// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom */ /** * DOC: VC4 CRTC module * * In VC4, the Pixel Valve is what most closely corresponds to the * DRM's concept of a CRTC. The PV generates video timings from the * encoder's clock plus its configuration. It pulls scaled pixels from * the HVS at that timing, and feeds it to the encoder. * * However, the DRM CRTC also collects the configuration of all the * DRM planes attached to it. As a result, the CRTC is also * responsible for writing the display list for the HVS channel that * the CRTC will use. * * The 2835 has 3 different pixel valves. pv0 in the audio power * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the * image domain can feed either HDMI or the SDTV controller. The * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for * SDTV, etc.) according to which output type is chosen in the mux. * * For power management, the pixel valve's registers are all clocked * by the AXI clock, while the timings and FIFOs make use of the * output-specific clock. Since the encoders also directly consume * the CPRMAN clocks, and know what timings they need, they are the * ones that set the clock. */ #include #include #include #include #include #include #include #include #include #include #include "vc4_drv.h" #include "vc4_regs.h" #define HVS_FIFO_LATENCY_PIX 6 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) static const struct debugfs_reg32 crtc_regs[] = { VC4_REG32(PV_CONTROL), VC4_REG32(PV_V_CONTROL), VC4_REG32(PV_VSYNCD_EVEN), VC4_REG32(PV_HORZA), VC4_REG32(PV_HORZB), VC4_REG32(PV_VERTA), VC4_REG32(PV_VERTB), VC4_REG32(PV_VERTA_EVEN), VC4_REG32(PV_VERTB_EVEN), VC4_REG32(PV_INTEN), VC4_REG32(PV_INTSTAT), VC4_REG32(PV_STAT), VC4_REG32(PV_HACT_ACT), }; static unsigned int vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) { u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); /* Top/base are supposed to be 4-pixel aligned, but the * Raspberry Pi firmware fills the low bits (which are * presumably ignored). */ u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; return top - base + 4; } static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, bool in_vblank_irq, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); unsigned int cob_size; u32 val; int fifo_lines; int vblank_lines; bool ret = false; /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ /* Get optional system timestamp before query. */ if (stime) *stime = ktime_get(); /* * Read vertical scanline which is currently composed for our * pixelvalve by the HVS, and also the scaler status. */ val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); /* Get optional system timestamp after query. */ if (etime) *etime = ktime_get(); /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ /* Vertical position of hvs composed scanline. */ *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); *hpos = 0; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { *vpos /= 2; /* Use hpos to correct for field offset in interlaced mode. */ if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) *hpos += mode->crtc_htotal / 2; } cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); /* This is the offset we need for translating hvs -> pv scanout pos. */ fifo_lines = cob_size / mode->crtc_hdisplay; if (fifo_lines > 0) ret = true; /* HVS more than fifo_lines into frame for compositing? */ if (*vpos > fifo_lines) { /* * We are in active scanout and can get some meaningful results * from HVS. The actual PV scanout can not trail behind more * than fifo_lines as that is the fifo's capacity. Assume that * in active scanout the HVS and PV work in lockstep wrt. HVS * refilling the fifo and PV consuming from the fifo, ie. * whenever the PV consumes and frees up a scanline in the * fifo, the HVS will immediately refill it, therefore * incrementing vpos. Therefore we choose HVS read position - * fifo size in scanlines as a estimate of the real scanout * position of the PV. */ *vpos -= fifo_lines + 1; return ret; } /* * Less: This happens when we are in vblank and the HVS, after getting * the VSTART restart signal from the PV, just started refilling its * fifo with new lines from the top-most lines of the new framebuffers. * The PV does not scan out in vblank, so does not remove lines from * the fifo, so the fifo will be full quickly and the HVS has to pause. * We can't get meaningful readings wrt. scanline position of the PV * and need to make things up in a approximative but consistent way. */ vblank_lines = mode->vtotal - mode->vdisplay; if (in_vblank_irq) { /* * Assume the irq handler got called close to first * line of vblank, so PV has about a full vblank * scanlines to go, and as a base timestamp use the * one taken at entry into vblank irq handler, so it * is not affected by random delays due to lock * contention on event_lock or vblank_time lock in * the core. */ *vpos = -vblank_lines; if (stime) *stime = vc4_crtc->t_vblank; if (etime) *etime = vc4_crtc->t_vblank; /* * If the HVS fifo is not yet full then we know for certain * we are at the very beginning of vblank, as the hvs just * started refilling, and the stime and etime timestamps * truly correspond to start of vblank. * * Unfortunately there's no way to report this to upper levels * and make it more useful. */ } else { /* * No clue where we are inside vblank. Return a vpos of zero, * which will cause calling code to just return the etime * timestamp uncorrected. At least this is no worse than the * standard fallback. */ *vpos = 0; } return ret; } void vc4_crtc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); } static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) { const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); u32 fifo_len_bytes = pv_data->fifo_depth; /* * Pixels are pulled from the HVS if the number of bytes is * lower than the FIFO full level. * * The latency of the pixel fetch mechanism is 6 pixels, so we * need to convert those 6 pixels in bytes, depending on the * format, and then subtract that from the length of the FIFO * to make sure we never end up in a situation where the FIFO * is full. */ switch (format) { case PV_CONTROL_FORMAT_DSIV_16: case PV_CONTROL_FORMAT_DSIC_16: return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; case PV_CONTROL_FORMAT_DSIV_18: return fifo_len_bytes - 14; case PV_CONTROL_FORMAT_24: case PV_CONTROL_FORMAT_DSIV_24: default: return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; } } static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, u32 format) { u32 level = vc4_get_fifo_full_level(vc4_crtc, format); return VC4_SET_FIELD(level & 0x3f, PV_CONTROL_FIFO_LEVEL); } /* * Returns the encoder attached to the CRTC. * * VC4 can only scan out to one encoder at a time, while the DRM core * allows drivers to push pixels to more than one encoder from the * same CRTC. */ static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) { struct drm_connector *connector; struct drm_connector_list_iter conn_iter; drm_connector_list_iter_begin(crtc->dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { if (connector->state->crtc == crtc) { drm_connector_list_iter_end(&conn_iter); return connector->encoder; } } drm_connector_list_iter_end(&conn_iter); return NULL; } static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); /* The PV needs to be disabled before it can be flushed */ CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); } static void vc4_crtc_config_pv(struct drm_crtc *crtc) { struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); struct drm_crtc_state *state = crtc->state; struct drm_display_mode *mode = &state->adjusted_mode; bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; u8 ppc = pv_data->pixels_per_clock; bool debug_dump_regs = false; if (debug_dump_regs) { struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", drm_crtc_index(crtc)); drm_print_regset32(&p, &vc4_crtc->regset); } vc4_crtc_pixelvalve_reset(crtc); CRTC_WRITE(PV_HORZA, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, PV_HORZA_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, PV_HORZA_HSYNC)); CRTC_WRITE(PV_HORZB, VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, PV_HORZB_HFP) | VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, PV_HORZB_HACTIVE)); CRTC_WRITE(PV_VERTA, VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, PV_VERTA_VBP) | VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB, VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, PV_VERTB_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); if (interlace) { CRTC_WRITE(PV_VERTA_EVEN, VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end - 1, PV_VERTA_VBP) | VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB_EVEN, VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, PV_VERTB_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); /* We set up first field even mode for HDMI. VEC's * NTSC mode would want first field odd instead, once * we support it (to do so, set ODD_FIRST and put the * delay in VSYNCD_EVEN instead). */ CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS | (is_dsi ? PV_VCONTROL_DSI : 0) | PV_VCONTROL_INTERLACE | VC4_SET_FIELD(mode->htotal * pixel_rep / 2, PV_VCONTROL_ODD_DELAY)); CRTC_WRITE(PV_VSYNCD_EVEN, 0); } else { CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS | (is_dsi ? PV_VCONTROL_DSI : 0)); } if (is_dsi) CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); CRTC_WRITE(PV_CONTROL, vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | PV_CONTROL_CLR_AT_START | PV_CONTROL_TRIGGER_UNDERFLOW | PV_CONTROL_WAIT_HSTART | VC4_SET_FIELD(vc4_encoder->clock_select, PV_CONTROL_CLK_SELECT)); if (debug_dump_regs) { struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", drm_crtc_index(crtc)); drm_print_regset32(&p, &vc4_crtc->regset); } } static void require_hvs_enabled(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != SCALER_DISPCTRL_ENABLE); } static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct drm_device *dev = crtc->dev; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); int ret; require_hvs_enabled(dev); /* Disable vblank irq handling before crtc is disabled. */ drm_crtc_vblank_off(crtc); CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); vc4_hvs_atomic_disable(crtc, old_state); /* * Make sure we issue a vblank event after disabling the CRTC if * someone was waiting it. */ if (crtc->state->event) { unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); } } static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct drm_device *dev = crtc->dev; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); require_hvs_enabled(dev); vc4_crtc_pixelvalve_reset(crtc); vc4_crtc_config_pv(crtc); CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); /* Enable vblank irq handling before crtc is started otherwise * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). */ drm_crtc_vblank_on(crtc); vc4_hvs_atomic_enable(crtc, old_state); /* When feeding the transposer block the pixelvalve is unneeded and * should not be enabled. */ CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); } static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { /* Do not allow doublescan modes from user space */ if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", crtc->base.id); return MODE_NO_DBLESCAN; } return MODE_OK; } void vc4_crtc_get_margins(struct drm_crtc_state *state, unsigned int *left, unsigned int *right, unsigned int *top, unsigned int *bottom) { struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); struct drm_connector_state *conn_state; struct drm_connector *conn; int i; *left = vc4_state->margins.left; *right = vc4_state->margins.right; *top = vc4_state->margins.top; *bottom = vc4_state->margins.bottom; /* We have to interate over all new connector states because * vc4_crtc_get_margins() might be called before * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state * might be outdated. */ for_each_new_connector_in_state(state->state, conn, conn_state, i) { if (conn_state->crtc != state->crtc) continue; *left = conn_state->tv.margins.left; *right = conn_state->tv.margins.right; *top = conn_state->tv.margins.top; *bottom = conn_state->tv.margins.bottom; break; } } static int vc4_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); struct drm_connector *conn; struct drm_connector_state *conn_state; int ret, i; ret = vc4_hvs_atomic_check(crtc, state); if (ret) return ret; for_each_new_connector_in_state(state->state, conn, conn_state, i) { if (conn_state->crtc != crtc) continue; vc4_state->margins.left = conn_state->tv.margins.left; vc4_state->margins.right = conn_state->tv.margins.right; vc4_state->margins.top = conn_state->tv.margins.top; vc4_state->margins.bottom = conn_state->tv.margins.bottom; break; } return 0; } static int vc4_enable_vblank(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); return 0; } static void vc4_disable_vblank(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); CRTC_WRITE(PV_INTEN, 0); } static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) { struct drm_crtc *crtc = &vc4_crtc->base; struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); u32 chan = vc4_state->assigned_channel; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (vc4_crtc->event && (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || vc4_state->feed_txp)) { drm_crtc_send_vblank_event(crtc, vc4_crtc->event); vc4_crtc->event = NULL; drm_crtc_vblank_put(crtc); /* Wait for the page flip to unmask the underrun to ensure that * the display list was updated by the hardware. Before that * happens, the HVS will be using the previous display list with * the CRTC and encoder already reconfigured, leading to * underruns. This can be seen when reconfiguring the CRTC. */ vc4_hvs_unmask_underrun(dev, chan); } spin_unlock_irqrestore(&dev->event_lock, flags); } void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) { crtc->t_vblank = ktime_get(); drm_crtc_handle_vblank(&crtc->base); vc4_crtc_handle_page_flip(crtc); } static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) { struct vc4_crtc *vc4_crtc = data; u32 stat = CRTC_READ(PV_INTSTAT); irqreturn_t ret = IRQ_NONE; if (stat & PV_INT_VFP_START) { CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); vc4_crtc_handle_vblank(vc4_crtc); ret = IRQ_HANDLED; } return ret; } struct vc4_async_flip_state { struct drm_crtc *crtc; struct drm_framebuffer *fb; struct drm_framebuffer *old_fb; struct drm_pending_vblank_event *event; struct vc4_seqno_cb cb; }; /* Called when the V3D execution for the BO being flipped to is done, so that * we can actually update the plane's address to point to it. */ static void vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) { struct vc4_async_flip_state *flip_state = container_of(cb, struct vc4_async_flip_state, cb); struct drm_crtc *crtc = flip_state->crtc; struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane = crtc->primary; vc4_plane_async_set_fb(plane, flip_state->fb); if (flip_state->event) { unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, flip_state->event); spin_unlock_irqrestore(&dev->event_lock, flags); } drm_crtc_vblank_put(crtc); drm_framebuffer_put(flip_state->fb); /* Decrement the BO usecnt in order to keep the inc/dec calls balanced * when the planes are updated through the async update path. * FIXME: we should move to generic async-page-flip when it's * available, so that we can get rid of this hand-made cleanup_fb() * logic. */ if (flip_state->old_fb) { struct drm_gem_cma_object *cma_bo; struct vc4_bo *bo; cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); bo = to_vc4_bo(&cma_bo->base); vc4_bo_dec_usecnt(bo); drm_framebuffer_put(flip_state->old_fb); } kfree(flip_state); up(&vc4->async_modeset); } /* Implements async (non-vblank-synced) page flips. * * The page flip ioctl needs to return immediately, so we grab the * modeset semaphore on the pipe, and queue the address update for * when V3D is done with the BO being flipped to. */ static int vc4_async_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane = crtc->primary; int ret = 0; struct vc4_async_flip_state *flip_state; struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); /* Increment the BO usecnt here, so that we never end up with an * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the * plane is later updated through the non-async path. * FIXME: we should move to generic async-page-flip when it's * available, so that we can get rid of this hand-made prepare_fb() * logic. */ ret = vc4_bo_inc_usecnt(bo); if (ret) return ret; flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); if (!flip_state) { vc4_bo_dec_usecnt(bo); return -ENOMEM; } drm_framebuffer_get(fb); flip_state->fb = fb; flip_state->crtc = crtc; flip_state->event = event; /* Make sure all other async modesetes have landed. */ ret = down_interruptible(&vc4->async_modeset); if (ret) { drm_framebuffer_put(fb); vc4_bo_dec_usecnt(bo); kfree(flip_state); return ret; } /* Save the current FB before it's replaced by the new one in * drm_atomic_set_fb_for_plane(). We'll need the old FB in * vc4_async_page_flip_complete() to decrement the BO usecnt and keep * it consistent. * FIXME: we should move to generic async-page-flip when it's * available, so that we can get rid of this hand-made cleanup_fb() * logic. */ flip_state->old_fb = plane->state->fb; if (flip_state->old_fb) drm_framebuffer_get(flip_state->old_fb); WARN_ON(drm_crtc_vblank_get(crtc) != 0); /* Immediately update the plane's legacy fb pointer, so that later * modeset prep sees the state that will be present when the semaphore * is released. */ drm_atomic_set_fb_for_plane(plane->state, fb); vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, vc4_async_page_flip_complete); /* Driver takes ownership of state on successful async commit. */ return 0; } int vc4_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags, struct drm_modeset_acquire_ctx *ctx) { if (flags & DRM_MODE_PAGE_FLIP_ASYNC) return vc4_async_page_flip(crtc, fb, event, flags); else return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); } struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) { struct vc4_crtc_state *vc4_state, *old_vc4_state; vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); if (!vc4_state) return NULL; old_vc4_state = to_vc4_crtc_state(crtc->state); vc4_state->feed_txp = old_vc4_state->feed_txp; vc4_state->margins = old_vc4_state->margins; vc4_state->assigned_channel = old_vc4_state->assigned_channel; __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); return &vc4_state->base; } void vc4_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); if (drm_mm_node_allocated(&vc4_state->mm)) { unsigned long flags; spin_lock_irqsave(&vc4->hvs->mm_lock, flags); drm_mm_remove_node(&vc4_state->mm); spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); } drm_atomic_helper_crtc_destroy_state(crtc, state); } void vc4_crtc_reset(struct drm_crtc *crtc) { if (crtc->state) vc4_crtc_destroy_state(crtc, crtc->state); crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); if (crtc->state) __drm_atomic_helper_crtc_reset(crtc, crtc->state); } static const struct drm_crtc_funcs vc4_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .destroy = vc4_crtc_destroy, .page_flip = vc4_page_flip, .set_property = NULL, .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ .reset = vc4_crtc_reset, .atomic_duplicate_state = vc4_crtc_duplicate_state, .atomic_destroy_state = vc4_crtc_destroy_state, .gamma_set = drm_atomic_helper_legacy_gamma_set, .enable_vblank = vc4_enable_vblank, .disable_vblank = vc4_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, }; static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { .mode_valid = vc4_crtc_mode_valid, .atomic_check = vc4_crtc_atomic_check, .atomic_flush = vc4_hvs_atomic_flush, .atomic_enable = vc4_crtc_atomic_enable, .atomic_disable = vc4_crtc_atomic_disable, .get_scanout_position = vc4_crtc_get_scanout_position, }; static const struct vc4_pv_data bcm2835_pv0_data = { .base = { .hvs_available_channels = BIT(0), .hvs_output = 0, }, .debugfs_name = "crtc0_regs", .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, }, }; static const struct vc4_pv_data bcm2835_pv1_data = { .base = { .hvs_available_channels = BIT(2), .hvs_output = 2, }, .debugfs_name = "crtc1_regs", .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, }, }; static const struct vc4_pv_data bcm2835_pv2_data = { .base = { .hvs_available_channels = BIT(1), .hvs_output = 1, }, .debugfs_name = "crtc2_regs", .fifo_depth = 64, .pixels_per_clock = 1, .encoder_types = { [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, }, }; static const struct of_device_id vc4_crtc_dt_match[] = { { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, {} }; static void vc4_set_crtc_possible_masks(struct drm_device *drm, struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; struct drm_encoder *encoder; drm_for_each_encoder(encoder, drm) { struct vc4_encoder *vc4_encoder; int i; vc4_encoder = to_vc4_encoder(encoder); for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { if (vc4_encoder->type == encoder_types[i]) { vc4_encoder->clock_select = i; encoder->possible_crtcs |= drm_crtc_mask(crtc); break; } } } } int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc, const struct drm_crtc_funcs *crtc_funcs, const struct drm_crtc_helper_funcs *crtc_helper_funcs) { struct vc4_dev *vc4 = to_vc4_dev(drm); struct drm_crtc *crtc = &vc4_crtc->base; struct drm_plane *primary_plane; unsigned int i; /* For now, we create just the primary and the legacy cursor * planes. We should be able to stack more planes on easily, * but to do that we would need to compute the bandwidth * requirement of the plane configuration, and reject ones * that will take too much. */ primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); if (IS_ERR(primary_plane)) { dev_err(drm->dev, "failed to construct primary plane\n"); return PTR_ERR(primary_plane); } drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, crtc_funcs, NULL); drm_crtc_helper_add(crtc, crtc_helper_funcs); if (!vc4->hvs->hvs5) { drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); /* We support CTM, but only for one CRTC at a time. It's therefore * implemented as private driver state in vc4_kms, not here. */ drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); } for (i = 0; i < crtc->gamma_size; i++) { vc4_crtc->lut_r[i] = i; vc4_crtc->lut_g[i] = i; vc4_crtc->lut_b[i] = i; } return 0; } static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); const struct vc4_pv_data *pv_data; struct vc4_crtc *vc4_crtc; struct drm_crtc *crtc; struct drm_plane *destroy_plane, *temp; int ret; vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); if (!vc4_crtc) return -ENOMEM; crtc = &vc4_crtc->base; pv_data = of_device_get_match_data(dev); if (!pv_data) return -ENODEV; vc4_crtc->data = &pv_data->base; vc4_crtc->pdev = pdev; vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(vc4_crtc->regs)) return PTR_ERR(vc4_crtc->regs); vc4_crtc->regset.base = vc4_crtc->regs; vc4_crtc->regset.regs = crtc_regs; vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); ret = vc4_crtc_init(drm, vc4_crtc, &vc4_crtc_funcs, &vc4_crtc_helper_funcs); if (ret) return ret; vc4_set_crtc_possible_masks(drm, crtc); CRTC_WRITE(PV_INTEN, 0); CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_crtc_irq_handler, IRQF_SHARED, "vc4 crtc", vc4_crtc); if (ret) goto err_destroy_planes; platform_set_drvdata(pdev, vc4_crtc); vc4_debugfs_add_regset32(drm, pv_data->debugfs_name, &vc4_crtc->regset); return 0; err_destroy_planes: list_for_each_entry_safe(destroy_plane, temp, &drm->mode_config.plane_list, head) { if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) destroy_plane->funcs->destroy(destroy_plane); } return ret; } static void vc4_crtc_unbind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); vc4_crtc_destroy(&vc4_crtc->base); CRTC_WRITE(PV_INTEN, 0); platform_set_drvdata(pdev, NULL); } static const struct component_ops vc4_crtc_ops = { .bind = vc4_crtc_bind, .unbind = vc4_crtc_unbind, }; static int vc4_crtc_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_crtc_ops); } static int vc4_crtc_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_crtc_ops); return 0; } struct platform_driver vc4_crtc_driver = { .probe = vc4_crtc_dev_probe, .remove = vc4_crtc_dev_remove, .driver = { .name = "vc4_crtc", .of_match_table = vc4_crtc_dt_match, }, };