/* * Copyright 2011 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include "radeon.h" #include "radeon_asic.h" #include "r600d.h" #include "r600_dpm.h" #include "atom.h" const u32 r600_utc[R600_PM_NUMBER_OF_TC] = { R600_UTC_DFLT_00, R600_UTC_DFLT_01, R600_UTC_DFLT_02, R600_UTC_DFLT_03, R600_UTC_DFLT_04, R600_UTC_DFLT_05, R600_UTC_DFLT_06, R600_UTC_DFLT_07, R600_UTC_DFLT_08, R600_UTC_DFLT_09, R600_UTC_DFLT_10, R600_UTC_DFLT_11, R600_UTC_DFLT_12, R600_UTC_DFLT_13, R600_UTC_DFLT_14, }; const u32 r600_dtc[R600_PM_NUMBER_OF_TC] = { R600_DTC_DFLT_00, R600_DTC_DFLT_01, R600_DTC_DFLT_02, R600_DTC_DFLT_03, R600_DTC_DFLT_04, R600_DTC_DFLT_05, R600_DTC_DFLT_06, R600_DTC_DFLT_07, R600_DTC_DFLT_08, R600_DTC_DFLT_09, R600_DTC_DFLT_10, R600_DTC_DFLT_11, R600_DTC_DFLT_12, R600_DTC_DFLT_13, R600_DTC_DFLT_14, }; void r600_dpm_print_class_info(u32 class, u32 class2) { const char *s; switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) { case ATOM_PPLIB_CLASSIFICATION_UI_NONE: default: s = "none"; break; case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY: s = "battery"; break; case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED: s = "balanced"; break; case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE: s = "performance"; break; } printk("\tui class: %s\n", s); printk("\tinternal class:"); if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) && (class2 == 0)) pr_cont(" none"); else { if (class & ATOM_PPLIB_CLASSIFICATION_BOOT) pr_cont(" boot"); if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL) pr_cont(" thermal"); if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) pr_cont(" limited_pwr"); if (class & ATOM_PPLIB_CLASSIFICATION_REST) pr_cont(" rest"); if (class & ATOM_PPLIB_CLASSIFICATION_FORCED) pr_cont(" forced"); if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) pr_cont(" 3d_perf"); if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE) pr_cont(" ovrdrv"); if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) pr_cont(" uvd"); if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW) pr_cont(" 3d_low"); if (class & ATOM_PPLIB_CLASSIFICATION_ACPI) pr_cont(" acpi"); if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) pr_cont(" uvd_hd2"); if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) pr_cont(" uvd_hd"); if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) pr_cont(" uvd_sd"); if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) pr_cont(" limited_pwr2"); if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) pr_cont(" ulv"); if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) pr_cont(" uvd_mvc"); } pr_cont("\n"); } void r600_dpm_print_cap_info(u32 caps) { printk("\tcaps:"); if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) pr_cont(" single_disp"); if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK) pr_cont(" video"); if (caps & ATOM_PPLIB_DISALLOW_ON_DC) pr_cont(" no_dc"); pr_cont("\n"); } void r600_dpm_print_ps_status(struct radeon_device *rdev, struct radeon_ps *rps) { printk("\tstatus:"); if (rps == rdev->pm.dpm.current_ps) pr_cont(" c"); if (rps == rdev->pm.dpm.requested_ps) pr_cont(" r"); if (rps == rdev->pm.dpm.boot_ps) pr_cont(" b"); pr_cont("\n"); } u32 r600_dpm_get_vblank_time(struct radeon_device *rdev) { struct drm_device *dev = rdev_to_drm(rdev); struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; u32 vblank_in_pixels; u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */ if (rdev->num_crtc && rdev->mode_info.mode_config_initialized) { list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (crtc->enabled && radeon_crtc->enabled && radeon_crtc->hw_mode.clock) { vblank_in_pixels = radeon_crtc->hw_mode.crtc_htotal * (radeon_crtc->hw_mode.crtc_vblank_end - radeon_crtc->hw_mode.crtc_vdisplay + (radeon_crtc->v_border * 2)); vblank_time_us = vblank_in_pixels * 1000 / radeon_crtc->hw_mode.clock; break; } } } return vblank_time_us; } u32 r600_dpm_get_vrefresh(struct radeon_device *rdev) { struct drm_device *dev = rdev_to_drm(rdev); struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; u32 vrefresh = 0; if (rdev->num_crtc && rdev->mode_info.mode_config_initialized) { list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (crtc->enabled && radeon_crtc->enabled && radeon_crtc->hw_mode.clock) { vrefresh = drm_mode_vrefresh(&radeon_crtc->hw_mode); break; } } } return vrefresh; } void r600_calculate_u_and_p(u32 i, u32 r_c, u32 p_b, u32 *p, u32 *u) { u32 b_c = 0; u32 i_c; u32 tmp; i_c = (i * r_c) / 100; tmp = i_c >> p_b; while (tmp) { b_c++; tmp >>= 1; } *u = (b_c + 1) / 2; *p = i_c / (1 << (2 * (*u))); } int r600_calculate_at(u32 t, u32 h, u32 fh, u32 fl, u32 *tl, u32 *th) { u32 k, a, ah, al; u32 t1; if ((fl == 0) || (fh == 0) || (fl > fh)) return -EINVAL; k = (100 * fh) / fl; t1 = (t * (k - 100)); a = (1000 * (100 * h + t1)) / (10000 + (t1 / 100)); a = (a + 5) / 10; ah = ((a * t) + 5000) / 10000; al = a - ah; *th = t - ah; *tl = t + al; return 0; } void r600_gfx_clockgating_enable(struct radeon_device *rdev, bool enable) { int i; if (enable) { WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN); } else { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN); WREG32(CG_RLC_REQ_AND_RSP, 0x2); for (i = 0; i < rdev->usec_timeout; i++) { if (((RREG32(CG_RLC_REQ_AND_RSP) & CG_RLC_RSP_TYPE_MASK) >> CG_RLC_RSP_TYPE_SHIFT) == 1) break; udelay(1); } WREG32(CG_RLC_REQ_AND_RSP, 0x0); WREG32(GRBM_PWR_CNTL, 0x1); RREG32(GRBM_PWR_CNTL); } } void r600_dynamicpm_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN); else WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN); } void r600_enable_thermal_protection(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS); else WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS); } void r600_enable_acpi_pm(struct radeon_device *rdev) { WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN); } void r600_enable_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE); else WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE); } bool r600_dynamicpm_enabled(struct radeon_device *rdev) { if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN) return true; else return false; } void r600_enable_sclk_control(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~SCLK_PWRMGT_OFF); else WREG32_P(SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, ~SCLK_PWRMGT_OFF); } void r600_enable_mclk_control(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(MCLK_PWRMGT_CNTL, 0, ~MPLL_PWRMGT_OFF); else WREG32_P(MCLK_PWRMGT_CNTL, MPLL_PWRMGT_OFF, ~MPLL_PWRMGT_OFF); } void r600_enable_spll_bypass(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(CG_SPLL_FUNC_CNTL, SPLL_BYPASS_EN, ~SPLL_BYPASS_EN); else WREG32_P(CG_SPLL_FUNC_CNTL, 0, ~SPLL_BYPASS_EN); } void r600_wait_for_spll_change(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(CG_SPLL_FUNC_CNTL) & SPLL_CHG_STATUS) break; udelay(1); } } void r600_set_bsp(struct radeon_device *rdev, u32 u, u32 p) { WREG32(CG_BSP, BSP(p) | BSU(u)); } void r600_set_at(struct radeon_device *rdev, u32 l_to_m, u32 m_to_h, u32 h_to_m, u32 m_to_l) { WREG32(CG_RT, FLS(l_to_m) | FMS(m_to_h)); WREG32(CG_LT, FHS(h_to_m) | FMS(m_to_l)); } void r600_set_tc(struct radeon_device *rdev, u32 index, u32 u_t, u32 d_t) { WREG32(CG_FFCT_0 + (index * 4), UTC_0(u_t) | DTC_0(d_t)); } void r600_select_td(struct radeon_device *rdev, enum r600_td td) { if (td == R600_TD_AUTO) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL); else WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL); if (td == R600_TD_UP) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE); if (td == R600_TD_DOWN) WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE); } void r600_set_vrc(struct radeon_device *rdev, u32 vrv) { WREG32(CG_FTV, vrv); } void r600_set_tpu(struct radeon_device *rdev, u32 u) { WREG32_P(CG_TPC, TPU(u), ~TPU_MASK); } void r600_set_tpc(struct radeon_device *rdev, u32 c) { WREG32_P(CG_TPC, TPCC(c), ~TPCC_MASK); } void r600_set_sstu(struct radeon_device *rdev, u32 u) { WREG32_P(CG_SSP, CG_SSTU(u), ~CG_SSTU_MASK); } void r600_set_sst(struct radeon_device *rdev, u32 t) { WREG32_P(CG_SSP, CG_SST(t), ~CG_SST_MASK); } void r600_set_git(struct radeon_device *rdev, u32 t) { WREG32_P(CG_GIT, CG_GICST(t), ~CG_GICST_MASK); } void r600_set_fctu(struct radeon_device *rdev, u32 u) { WREG32_P(CG_FC_T, FC_TU(u), ~FC_TU_MASK); } void r600_set_fct(struct radeon_device *rdev, u32 t) { WREG32_P(CG_FC_T, FC_T(t), ~FC_T_MASK); } void r600_set_ctxcgtt3d_rphc(struct radeon_device *rdev, u32 p) { WREG32_P(CG_CTX_CGTT3D_R, PHC(p), ~PHC_MASK); } void r600_set_ctxcgtt3d_rsdc(struct radeon_device *rdev, u32 s) { WREG32_P(CG_CTX_CGTT3D_R, SDC(s), ~SDC_MASK); } void r600_set_vddc3d_oorsu(struct radeon_device *rdev, u32 u) { WREG32_P(CG_VDDC3D_OOR, SU(u), ~SU_MASK); } void r600_set_vddc3d_oorphc(struct radeon_device *rdev, u32 p) { WREG32_P(CG_VDDC3D_OOR, PHC(p), ~PHC_MASK); } void r600_set_vddc3d_oorsdc(struct radeon_device *rdev, u32 s) { WREG32_P(CG_VDDC3D_OOR, SDC(s), ~SDC_MASK); } void r600_set_mpll_lock_time(struct radeon_device *rdev, u32 lock_time) { WREG32_P(MPLL_TIME, MPLL_LOCK_TIME(lock_time), ~MPLL_LOCK_TIME_MASK); } void r600_set_mpll_reset_time(struct radeon_device *rdev, u32 reset_time) { WREG32_P(MPLL_TIME, MPLL_RESET_TIME(reset_time), ~MPLL_RESET_TIME_MASK); } void r600_engine_clock_entry_enable(struct radeon_device *rdev, u32 index, bool enable) { if (enable) WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), STEP_0_SPLL_ENTRY_VALID, ~STEP_0_SPLL_ENTRY_VALID); else WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), 0, ~STEP_0_SPLL_ENTRY_VALID); } void r600_engine_clock_entry_enable_pulse_skipping(struct radeon_device *rdev, u32 index, bool enable) { if (enable) WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), STEP_0_SPLL_STEP_ENABLE, ~STEP_0_SPLL_STEP_ENABLE); else WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), 0, ~STEP_0_SPLL_STEP_ENABLE); } void r600_engine_clock_entry_enable_post_divider(struct radeon_device *rdev, u32 index, bool enable) { if (enable) WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), STEP_0_POST_DIV_EN, ~STEP_0_POST_DIV_EN); else WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), 0, ~STEP_0_POST_DIV_EN); } void r600_engine_clock_entry_set_post_divider(struct radeon_device *rdev, u32 index, u32 divider) { WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2), STEP_0_SPLL_POST_DIV(divider), ~STEP_0_SPLL_POST_DIV_MASK); } void r600_engine_clock_entry_set_reference_divider(struct radeon_device *rdev, u32 index, u32 divider) { WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2), STEP_0_SPLL_REF_DIV(divider), ~STEP_0_SPLL_REF_DIV_MASK); } void r600_engine_clock_entry_set_feedback_divider(struct radeon_device *rdev, u32 index, u32 divider) { WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2), STEP_0_SPLL_FB_DIV(divider), ~STEP_0_SPLL_FB_DIV_MASK); } void r600_engine_clock_entry_set_step_time(struct radeon_device *rdev, u32 index, u32 step_time) { WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2), STEP_0_SPLL_STEP_TIME(step_time), ~STEP_0_SPLL_STEP_TIME_MASK); } void r600_vid_rt_set_ssu(struct radeon_device *rdev, u32 u) { WREG32_P(VID_RT, SSTU(u), ~SSTU_MASK); } void r600_vid_rt_set_vru(struct radeon_device *rdev, u32 u) { WREG32_P(VID_RT, VID_CRTU(u), ~VID_CRTU_MASK); } void r600_vid_rt_set_vrt(struct radeon_device *rdev, u32 rt) { WREG32_P(VID_RT, VID_CRT(rt), ~VID_CRT_MASK); } void r600_voltage_control_enable_pins(struct radeon_device *rdev, u64 mask) { WREG32(LOWER_GPIO_ENABLE, mask & 0xffffffff); WREG32(UPPER_GPIO_ENABLE, upper_32_bits(mask)); } void r600_voltage_control_program_voltages(struct radeon_device *rdev, enum r600_power_level index, u64 pins) { u32 tmp, mask; u32 ix = 3 - (3 & index); WREG32(CTXSW_VID_LOWER_GPIO_CNTL + (ix * 4), pins & 0xffffffff); mask = 7 << (3 * ix); tmp = RREG32(VID_UPPER_GPIO_CNTL); tmp = (tmp & ~mask) | ((pins >> (32 - (3 * ix))) & mask); WREG32(VID_UPPER_GPIO_CNTL, tmp); } void r600_voltage_control_deactivate_static_control(struct radeon_device *rdev, u64 mask) { u32 gpio; gpio = RREG32(GPIOPAD_MASK); gpio &= ~mask; WREG32(GPIOPAD_MASK, gpio); gpio = RREG32(GPIOPAD_EN); gpio &= ~mask; WREG32(GPIOPAD_EN, gpio); gpio = RREG32(GPIOPAD_A); gpio &= ~mask; WREG32(GPIOPAD_A, gpio); } void r600_power_level_enable(struct radeon_device *rdev, enum r600_power_level index, bool enable) { u32 ix = 3 - (3 & index); if (enable) WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), CTXSW_FREQ_STATE_ENABLE, ~CTXSW_FREQ_STATE_ENABLE); else WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), 0, ~CTXSW_FREQ_STATE_ENABLE); } void r600_power_level_set_voltage_index(struct radeon_device *rdev, enum r600_power_level index, u32 voltage_index) { u32 ix = 3 - (3 & index); WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), CTXSW_FREQ_VIDS_CFG_INDEX(voltage_index), ~CTXSW_FREQ_VIDS_CFG_INDEX_MASK); } void r600_power_level_set_mem_clock_index(struct radeon_device *rdev, enum r600_power_level index, u32 mem_clock_index) { u32 ix = 3 - (3 & index); WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), CTXSW_FREQ_MCLK_CFG_INDEX(mem_clock_index), ~CTXSW_FREQ_MCLK_CFG_INDEX_MASK); } void r600_power_level_set_eng_clock_index(struct radeon_device *rdev, enum r600_power_level index, u32 eng_clock_index) { u32 ix = 3 - (3 & index); WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), CTXSW_FREQ_SCLK_CFG_INDEX(eng_clock_index), ~CTXSW_FREQ_SCLK_CFG_INDEX_MASK); } void r600_power_level_set_watermark_id(struct radeon_device *rdev, enum r600_power_level index, enum r600_display_watermark watermark_id) { u32 ix = 3 - (3 & index); u32 tmp = 0; if (watermark_id == R600_DISPLAY_WATERMARK_HIGH) tmp = CTXSW_FREQ_DISPLAY_WATERMARK; WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_DISPLAY_WATERMARK); } void r600_power_level_set_pcie_gen2(struct radeon_device *rdev, enum r600_power_level index, bool compatible) { u32 ix = 3 - (3 & index); u32 tmp = 0; if (compatible) tmp = CTXSW_FREQ_GEN2PCIE_VOLT; WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_GEN2PCIE_VOLT); } enum r600_power_level r600_power_level_get_current_index(struct radeon_device *rdev) { u32 tmp; tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK; tmp >>= CURRENT_PROFILE_INDEX_SHIFT; return tmp; } enum r600_power_level r600_power_level_get_target_index(struct radeon_device *rdev) { u32 tmp; tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_PROFILE_INDEX_MASK; tmp >>= TARGET_PROFILE_INDEX_SHIFT; return tmp; } void r600_power_level_set_enter_index(struct radeon_device *rdev, enum r600_power_level index) { WREG32_P(TARGET_AND_CURRENT_PROFILE_INDEX, DYN_PWR_ENTER_INDEX(index), ~DYN_PWR_ENTER_INDEX_MASK); } void r600_wait_for_power_level_unequal(struct radeon_device *rdev, enum r600_power_level index) { int i; for (i = 0; i < rdev->usec_timeout; i++) { if (r600_power_level_get_target_index(rdev) != index) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if (r600_power_level_get_current_index(rdev) != index) break; udelay(1); } } void r600_wait_for_power_level(struct radeon_device *rdev, enum r600_power_level index) { int i; for (i = 0; i < rdev->usec_timeout; i++) { if (r600_power_level_get_target_index(rdev) == index) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if (r600_power_level_get_current_index(rdev) == index) break; udelay(1); } } void r600_start_dpm(struct radeon_device *rdev) { r600_enable_sclk_control(rdev, false); r600_enable_mclk_control(rdev, false); r600_dynamicpm_enable(rdev, true); radeon_wait_for_vblank(rdev, 0); radeon_wait_for_vblank(rdev, 1); r600_enable_spll_bypass(rdev, true); r600_wait_for_spll_change(rdev); r600_enable_spll_bypass(rdev, false); r600_wait_for_spll_change(rdev); r600_enable_spll_bypass(rdev, true); r600_wait_for_spll_change(rdev); r600_enable_spll_bypass(rdev, false); r600_wait_for_spll_change(rdev); r600_enable_sclk_control(rdev, true); r600_enable_mclk_control(rdev, true); } void r600_stop_dpm(struct radeon_device *rdev) { r600_dynamicpm_enable(rdev, false); } int r600_dpm_pre_set_power_state(struct radeon_device *rdev) { return 0; } void r600_dpm_post_set_power_state(struct radeon_device *rdev) { } bool r600_is_uvd_state(u32 class, u32 class2) { if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) return true; if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) return true; if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) return true; if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) return true; if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) return true; return false; } static int r600_set_thermal_temperature_range(struct radeon_device *rdev, int min_temp, int max_temp) { int low_temp = 0 * 1000; int high_temp = 255 * 1000; if (low_temp < min_temp) low_temp = min_temp; if (high_temp > max_temp) high_temp = max_temp; if (high_temp < low_temp) { DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); return -EINVAL; } WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK); WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK); WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK); rdev->pm.dpm.thermal.min_temp = low_temp; rdev->pm.dpm.thermal.max_temp = high_temp; return 0; } bool r600_is_internal_thermal_sensor(enum radeon_int_thermal_type sensor) { switch (sensor) { case THERMAL_TYPE_RV6XX: case THERMAL_TYPE_RV770: case THERMAL_TYPE_EVERGREEN: case THERMAL_TYPE_SUMO: case THERMAL_TYPE_NI: case THERMAL_TYPE_SI: case THERMAL_TYPE_CI: case THERMAL_TYPE_KV: return true; case THERMAL_TYPE_ADT7473_WITH_INTERNAL: case THERMAL_TYPE_EMC2103_WITH_INTERNAL: return false; /* need special handling */ case THERMAL_TYPE_NONE: case THERMAL_TYPE_EXTERNAL: case THERMAL_TYPE_EXTERNAL_GPIO: default: return false; } } int r600_dpm_late_enable(struct radeon_device *rdev) { int ret; if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { ret = r600_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); if (ret) return ret; rdev->irq.dpm_thermal = true; radeon_irq_set(rdev); } return 0; } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4; struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5; }; union fan_info { struct _ATOM_PPLIB_FANTABLE fan; struct _ATOM_PPLIB_FANTABLE2 fan2; struct _ATOM_PPLIB_FANTABLE3 fan3; }; static int r600_parse_clk_voltage_dep_table(struct radeon_clock_voltage_dependency_table *radeon_table, ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table) { int i; ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry; radeon_table->entries = kcalloc(atom_table->ucNumEntries, sizeof(struct radeon_clock_voltage_dependency_entry), GFP_KERNEL); if (!radeon_table->entries) return -ENOMEM; entry = &atom_table->entries[0]; for (i = 0; i < atom_table->ucNumEntries; i++) { radeon_table->entries[i].clk = le16_to_cpu(entry->usClockLow) | (entry->ucClockHigh << 16); radeon_table->entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record)); } radeon_table->count = atom_table->ucNumEntries; return 0; } int r600_get_platform_caps(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps); rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime); rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime); return 0; } /* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */ #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22 int r600_parse_extended_power_table(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; union power_info *power_info; union fan_info *fan_info; ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; int ret, i; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); /* fan table */ if (le16_to_cpu(power_info->pplib.usTableSize) >= sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) { if (power_info->pplib3.usFanTableOffset) { fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib3.usFanTableOffset)); rdev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst; rdev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin); rdev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed); rdev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh); rdev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin); rdev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed); rdev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh); if (fan_info->fan.ucFanTableFormat >= 2) rdev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax); else rdev->pm.dpm.fan.t_max = 10900; rdev->pm.dpm.fan.cycle_delay = 100000; if (fan_info->fan.ucFanTableFormat >= 3) { rdev->pm.dpm.fan.control_mode = fan_info->fan3.ucFanControlMode; rdev->pm.dpm.fan.default_max_fan_pwm = le16_to_cpu(fan_info->fan3.usFanPWMMax); rdev->pm.dpm.fan.default_fan_output_sensitivity = 4836; rdev->pm.dpm.fan.fan_output_sensitivity = le16_to_cpu(fan_info->fan3.usFanOutputSensitivity); } rdev->pm.dpm.fan.ucode_fan_control = true; } } /* clock dependancy tables, shedding tables */ if (le16_to_cpu(power_info->pplib.usTableSize) >= sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) { if (power_info->pplib4.usVddcDependencyOnSCLKOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset)); ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk, dep_table); if (ret) return ret; } if (power_info->pplib4.usVddciDependencyOnMCLKOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset)); ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk, dep_table); if (ret) { kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries); return ret; } } if (power_info->pplib4.usVddcDependencyOnMCLKOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset)); ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk, dep_table); if (ret) { kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries); kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries); return ret; } } if (power_info->pplib4.usMvddDependencyOnMCLKOffset) { dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset)); ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk, dep_table); if (ret) { kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries); kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries); kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries); return ret; } } if (power_info->pplib4.usMaxClockVoltageOnDCOffset) { ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v = (ATOM_PPLIB_Clock_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset)); if (clk_v->ucNumEntries) { rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk = le16_to_cpu(clk_v->entries[0].usSclkLow) | (clk_v->entries[0].ucSclkHigh << 16); rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk = le16_to_cpu(clk_v->entries[0].usMclkLow) | (clk_v->entries[0].ucMclkHigh << 16); rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc = le16_to_cpu(clk_v->entries[0].usVddc); rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci = le16_to_cpu(clk_v->entries[0].usVddci); } } if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) { ATOM_PPLIB_PhaseSheddingLimits_Table *psl = (ATOM_PPLIB_PhaseSheddingLimits_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset)); ATOM_PPLIB_PhaseSheddingLimits_Record *entry; rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries = kcalloc(psl->ucNumEntries, sizeof(struct radeon_phase_shedding_limits_entry), GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) { r600_free_extended_power_table(rdev); return -ENOMEM; } entry = &psl->entries[0]; for (i = 0; i < psl->ucNumEntries; i++) { rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk = le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16); rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk = le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16); rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record)); } rdev->pm.dpm.dyn_state.phase_shedding_limits_table.count = psl->ucNumEntries; } } /* cac data */ if (le16_to_cpu(power_info->pplib.usTableSize) >= sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) { rdev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit); rdev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit); rdev->pm.dpm.near_tdp_limit_adjusted = rdev->pm.dpm.near_tdp_limit; rdev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit); if (rdev->pm.dpm.tdp_od_limit) rdev->pm.dpm.power_control = true; else rdev->pm.dpm.power_control = false; rdev->pm.dpm.tdp_adjustment = 0; rdev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold); rdev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage); rdev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope); if (power_info->pplib5.usCACLeakageTableOffset) { ATOM_PPLIB_CAC_Leakage_Table *cac_table = (ATOM_PPLIB_CAC_Leakage_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset)); ATOM_PPLIB_CAC_Leakage_Record *entry; u32 size = cac_table->ucNumEntries * sizeof(struct radeon_cac_leakage_table); rdev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.cac_leakage_table.entries) { r600_free_extended_power_table(rdev); return -ENOMEM; } entry = &cac_table->entries[0]; for (i = 0; i < cac_table->ucNumEntries; i++) { if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) { rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 = le16_to_cpu(entry->usVddc1); rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 = le16_to_cpu(entry->usVddc2); rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 = le16_to_cpu(entry->usVddc3); } else { rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc = le16_to_cpu(entry->usVddc); rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage = le32_to_cpu(entry->ulLeakageValue); } entry = (ATOM_PPLIB_CAC_Leakage_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record)); } rdev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries; } } /* ext tables */ if (le16_to_cpu(power_info->pplib.usTableSize) >= sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) { ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset)); if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) && ext_hdr->usVCETableOffset) { VCEClockInfoArray *array = (VCEClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usVCETableOffset) + 1); ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usVCETableOffset) + 1 + 1 + array->ucNumEntries * sizeof(VCEClockInfo)); ATOM_PPLIB_VCE_State_Table *states = (ATOM_PPLIB_VCE_State_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usVCETableOffset) + 1 + 1 + (array->ucNumEntries * sizeof (VCEClockInfo)) + 1 + (limits->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record))); ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry; ATOM_PPLIB_VCE_State_Record *state_entry; VCEClockInfo *vce_clk; u32 size = limits->numEntries * sizeof(struct radeon_vce_clock_voltage_dependency_entry); rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries = kzalloc(size, GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) { r600_free_extended_power_table(rdev); return -ENOMEM; } rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count = limits->numEntries; entry = &limits->entries[0]; state_entry = &states->entries[0]; for (i = 0; i < limits->numEntries; i++) { vce_clk = (VCEClockInfo *) ((u8 *)&array->entries[0] + (entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo))); rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk = le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16); rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk = le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16); rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record)); } for (i = 0; i < states->numEntries; i++) { if (i >= RADEON_MAX_VCE_LEVELS) break; vce_clk = (VCEClockInfo *) ((u8 *)&array->entries[0] + (state_entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo))); rdev->pm.dpm.vce_states[i].evclk = le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16); rdev->pm.dpm.vce_states[i].ecclk = le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16); rdev->pm.dpm.vce_states[i].clk_idx = state_entry->ucClockInfoIndex & 0x3f; rdev->pm.dpm.vce_states[i].pstate = (state_entry->ucClockInfoIndex & 0xc0) >> 6; state_entry = (ATOM_PPLIB_VCE_State_Record *) ((u8 *)state_entry + sizeof(ATOM_PPLIB_VCE_State_Record)); } } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) && ext_hdr->usUVDTableOffset) { UVDClockInfoArray *array = (UVDClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usUVDTableOffset) + 1); ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 + 1 + (array->ucNumEntries * sizeof (UVDClockInfo))); ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry; u32 size = limits->numEntries * sizeof(struct radeon_uvd_clock_voltage_dependency_entry); rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries = kzalloc(size, GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) { r600_free_extended_power_table(rdev); return -ENOMEM; } rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count = limits->numEntries; entry = &limits->entries[0]; for (i = 0; i < limits->numEntries; i++) { UVDClockInfo *uvd_clk = (UVDClockInfo *) ((u8 *)&array->entries[0] + (entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo))); rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk = le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16); rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk = le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16); rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record)); } } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) && ext_hdr->usSAMUTableOffset) { ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits = (ATOM_PPLIB_SAMClk_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1); ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry; u32 size = limits->numEntries * sizeof(struct radeon_clock_voltage_dependency_entry); rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries = kzalloc(size, GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) { r600_free_extended_power_table(rdev); return -ENOMEM; } rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count = limits->numEntries; entry = &limits->entries[0]; for (i = 0; i < limits->numEntries; i++) { rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk = le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16); rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record)); } } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) && ext_hdr->usPPMTableOffset) { ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usPPMTableOffset)); rdev->pm.dpm.dyn_state.ppm_table = kzalloc(sizeof(struct radeon_ppm_table), GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.ppm_table) { r600_free_extended_power_table(rdev); return -ENOMEM; } rdev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign; rdev->pm.dpm.dyn_state.ppm_table->cpu_core_number = le16_to_cpu(ppm->usCpuCoreNumber); rdev->pm.dpm.dyn_state.ppm_table->platform_tdp = le32_to_cpu(ppm->ulPlatformTDP); rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp = le32_to_cpu(ppm->ulSmallACPlatformTDP); rdev->pm.dpm.dyn_state.ppm_table->platform_tdc = le32_to_cpu(ppm->ulPlatformTDC); rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc = le32_to_cpu(ppm->ulSmallACPlatformTDC); rdev->pm.dpm.dyn_state.ppm_table->apu_tdp = le32_to_cpu(ppm->ulApuTDP); rdev->pm.dpm.dyn_state.ppm_table->dgpu_tdp = le32_to_cpu(ppm->ulDGpuTDP); rdev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power = le32_to_cpu(ppm->ulDGpuUlvPower); rdev->pm.dpm.dyn_state.ppm_table->tj_max = le32_to_cpu(ppm->ulTjmax); } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) && ext_hdr->usACPTableOffset) { ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits = (ATOM_PPLIB_ACPClk_Voltage_Limit_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usACPTableOffset) + 1); ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry; u32 size = limits->numEntries * sizeof(struct radeon_clock_voltage_dependency_entry); rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries = kzalloc(size, GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) { r600_free_extended_power_table(rdev); return -ENOMEM; } rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count = limits->numEntries; entry = &limits->entries[0]; for (i = 0; i < limits->numEntries; i++) { rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk = le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16); rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v = le16_to_cpu(entry->usVoltage); entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *) ((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record)); } } if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) && ext_hdr->usPowerTuneTableOffset) { u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); ATOM_PowerTune_Table *pt; rdev->pm.dpm.dyn_state.cac_tdp_table = kzalloc(sizeof(struct radeon_cac_tdp_table), GFP_KERNEL); if (!rdev->pm.dpm.dyn_state.cac_tdp_table) { r600_free_extended_power_table(rdev); return -ENOMEM; } if (rev > 0) { ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); rdev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = le16_to_cpu(ppt->usMaximumPowerDeliveryLimit); pt = &ppt->power_tune_table; } else { ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); rdev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255; pt = &ppt->power_tune_table; } rdev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP); rdev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp = le16_to_cpu(pt->usConfigurableTDP); rdev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC); rdev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit = le16_to_cpu(pt->usBatteryPowerLimit); rdev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit = le16_to_cpu(pt->usSmallPowerLimit); rdev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage = le16_to_cpu(pt->usLowCACLeakage); rdev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage = le16_to_cpu(pt->usHighCACLeakage); } } return 0; } void r600_free_extended_power_table(struct radeon_device *rdev) { struct radeon_dpm_dynamic_state *dyn_state = &rdev->pm.dpm.dyn_state; kfree(dyn_state->vddc_dependency_on_sclk.entries); kfree(dyn_state->vddci_dependency_on_mclk.entries); kfree(dyn_state->vddc_dependency_on_mclk.entries); kfree(dyn_state->mvdd_dependency_on_mclk.entries); kfree(dyn_state->cac_leakage_table.entries); kfree(dyn_state->phase_shedding_limits_table.entries); kfree(dyn_state->ppm_table); kfree(dyn_state->cac_tdp_table); kfree(dyn_state->vce_clock_voltage_dependency_table.entries); kfree(dyn_state->uvd_clock_voltage_dependency_table.entries); kfree(dyn_state->samu_clock_voltage_dependency_table.entries); kfree(dyn_state->acp_clock_voltage_dependency_table.entries); } enum radeon_pcie_gen r600_get_pcie_gen_support(struct radeon_device *rdev, u32 sys_mask, enum radeon_pcie_gen asic_gen, enum radeon_pcie_gen default_gen) { switch (asic_gen) { case RADEON_PCIE_GEN1: return RADEON_PCIE_GEN1; case RADEON_PCIE_GEN2: return RADEON_PCIE_GEN2; case RADEON_PCIE_GEN3: return RADEON_PCIE_GEN3; default: if ((sys_mask & RADEON_PCIE_SPEED_80) && (default_gen == RADEON_PCIE_GEN3)) return RADEON_PCIE_GEN3; else if ((sys_mask & RADEON_PCIE_SPEED_50) && (default_gen == RADEON_PCIE_GEN2)) return RADEON_PCIE_GEN2; else return RADEON_PCIE_GEN1; } return RADEON_PCIE_GEN1; } u16 r600_get_pcie_lane_support(struct radeon_device *rdev, u16 asic_lanes, u16 default_lanes) { switch (asic_lanes) { case 0: default: return default_lanes; case 1: return 1; case 2: return 2; case 4: return 4; case 8: return 8; case 12: return 12; case 16: return 16; } } u8 r600_encode_pci_lane_width(u32 lanes) { static const u8 encoded_lanes[] = { 0, 1, 2, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6 }; if (lanes > 16) return 0; return encoded_lanes[lanes]; }