_RD_CFG 0xf4 #define MAX_RD_TIME(lbcc) ((lbcc) & 0x7fff) #define PHY_STATUS_TIMEOUT_US 10000 #define CMD_PKT_STATUS_TIMEOUT_US 20000 #define MAX_LANE_COUNT 4 struct dw_mipi_dsi; struct dw_mipi_dsi_funcs { struct dw_mipi_dsi *(*get_dsi)(struct device *dev); int (*bind)(struct dw_mipi_dsi *dsi); void (*unbind)(struct dw_mipi_dsi *dsi); }; struct dw_mipi_dsi { struct device *dev; void __iomem *base; struct clk *pclk; struct phy *dphy; struct mipi_dsi_host host; unsigned int channel; unsigned int lanes; enum mipi_dsi_pixel_format format; unsigned long mode_flags; unsigned int lane_link_rate; /* kHz */ const struct dw_mipi_dsi_funcs *funcs; }; struct dw_mipi_dsi_primary { struct dw_mipi_dsi dsi; struct dw_mipi_dsi *secondary_dsi; struct drm_bridge bridge; struct drm_bridge *panel_bridge; u32 bus_format; }; static inline struct dw_mipi_dsi *host_to_dsi(struct mipi_dsi_host *host) { return container_of(host, struct dw_mipi_dsi, host); } static inline struct dw_mipi_dsi_primary *dsi_to_primary(struct dw_mipi_dsi *dsi) { return container_of(dsi, struct dw_mipi_dsi_primary, dsi); } static inline struct dw_mipi_dsi_primary *bridge_to_primary(struct drm_bridge *bridge) { return container_of(bridge, struct dw_mipi_dsi_primary, bridge); } static inline void dsi_write(struct dw_mipi_dsi *dsi, u32 reg, u32 val) { writel(val, dsi->base + reg); } static inline u32 dsi_read(struct dw_mipi_dsi *dsi, u32 reg) { return readl(dsi->base + reg); } static int dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct dw_mipi_dsi *dsi = host_to_dsi(host); if (device->lanes > MAX_LANE_COUNT) { DRM_ERROR("the number of data lanes(%u) is too many\n", device->lanes); return -EINVAL; } if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)) DRM_WARN("This DSI driver only support burst mode\n"); dsi->lanes = device->lanes; dsi->channel = device->channel; dsi->format = device->format; dsi->mode_flags = device->mode_flags; return 0; } static int dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { return 0; } static void dw_mipi_message_config(struct dw_mipi_dsi *dsi, const struct mipi_dsi_msg *msg) { bool lpm = msg->flags & MIPI_DSI_MSG_USE_LPM; u32 val = 0; if (msg->flags & MIPI_DSI_MSG_REQ_ACK) val |= ACK_RQST_EN; if (lpm) val |= CMD_MODE_ALL_LP; dsi_write(dsi, DSI_LPCLK_CTRL, lpm ? 0 : PHY_TXREQUESTCLKHS); dsi_write(dsi, DSI_CMD_MODE_CFG, val); } static int dw_mipi_dsi_gen_pkt_hdr_write(struct dw_mipi_dsi *dsi, u32 hdr_val) { int ret; u32 val, mask; ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_CMD_FULL), 1000, CMD_PKT_STATUS_TIMEOUT_US); if (ret) { DRM_ERROR("failed to get available command FIFO\n"); return ret; } dsi_write(dsi, DSI_GEN_HDR, hdr_val); mask = GEN_CMD_EMPTY | GEN_PLD_W_EMPTY; ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, (val & mask) == mask, 1000, CMD_PKT_STATUS_TIMEOUT_US); if (ret) { DRM_ERROR("failed to write command FIFO\n"); return ret; } return 0; } static int dw_mipi_dsi_write(struct dw_mipi_dsi *dsi, const struct mipi_dsi_packet *packet) { const u8 *tx_buf = packet->payload; int len = packet->payload_length, pld_data_bytes = sizeof(u32), ret; __le32 word; u32 val; while (len) { if (len < pld_data_bytes) { word = 0; memcpy(&word, tx_buf, len); dsi_write(dsi, DSI_GEN_PLD_DATA, le32_to_cpu(word)); len = 0; } else { memcpy(&word, tx_buf, pld_data_bytes); dsi_write(dsi, DSI_GEN_PLD_DATA, le32_to_cpu(word)); tx_buf += pld_data_bytes; len -= pld_data_bytes; } ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_PLD_W_FULL), 1000, CMD_PKT_STATUS_TIMEOUT_US); if (ret) { DRM_ERROR("failed to get write payload FIFO\n"); return ret; } } word = 0; memcpy(&word, packet->header, sizeof(packet->header)); return dw_mipi_dsi_gen_pkt_hdr_write(dsi, le32_to_cpu(word)); } static int dw_mipi_dsi_read(struct dw_mipi_dsi *dsi, const struct mipi_dsi_msg *msg) { int i, j, ret, len = msg->rx_len; u8 *buf = msg->rx_buf; u32 val; /* Wait end of the read operation */ ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_RD_CMD_BUSY), 1000, CMD_PKT_STATUS_TIMEOUT_US); if (ret) { DRM_ERROR("Timeout during read operation\n"); return ret; } for (i = 0; i < len; i += 4) { /* Read fifo must not be empty before all bytes are read */ ret = readl_poll_timeout(dsi->base + DSI_CMD_PKT_STATUS, val, !(val & GEN_PLD_R_EMPTY), 1000, CMD_PKT_STATUS_TIMEOUT_US); if (ret) { DRM_ERROR("Read payload FIFO is empty\n"); return ret; } val = dsi_read(dsi, DSI_GEN_PLD_DATA); for (j = 0; j < 4 && j + i < len; j++) buf[i + j] = val >> (8 * j); } return ret; } static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct dw_mipi_dsi *dsi = host_to_dsi(host); struct mipi_dsi_packet packet; int ret, nb_bytes; ret = mipi_dsi_create_packet(&packet, msg); if (ret) { DRM_ERROR("failed to create packet: %d\n", ret); return ret; } dw_mipi_message_config(dsi, msg); ret = dw_mipi_dsi_write(dsi, &packet); if (ret) return ret; if (msg->rx_buf && msg->rx_len) { ret = dw_mipi_dsi_read(dsi, msg); if (ret) return ret; nb_bytes = msg->rx_len; } else { nb_bytes = packet.size; } return nb_bytes; } static const struct mipi_dsi_host_ops dw_mipi_dsi_host_ops = { .attach = dsi_host_attach, .detach = dsi_host_detach, .transfer = dsi_host_transfer, }; static void dw_mipi_dsi_video_config(struct dw_mipi_dsi *dsi) { dsi_write(dsi, DSI_VID_MODE_CFG, ENABLE_LOW_POWER | VID_MODE_TYPE_BURST); } static void dw_mipi_dsi_set_mode(struct dw_mipi_dsi *dsi, unsigned long mode_flags) { dsi_write(dsi, DSI_PWR_UP, RESET); if (mode_flags & MIPI_DSI_MODE_VIDEO) { dsi_write(dsi, DSI_MODE_CFG, ENABLE_VIDEO_MODE); dsi_write(dsi, DSI_LPCLK_CTRL, PHY_TXREQUESTCLKHS); } else { dsi_write(dsi, DSI_MODE_CFG, ENABLE_CMD_MODE); } dsi_write(dsi, DSI_PWR_UP, POWERUP); } static void dw_mipi_dsi_init(struct dw_mipi_dsi *dsi) { u8 esc_clk; u32 esc_clk_division; /* limit esc clk on FPGA */ if (!dsi->pclk) esc_clk = 5; /* 5MHz */ else esc_clk = 20; /* 20MHz */ /* * The maximum permitted escape clock is 20MHz and it is derived from * lanebyteclk, which is running at "lane_link_rate / 8". Thus we want: * * (lane_link_rate >> 3) / esc_clk_division < 20 * which is: * (lane_link_rate >> 3) / 20 > esc_clk_division */ esc_clk_division = ((dsi->lane_link_rate / 1000) >> 3) / esc_clk + 1; dsi_write(dsi, DSI_PWR_UP, RESET); /* * TODO dw drv improvements * timeout clock division should be computed with the * high speed transmission counter timeout and byte lane... */ dsi_write(dsi, DSI_CLKMGR_CFG, TO_CLK_DIVISION(10) | TX_ESC_CLK_DIVISION(esc_clk_division)); } static void dw_mipi_dsi_dpi_config(struct dw_mipi_dsi *dsi, const struct drm_display_mode *mode) { u32 val = 0, color = 0; switch (dsi->format) { case MIPI_DSI_FMT_RGB888: color = DPI_COLOR_CODING_24BIT; break; case MIPI_DSI_FMT_RGB666: color = DPI_COLOR_CODING_18BIT_2 | LOOSELY18_EN; break; case MIPI_DSI_FMT_RGB666_PACKED: color = DPI_COLOR_CODING_18BIT_1; break; case MIPI_DSI_FMT_RGB565: color = DPI_COLOR_CODING_16BIT_1; break; } if (!(mode->flags & DRM_MODE_FLAG_PVSYNC)) val |= VSYNC_ACTIVE_LOW; if (!(mode->flags & DRM_MODE_FLAG_PHSYNC)) val |= HSYNC_ACTIVE_LOW; dsi_write(dsi, DSI_DPI_VCID, DPI_VCID(dsi->channel)); dsi_write(dsi, DSI_DPI_COLOR_CODING, color); dsi_write(dsi, DSI_DPI_CFG_POL, val); /* * TODO dw drv improvements * largest packet sizes during hfp or during vsa/vpb/vfp * should be computed according to byte lane, lane number and only * if sending lp cmds in high speed is enable (PHY_TXREQUESTCLKHS) */ dsi_write(dsi, DSI_DPI_LP_CMD_TIM, OUTVACT_LPCMD_TIME(4) | INVACT_LPCMD_TIME(4)); } static void dw_mipi_dsi_packet_handler_config(struct dw_mipi_dsi *dsi) { dsi_write(dsi, DSI_PCKHDL_CFG, CRC_RX_EN | ECC_RX_EN | BTA_EN); } static void dw_mipi_dsi_command_mode_config(struct dw_mipi_dsi *dsi) { /* * TODO dw drv improvements * compute high speed transmission counter timeout according * to the timeout clock division (TO_CLK_DIVISION) and byte lane... */ dsi_write(dsi, DSI_TO_CNT_CFG, HSTX_TO_CNT(1000) | LPRX_TO_CNT(1000)); /* * TODO dw drv improvements * the Bus-Turn-Around Timeout Counter should be computed * according to byte lane... */ dsi_write(dsi, DSI_BTA_TO_CNT, 0xd00); } /* Get lane byte clock cycles. */ static u32 dw_mipi_dsi_get_hcomponent_lbcc(struct dw_mipi_dsi *dsi, const struct drm_display_mode *mode, u32 hcomponent) { u32 frac, lbcc; lbcc = hcomponent * dsi->lane_link_rate / 8; frac = lbcc % mode->clock; lbcc = lbcc / mode->clock; if (frac) lbcc++; return lbcc; } static void dw_mipi_dsi_timing_config(struct dw_mipi_dsi *dsi, const struct drm_display_mode *mode) { u32 htotal, hsa, hbp, lbcc; htotal = mode->htotal; hsa = mode->hsync_end - mode->hsync_start; hbp = mode->htotal - mode->hsync_end; lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, htotal); dsi_write(dsi, DSI_VID_HLINE_TIME, lbcc); lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, hsa); dsi_write(dsi, DSI_VID_HSA_TIME, lbcc); lbcc = dw_mipi_dsi_get_hcomponent_lbcc(dsi, mode, hbp); dsi_write(dsi, DSI_VID_HBP_TIME, lbcc); dsi_write(dsi, DSI_VID_PKT_SIZE, VID_PKT_SIZE(mode->hdisplay)); /* vertical */ dsi_write(dsi, DSI_VID_VACTIVE_LINES, mode->vdisplay); dsi_write(dsi, DSI_VID_VSA_LINES, mode->vsync_end - mode->vsync_start); dsi_write(dsi, DSI_VID_VFP_LINES, mode->vsync_start - mode->vdisplay); dsi_write(dsi, DSI_VID_VBP_LINES, mode->vtotal - mode->vsync_end); } static void dw_mipi_dsi_dphy_timing_config(struct dw_mipi_dsi *dsi) { /* * TODO dw drv improvements * data & clock lane timers should be computed according to panel * blankings and to the automatic clock lane control mode... * note: DSI_PHY_TMR_CFG.MAX_RD_TIME should be in line with * DSI_CMD_MODE_CFG.MAX_RD_PKT_SIZE_LP (see CMD_MODE_ALL_LP) */ dsi_write(dsi, DSI_PHY_TMR_CFG, PHY_HS2LP_TIME(0x40) | PHY_LP2HS_TIME(0x40)); dsi_write(dsi, DSI_PHY_TMR_RD_CFG, MAX_RD_TIME(10000)); dsi_write(dsi, DSI_PHY_TMR_LPCLK_CFG, PHY_CLKHS2LP_TIME(0x40) | PHY_CLKLP2HS_TIME(0x40)); } static void dw_mipi_dsi_dphy_interface_config(struct dw_mipi_dsi *dsi) { /* * TODO dw drv improvements * stop wait time should be the maximum between host dsi * and panel stop wait times */ dsi_write(dsi, DSI_PHY_IF_CFG, PHY_STOP_WAIT_TIME(0x20) | N_LANES(dsi->lanes)); } static void dw_mipi_dsi_dphy_init(struct dw_mipi_dsi *dsi) { /* Clear PHY state */ dsi_write(dsi, DSI_PHY_RSTZ, PHY_DISFORCEPLL | PHY_DISABLECLK | PHY_RSTZ | PHY_SHUTDOWNZ); } static void dw_mipi_dsi_dphy_enable(struct dw_mipi_dsi *dsi) { u32 val; int ret; phy_power_on(dsi->dphy); dsi_write(dsi, DSI_PHY_RSTZ, PHY_ENFORCEPLL | PHY_ENABLECLK | PHY_UNSHUTDOWNZ); usleep_range(500, 600); dsi_write(dsi, DSI_PHY_RSTZ, PHY_ENFORCEPLL | PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ); ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS, val, val & PHY_LOCK, 1000, PHY_STATUS_TIMEOUT_US); if (ret) DRM_DEBUG_DRIVER("failed to wait phy lock state\n"); ret = readl_poll_timeout(dsi->base + DSI_PHY_STATUS, val, val & PHY_STOP_STATE_CLK_LANE, 1000, PHY_STATUS_TIMEOUT_US); if (ret) DRM_DEBUG_DRIVER("failed to wait phy clk lane stop state\n"); } /* * The controller should generate 2 frames before * preparing the peripheral. */ static void dw_mipi_dsi_wait_for_two_frames(const struct drm_display_mode *mode) { int refresh, two_frames; refresh = drm_mode_vrefresh(mode); two_frames = DIV_ROUND_UP(MSEC_PER_SEC, refresh) * 2; msleep(two_frames); } static void dw_mipi_dsi_mode_set(struct dw_mipi_dsi *dsi, const struct drm_display_mode *mode) { struct phy_configure_opts_mipi_dphy dphy_cfg; int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); phy_init(dsi->dphy); phy_mipi_dphy_get_default_config(mode->clock * 1000, bpp, dsi->lanes, &dphy_cfg); phy_validate(dsi->dphy, PHY_MODE_MIPI_DPHY, 0, (union phy_configure_opts *)&dphy_cfg); phy_configure(dsi->dphy, (union phy_configure_opts *)&dphy_cfg); dsi->lane_link_rate = dphy_cfg.hs_clk_rate / 1000; clk_prepare_enable(dsi->pclk); pm_runtime_get_sync(dsi->dev); dw_mipi_dsi_init(dsi); dw_mipi_dsi_dpi_config(dsi, mode); dw_mipi_dsi_packet_handler_config(dsi); dw_mipi_dsi_video_config(dsi); dw_mipi_dsi_command_mode_config(dsi); dw_mipi_dsi_timing_config(dsi, mode); dw_mipi_dsi_dphy_init(dsi); dw_mipi_dsi_dphy_timing_config(dsi); dw_mipi_dsi_dphy_interface_config(dsi); dw_mipi_dsi_dphy_enable(dsi); dw_mipi_dsi_wait_for_two_frames(mode); /* Switch to cmd mode for panel-bridge pre_enable & panel prepare */ dw_mipi_dsi_set_mode(dsi, 0); } static void bridge_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct dw_mipi_dsi_primary *primary = bridge_to_primary(bridge); struct drm_display_mode *new_mode = drm_mode_duplicate(bridge->dev, adjusted_mode); if (primary->secondary_dsi) { new_mode->hdisplay /= 2; new_mode->hsync_start /= 2; new_mode->hsync_end /= 2; new_mode->htotal /= 2; new_mode->clock /= 2; } dw_mipi_dsi_mode_set(&primary->dsi, new_mode); if (primary->secondary_dsi) dw_mipi_dsi_mode_set(primary->secondary_dsi, new_mode); drm_mode_destroy(bridge->dev, new_mode); } static void bridge_enable(struct drm_bridge *bridge) { struct dw_mipi_dsi_primary *primary = bridge_to_primary(bridge); dw_mipi_dsi_set_mode(&primary->dsi, MIPI_DSI_MODE_VIDEO); if (primary->secondary_dsi) dw_mipi_dsi_set_mode(primary->secondary_dsi, MIPI_DSI_MODE_VIDEO); } static void dw_mipi_dsi_disable(struct dw_mipi_dsi *dsi) { phy_power_off(dsi->dphy); dsi_write(dsi, DSI_PWR_UP, RESET); dsi_write(dsi, DSI_PHY_RSTZ, PHY_RSTZ); pm_runtime_put(dsi->dev); clk_disable_unprepare(dsi->pclk); } static void bridge_post_disable(struct drm_bridge *bridge) { struct dw_mipi_dsi_primary *primary = bridge_to_primary(bridge); /* * Switch to command mode before panel-bridge post_disable & * panel unprepare. * Note: panel-bridge disable & panel disable has been called * before by the drm framework. */ dw_mipi_dsi_set_mode(&primary->dsi, 0); /* * TODO Only way found to call panel-bridge post_disable & * panel unprepare before the dsi "final" disable... * This needs to be fixed in the drm_bridge framework and the API * needs to be updated to manage our own call chains... */ primary->panel_bridge->funcs->post_disable(primary->panel_bridge); if (primary->secondary_dsi) dw_mipi_dsi_disable(primary->secondary_dsi); dw_mipi_dsi_disable(&primary->dsi); } #if KERNEL_VERSION(5, 7, 0) <= LINUX_VERSION_CODE static int bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) #else static int bridge_attach(struct drm_bridge *bridge) #endif { struct dw_mipi_dsi_primary *primary = bridge_to_primary(bridge); if (!bridge->encoder) { DRM_ERROR("Parent encoder object not found\n"); return -ENODEV; } /* Attach the panel-bridge to the dsi bridge */ #if KERNEL_VERSION(5, 7, 0) <= LINUX_VERSION_CODE return drm_bridge_attach(bridge->encoder, primary->panel_bridge, bridge, 0); #else return drm_bridge_attach(bridge->encoder, primary->panel_bridge, bridge); #endif } static void bridge_update_bus_format(struct drm_bridge *bridge) { struct dw_mipi_dsi_primary *primary = bridge_to_primary(bridge); struct drm_connector *connector; struct drm_connector_list_iter conn_iter; struct drm_encoder *encoder; u32 bus_format; #if KERNEL_VERSION(5, 5, 0) > LINUX_VERSION_CODE int i; #endif /* set bus format according to DSI format */ switch (primary->dsi.format) { case MIPI_DSI_FMT_RGB888: bus_format = MEDIA_BUS_FMT_RBG888_1X24; break; case MIPI_DSI_FMT_RGB666: bus_format = MEDIA_BUS_FMT_RGB666_1X24_CPADHI; break; case MIPI_DSI_FMT_RGB666_PACKED: bus_format = MEDIA_BUS_FMT_RGB666_1X18; break; case MIPI_DSI_FMT_RGB565: bus_format = MEDIA_BUS_FMT_RGB565_1X16; break; default: bus_format = MEDIA_BUS_FMT_RBG888_1X24; } if (bus_format == primary->bus_format) return; drm_connector_list_iter_begin(bridge->dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { #if KERNEL_VERSION(5, 5, 0) > LINUX_VERSION_CODE drm_connector_for_each_possible_encoder(connector, encoder, i) { #else drm_connector_for_each_possible_encoder(connector, encoder) { #endif if (encoder == bridge->encoder) { drm_display_info_set_bus_formats( &connector->display_info, &bus_format, 1); primary->bus_format = bus_format; drm_connector_list_iter_end(&conn_iter); return; } } } drm_connector_list_iter_end(&conn_iter); } static bool bridge_mode_fixup(struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { bridge_update_bus_format(bridge); return true; } static const struct drm_bridge_funcs dw_mipi_dsi_bridge_funcs = { .mode_set = bridge_mode_set, .enable = bridge_enable, .post_disable = bridge_post_disable, .attach = bridge_attach, .mode_fixup = bridge_mode_fixup, }; static int dsi_attach_primary(struct dw_mipi_dsi *secondary, struct device *dev) { struct dw_mipi_dsi *dsi = dev_get_drvdata(dev); struct dw_mipi_dsi_primary *primary = dsi_to_primary(dsi); if (!of_device_is_compatible(dev->of_node, "verisilicon,dw-mipi-dsi")) return -EINVAL; primary->secondary_dsi = secondary; return 0; } struct dw_mipi_dsi *get_primary_dsi(struct device *dev) { struct dw_mipi_dsi_primary *primary; primary = devm_kzalloc(dev, sizeof(*primary), GFP_KERNEL); if (!primary) return NULL; primary->dsi.dev = dev; return &primary->dsi; } static int primary_bind(struct dw_mipi_dsi *dsi) { struct dw_mipi_dsi_primary *primary = dsi_to_primary(dsi); struct device *dev = primary->dsi.dev; struct drm_bridge *bridge; struct drm_panel *panel; int ret; ret = drm_of_find_panel_or_bridge(dev->of_node, 1, 0, &panel, &bridge); if (ret) return ret; if (panel) { bridge = drm_panel_bridge_add_typed(panel, DRM_MODE_CONNECTOR_DSI); if (IS_ERR(bridge)) return PTR_ERR(bridge); } primary->panel_bridge = bridge; primary->bridge.funcs = &dw_mipi_dsi_bridge_funcs; primary->bridge.of_node = dev->of_node; drm_bridge_add(&primary->bridge); return 0; } static void primary_unbind(struct dw_mipi_dsi *dsi) { struct dw_mipi_dsi_primary *primary = dsi_to_primary(dsi); struct device *dev = primary->dsi.dev; drm_bridge_remove(&primary->bridge); drm_of_panel_bridge_remove(dev->of_node, 1, 0); } static const struct dw_mipi_dsi_funcs primary = { .get_dsi = &get_primary_dsi, .bind = &primary_bind, .unbind = &primary_unbind, }; struct dw_mipi_dsi *get_secondary_dsi(struct device *dev) { struct dw_mipi_dsi *dsi; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return NULL; dsi->dev = dev; return dsi; } static int secondary_bind(struct dw_mipi_dsi *dsi) { struct device_node *np; struct platform_device *pdev; np = of_find_compatible_node(NULL, NULL, "verisilicon,dw-mipi-dsi"); if (!np) return -ENODEV; pdev = of_find_device_by_node(np); of_node_put(np); if (!pdev) return -ENODEV; return dsi_attach_primary(dsi, &pdev->dev); } static void secondary_unbind(struct dw_mipi_dsi *dsi) { } static const struct dw_mipi_dsi_funcs secondary = { .get_dsi = &get_secondary_dsi, .bind = &secondary_bind, .unbind = &secondary_unbind, }; static int dsi_bind(struct device *dev, struct device *primary, void *data) { struct dw_mipi_dsi *dsi = dev_get_drvdata(dev); return dsi->funcs->bind(dsi); } static void dsi_unbind(struct device *dev, struct device *primary, void *data) { struct dw_mipi_dsi *dsi = dev_get_drvdata(dev); dsi->funcs->unbind(dsi); } static const struct component_ops dsi_component_ops = { .bind = dsi_bind, .unbind = dsi_unbind, }; static const struct of_device_id dw_mipi_dsi_dt_match[] = { { .compatible = "verisilicon,dw-mipi-dsi", .data = &primary}, { .compatible = "verisilicon,dw-mipi-dsi-2nd", .data = &secondary}, {}, }; MODULE_DEVICE_TABLE(of, dw_mipi_dsi_dt_match); static int dsi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct dw_mipi_dsi_funcs *funcs; struct dw_mipi_dsi *dsi; struct resource *res; int ret; funcs = of_device_get_match_data(dev); dsi = funcs->get_dsi(dev); if (!dsi) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dsi->base = devm_ioremap_resource(dev, res); if (IS_ERR(dsi->base)) return -ENODEV; dsi->pclk = devm_clk_get_optional(dev, "pclk"); if (IS_ERR(dsi->pclk)) return PTR_ERR(dsi->pclk); dsi->dphy = devm_phy_get(dev, "dphy"); if (IS_ERR(dsi->dphy)) return PTR_ERR(dsi->dphy); dsi->host.ops = &dw_mipi_dsi_host_ops; dsi->host.dev = dev; ret = mipi_dsi_host_register(&dsi->host); if (ret) return ret; dsi->funcs = funcs; dev_set_drvdata(dev, dsi); pm_runtime_enable(dev); return component_add(dev, &dsi_component_ops); } static int dsi_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct dw_mipi_dsi *dsi = dev_get_drvdata(dev); mipi_dsi_host_unregister(&dsi->host); pm_runtime_disable(dev); component_del(dev, &dsi_component_ops); dev_set_drvdata(dev, NULL); return 0; } struct platform_driver dw_mipi_dsi_driver = { .probe = dsi_probe, .remove = dsi_remove, .driver = { .name = "dw-mipi-dsi", .of_match_table = of_match_ptr(dw_mipi_dsi_dt_match), }, }; MODULE_DESCRIPTION("DW MIPI DSI Controller Driver"); MODULE_LICENSE("GPL v2");