// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom */ /** * DOC: VC4 KMS * * This is the general code for implementing KMS mode setting that * doesn't clearly associate with any of the other objects (plane, * crtc, HDMI encoder). */ #include #include #include #include #include #include #include #include #include "vc4_drv.h" #include "vc4_regs.h" struct vc4_ctm_state { struct drm_private_state base; struct drm_color_ctm *ctm; int fifo; }; static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv) { return container_of(priv, struct vc4_ctm_state, base); } struct vc4_load_tracker_state { struct drm_private_state base; u64 hvs_load; u64 membus_load; }; static struct vc4_load_tracker_state * to_vc4_load_tracker_state(struct drm_private_state *priv) { return container_of(priv, struct vc4_load_tracker_state, base); } static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, struct drm_private_obj *manager) { struct drm_device *dev = state->dev; struct vc4_dev *vc4 = dev->dev_private; struct drm_private_state *priv_state; int ret; ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); if (ret) return ERR_PTR(ret); priv_state = drm_atomic_get_private_obj_state(state, manager); if (IS_ERR(priv_state)) return ERR_CAST(priv_state); return to_vc4_ctm_state(priv_state); } static struct drm_private_state * vc4_ctm_duplicate_state(struct drm_private_obj *obj) { struct vc4_ctm_state *state; state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); return &state->base; } static void vc4_ctm_destroy_state(struct drm_private_obj *obj, struct drm_private_state *state) { struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); kfree(ctm_state); } static const struct drm_private_state_funcs vc4_ctm_state_funcs = { .atomic_duplicate_state = vc4_ctm_duplicate_state, .atomic_destroy_state = vc4_ctm_destroy_state, }; /* Converts a DRM S31.32 value to the HW S0.9 format. */ static u16 vc4_ctm_s31_32_to_s0_9(u64 in) { u16 r; /* Sign bit. */ r = in & BIT_ULL(63) ? BIT(9) : 0; if ((in & GENMASK_ULL(62, 32)) > 0) { /* We have zero integer bits so we can only saturate here. */ r |= GENMASK(8, 0); } else { /* Otherwise take the 9 most important fractional bits. */ r |= (in >> 23) & GENMASK(8, 0); } return r; } static void vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) { struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); struct drm_color_ctm *ctm = ctm_state->ctm; if (ctm_state->fifo) { HVS_WRITE(SCALER_OLEDCOEF2, VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), SCALER_OLEDCOEF2_R_TO_R) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), SCALER_OLEDCOEF2_R_TO_G) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), SCALER_OLEDCOEF2_R_TO_B)); HVS_WRITE(SCALER_OLEDCOEF1, VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), SCALER_OLEDCOEF1_G_TO_R) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), SCALER_OLEDCOEF1_G_TO_G) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), SCALER_OLEDCOEF1_G_TO_B)); HVS_WRITE(SCALER_OLEDCOEF0, VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), SCALER_OLEDCOEF0_B_TO_R) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), SCALER_OLEDCOEF0_B_TO_G) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), SCALER_OLEDCOEF0_B_TO_B)); } HVS_WRITE(SCALER_OLEDOFFS, VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); } static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; unsigned int i; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); u32 dispctrl; u32 dsp3_mux; if (!crtc_state->active) continue; if (vc4_state->assigned_channel != 2) continue; /* * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to * FIFO X'. * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. * * DSP3 is connected to FIFO2 unless the transposer is * enabled. In this case, FIFO 2 is directly accessed by the * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 * route. */ if (vc4_state->feed_txp) dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); else dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); dispctrl = HVS_READ(SCALER_DISPCTRL) & ~SCALER_DISPCTRL_DSP3_MUX_MASK; HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); } } static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; unsigned char dsp2_mux = 0; unsigned char dsp3_mux = 3; unsigned char dsp4_mux = 3; unsigned char dsp5_mux = 3; unsigned int i; u32 reg; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); if (!crtc_state->active) continue; switch (vc4_crtc->data->hvs_output) { case 2: dsp2_mux = (vc4_state->assigned_channel == 2) ? 0 : 1; break; case 3: dsp3_mux = vc4_state->assigned_channel; break; case 4: dsp4_mux = vc4_state->assigned_channel; break; case 5: dsp5_mux = vc4_state->assigned_channel; break; default: break; } } reg = HVS_READ(SCALER_DISPECTRL); HVS_WRITE(SCALER_DISPECTRL, (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | VC4_SET_FIELD(dsp2_mux, SCALER_DISPECTRL_DSP2_MUX)); reg = HVS_READ(SCALER_DISPCTRL); HVS_WRITE(SCALER_DISPCTRL, (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | VC4_SET_FIELD(dsp3_mux, SCALER_DISPCTRL_DSP3_MUX)); reg = HVS_READ(SCALER_DISPEOLN); HVS_WRITE(SCALER_DISPEOLN, (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | VC4_SET_FIELD(dsp4_mux, SCALER_DISPEOLN_DSP4_MUX)); reg = HVS_READ(SCALER_DISPDITHER); HVS_WRITE(SCALER_DISPDITHER, (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | VC4_SET_FIELD(dsp5_mux, SCALER_DISPDITHER_DSP5_MUX)); } static void vc4_atomic_complete_commit(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hvs *hvs = vc4->hvs; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; int i; for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { struct vc4_crtc_state *vc4_crtc_state; if (!new_crtc_state->commit) continue; vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); } if (vc4->hvs->hvs5) clk_set_min_rate(hvs->core_clk, 500000000); drm_atomic_helper_wait_for_fences(dev, state, false); drm_atomic_helper_wait_for_dependencies(state); drm_atomic_helper_commit_modeset_disables(dev, state); vc4_ctm_commit(vc4, state); if (vc4->hvs->hvs5) vc5_hvs_pv_muxing_commit(vc4, state); else vc4_hvs_pv_muxing_commit(vc4, state); drm_atomic_helper_commit_planes(dev, state, 0); drm_atomic_helper_commit_modeset_enables(dev, state); drm_atomic_helper_fake_vblank(state); drm_atomic_helper_commit_hw_done(state); drm_atomic_helper_wait_for_flip_done(dev, state); drm_atomic_helper_cleanup_planes(dev, state); drm_atomic_helper_commit_cleanup_done(state); if (vc4->hvs->hvs5) clk_set_min_rate(hvs->core_clk, 0); drm_atomic_state_put(state); up(&vc4->async_modeset); } static void commit_work(struct work_struct *work) { struct drm_atomic_state *state = container_of(work, struct drm_atomic_state, commit_work); vc4_atomic_complete_commit(state); } /** * vc4_atomic_commit - commit validated state object * @dev: DRM device * @state: the driver state object * @nonblock: nonblocking commit * * This function commits a with drm_atomic_helper_check() pre-validated state * object. This can still fail when e.g. the framebuffer reservation fails. For * now this doesn't implement asynchronous commits. * * RETURNS * Zero for success or -errno. */ static int vc4_atomic_commit(struct drm_device *dev, struct drm_atomic_state *state, bool nonblock) { struct vc4_dev *vc4 = to_vc4_dev(dev); int ret; if (state->async_update) { ret = down_interruptible(&vc4->async_modeset); if (ret) return ret; ret = drm_atomic_helper_prepare_planes(dev, state); if (ret) { up(&vc4->async_modeset); return ret; } drm_atomic_helper_async_commit(dev, state); drm_atomic_helper_cleanup_planes(dev, state); up(&vc4->async_modeset); return 0; } /* We know for sure we don't want an async update here. Set * state->legacy_cursor_update to false to prevent * drm_atomic_helper_setup_commit() from auto-completing * commit->flip_done. */ state->legacy_cursor_update = false; ret = drm_atomic_helper_setup_commit(state, nonblock); if (ret) return ret; INIT_WORK(&state->commit_work, commit_work); ret = down_interruptible(&vc4->async_modeset); if (ret) return ret; ret = drm_atomic_helper_prepare_planes(dev, state); if (ret) { up(&vc4->async_modeset); return ret; } if (!nonblock) { ret = drm_atomic_helper_wait_for_fences(dev, state, true); if (ret) { drm_atomic_helper_cleanup_planes(dev, state); up(&vc4->async_modeset); return ret; } } /* * This is the point of no return - everything below never fails except * when the hw goes bonghits. Which means we can commit the new state on * the software side now. */ BUG_ON(drm_atomic_helper_swap_state(state, false) < 0); /* * Everything below can be run asynchronously without the need to grab * any modeset locks at all under one condition: It must be guaranteed * that the asynchronous work has either been cancelled (if the driver * supports it, which at least requires that the framebuffers get * cleaned up with drm_atomic_helper_cleanup_planes()) or completed * before the new state gets committed on the software side with * drm_atomic_helper_swap_state(). * * This scheme allows new atomic state updates to be prepared and * checked in parallel to the asynchronous completion of the previous * update. Which is important since compositors need to figure out the * composition of the next frame right after having submitted the * current layout. */ drm_atomic_state_get(state); if (nonblock) queue_work(system_unbound_wq, &state->commit_work); else vc4_atomic_complete_commit(state); return 0; } static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, struct drm_file *file_priv, const struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_mode_fb_cmd2 mode_cmd_local; /* If the user didn't specify a modifier, use the * vc4_set_tiling_ioctl() state for the BO. */ if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { struct drm_gem_object *gem_obj; struct vc4_bo *bo; gem_obj = drm_gem_object_lookup(file_priv, mode_cmd->handles[0]); if (!gem_obj) { DRM_DEBUG("Failed to look up GEM BO %d\n", mode_cmd->handles[0]); return ERR_PTR(-ENOENT); } bo = to_vc4_bo(gem_obj); mode_cmd_local = *mode_cmd; if (bo->t_format) { mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; } else { mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; } drm_gem_object_put(gem_obj); mode_cmd = &mode_cmd_local; } return drm_gem_fb_create(dev, file_priv, mode_cmd); } /* Our CTM has some peculiar limitations: we can only enable it for one CRTC * at a time and the HW only supports S0.9 scalars. To account for the latter, * we don't allow userland to set a CTM that we have no hope of approximating. */ static int vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_ctm_state *ctm_state = NULL; struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_color_ctm *ctm; int i; for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { /* CTM is being disabled. */ if (!new_crtc_state->ctm && old_crtc_state->ctm) { ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); if (IS_ERR(ctm_state)) return PTR_ERR(ctm_state); ctm_state->fifo = 0; } } for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->ctm == old_crtc_state->ctm) continue; if (!ctm_state) { ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); if (IS_ERR(ctm_state)) return PTR_ERR(ctm_state); } /* CTM is being enabled or the matrix changed. */ if (new_crtc_state->ctm) { struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); /* fifo is 1-based since 0 disables CTM. */ int fifo = vc4_crtc_state->assigned_channel + 1; /* Check userland isn't trying to turn on CTM for more * than one CRTC at a time. */ if (ctm_state->fifo && ctm_state->fifo != fifo) { DRM_DEBUG_DRIVER("Too many CTM configured\n"); return -EINVAL; } /* Check we can approximate the specified CTM. * We disallow scalars |c| > 1.0 since the HW has * no integer bits. */ ctm = new_crtc_state->ctm->data; for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { u64 val = ctm->matrix[i]; val &= ~BIT_ULL(63); if (val > BIT_ULL(32)) return -EINVAL; } ctm_state->fifo = fifo; ctm_state->ctm = ctm; } } return 0; } static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) { struct drm_plane_state *old_plane_state, *new_plane_state; struct vc4_dev *vc4 = to_vc4_dev(state->dev); struct vc4_load_tracker_state *load_state; struct drm_private_state *priv_state; struct drm_plane *plane; int i; if (!vc4->load_tracker_available) return 0; priv_state = drm_atomic_get_private_obj_state(state, &vc4->load_tracker); if (IS_ERR(priv_state)) return PTR_ERR(priv_state); load_state = to_vc4_load_tracker_state(priv_state); for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { struct vc4_plane_state *vc4_plane_state; if (old_plane_state->fb && old_plane_state->crtc) { vc4_plane_state = to_vc4_plane_state(old_plane_state); load_state->membus_load -= vc4_plane_state->membus_load; load_state->hvs_load -= vc4_plane_state->hvs_load; } if (new_plane_state->fb && new_plane_state->crtc) { vc4_plane_state = to_vc4_plane_state(new_plane_state); load_state->membus_load += vc4_plane_state->membus_load; load_state->hvs_load += vc4_plane_state->hvs_load; } } /* Don't check the load when the tracker is disabled. */ if (!vc4->load_tracker_enabled) return 0; /* The absolute limit is 2Gbyte/sec, but let's take a margin to let * the system work when other blocks are accessing the memory. */ if (load_state->membus_load > SZ_1G + SZ_512M) return -ENOSPC; /* HVS clock is supposed to run @ 250Mhz, let's take a margin and * consider the maximum number of cycles is 240M. */ if (load_state->hvs_load > 240000000ULL) return -ENOSPC; return 0; } static struct drm_private_state * vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) { struct vc4_load_tracker_state *state; state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); return &state->base; } static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, struct drm_private_state *state) { struct vc4_load_tracker_state *load_state; load_state = to_vc4_load_tracker_state(state); kfree(load_state); } static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { .atomic_duplicate_state = vc4_load_tracker_duplicate_state, .atomic_destroy_state = vc4_load_tracker_destroy_state, }; #define NUM_OUTPUTS 6 #define NUM_CHANNELS 3 static int vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { unsigned long unassigned_channels = GENMASK(NUM_CHANNELS - 1, 0); struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_crtc *crtc; int i, ret; /* * Since the HVS FIFOs are shared across all the pixelvalves and * the TXP (and thus all the CRTCs), we need to pull the current * state of all the enabled CRTCs so that an update to a single * CRTC still keeps the previous FIFOs enabled and assigned to * the same CRTCs, instead of evaluating only the CRTC being * modified. */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { struct drm_crtc_state *crtc_state; if (!crtc->state->enable) continue; crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); } for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct vc4_crtc_state *new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); unsigned int matching_channels; if (old_crtc_state->enable && !new_crtc_state->enable) new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; if (!new_crtc_state->enable) continue; if (new_vc4_crtc_state->assigned_channel != VC4_HVS_CHANNEL_DISABLED) { unassigned_channels &= ~BIT(new_vc4_crtc_state->assigned_channel); continue; } /* * The problem we have to solve here is that we have * up to 7 encoders, connected to up to 6 CRTCs. * * Those CRTCs, depending on the instance, can be * routed to 1, 2 or 3 HVS FIFOs, and we need to set * the change the muxing between FIFOs and outputs in * the HVS accordingly. * * It would be pretty hard to come up with an * algorithm that would generically solve * this. However, the current routing trees we support * allow us to simplify a bit the problem. * * Indeed, with the current supported layouts, if we * try to assign in the ascending crtc index order the * FIFOs, we can't fall into the situation where an * earlier CRTC that had multiple routes is assigned * one that was the only option for a later CRTC. * * If the layout changes and doesn't give us that in * the future, we will need to have something smarter, * but it works so far. */ matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; if (matching_channels) { unsigned int channel = ffs(matching_channels) - 1; new_vc4_crtc_state->assigned_channel = channel; unassigned_channels &= ~BIT(channel); } else { return -EINVAL; } } ret = vc4_ctm_atomic_check(dev, state); if (ret < 0) return ret; ret = drm_atomic_helper_check(dev, state); if (ret) return ret; return vc4_load_tracker_atomic_check(state); } static const struct drm_mode_config_funcs vc4_mode_funcs = { .atomic_check = vc4_atomic_check, .atomic_commit = vc4_atomic_commit, .fb_create = vc4_fb_create, }; int vc4_kms_load(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_ctm_state *ctm_state; struct vc4_load_tracker_state *load_state; bool is_vc5 = of_device_is_compatible(dev->dev->of_node, "brcm,bcm2711-vc5"); int ret; if (!is_vc5) { vc4->load_tracker_available = true; /* Start with the load tracker enabled. Can be * disabled through the debugfs load_tracker file. */ vc4->load_tracker_enabled = true; } sema_init(&vc4->async_modeset, 1); /* Set support for vblank irq fast disable, before drm_vblank_init() */ dev->vblank_disable_immediate = true; dev->irq_enabled = true; ret = drm_vblank_init(dev, dev->mode_config.num_crtc); if (ret < 0) { dev_err(dev->dev, "failed to initialize vblank\n"); return ret; } if (is_vc5) { dev->mode_config.max_width = 7680; dev->mode_config.max_height = 7680; } else { dev->mode_config.max_width = 2048; dev->mode_config.max_height = 2048; } dev->mode_config.funcs = &vc4_mode_funcs; dev->mode_config.preferred_depth = 24; dev->mode_config.async_page_flip = true; dev->mode_config.allow_fb_modifiers = true; drm_modeset_lock_init(&vc4->ctm_state_lock); ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); if (!ctm_state) return -ENOMEM; drm_atomic_private_obj_init(dev, &vc4->ctm_manager, &ctm_state->base, &vc4_ctm_state_funcs); if (vc4->load_tracker_available) { load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); if (!load_state) { drm_atomic_private_obj_fini(&vc4->ctm_manager); return -ENOMEM; } drm_atomic_private_obj_init(dev, &vc4->load_tracker, &load_state->base, &vc4_load_tracker_state_funcs); } drm_mode_config_reset(dev); drm_kms_helper_poll_init(dev); return 0; }