/* * Copyright 1993-2003 NVIDIA, Corporation * Copyright 2006 Dave Airlie * Copyright 2007 Maarten Maathuis * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "nouveau_drv.h" #include "nouveau_reg.h" #include "nouveau_ttm.h" #include "nouveau_bo.h" #include "nouveau_gem.h" #include "nouveau_encoder.h" #include "nouveau_connector.h" #include "nouveau_crtc.h" #include "hw.h" #include "nvreg.h" #include "nouveau_fbcon.h" #include "disp.h" #include "nouveau_dma.h" #include #include static int nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb); static void crtc_wr_cio_state(struct drm_crtc *crtc, struct nv04_crtc_reg *crtcstate, int index) { NVWriteVgaCrtc(crtc->dev, nouveau_crtc(crtc)->index, index, crtcstate->CRTC[index]); } static void nv_crtc_set_digital_vibrance(struct drm_crtc *crtc, int level) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; regp->CRTC[NV_CIO_CRE_CSB] = nv_crtc->saturation = level; if (nv_crtc->saturation && nv_gf4_disp_arch(crtc->dev)) { regp->CRTC[NV_CIO_CRE_CSB] = 0x80; regp->CRTC[NV_CIO_CRE_5B] = nv_crtc->saturation << 2; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_5B); } crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_CSB); } static void nv_crtc_set_image_sharpening(struct drm_crtc *crtc, int level) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; nv_crtc->sharpness = level; if (level < 0) /* blur is in hw range 0x3f -> 0x20 */ level += 0x40; regp->ramdac_634 = level; NVWriteRAMDAC(crtc->dev, nv_crtc->index, NV_PRAMDAC_634, regp->ramdac_634); } #define PLLSEL_VPLL1_MASK \ (NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_VPLL \ | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK_RATIO_DB2) #define PLLSEL_VPLL2_MASK \ (NV_PRAMDAC_PLL_COEFF_SELECT_PLL_SOURCE_VPLL2 \ | NV_PRAMDAC_PLL_COEFF_SELECT_VCLK2_RATIO_DB2) #define PLLSEL_TV_MASK \ (NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK1 \ | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK1 \ | NV_PRAMDAC_PLL_COEFF_SELECT_TV_VSCLK2 \ | NV_PRAMDAC_PLL_COEFF_SELECT_TV_PCLK2) /* NV4x 0x40.. pll notes: * gpu pll: 0x4000 + 0x4004 * ?gpu? pll: 0x4008 + 0x400c * vpll1: 0x4010 + 0x4014 * vpll2: 0x4018 + 0x401c * mpll: 0x4020 + 0x4024 * mpll: 0x4038 + 0x403c * * the first register of each pair has some unknown details: * bits 0-7: redirected values from elsewhere? (similar to PLL_SETUP_CONTROL?) * bits 20-23: (mpll) something to do with post divider? * bits 28-31: related to single stage mode? (bit 8/12) */ static void nv_crtc_calc_state_ext(struct drm_crtc *crtc, struct drm_display_mode * mode, int dot_clock) { struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_bios *bios = nvxx_bios(&drm->client.device); struct nvkm_clk *clk = nvxx_clk(&drm->client.device); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv04_mode_state *state = &nv04_display(dev)->mode_reg; struct nv04_crtc_reg *regp = &state->crtc_reg[nv_crtc->index]; struct nvkm_pll_vals *pv = ®p->pllvals; struct nvbios_pll pll_lim; if (nvbios_pll_parse(bios, nv_crtc->index ? PLL_VPLL1 : PLL_VPLL0, &pll_lim)) return; /* NM2 == 0 is used to determine single stage mode on two stage plls */ pv->NM2 = 0; /* for newer nv4x the blob uses only the first stage of the vpll below a * certain clock. for a certain nv4b this is 150MHz. since the max * output frequency of the first stage for this card is 300MHz, it is * assumed the threshold is given by vco1 maxfreq/2 */ /* for early nv4x, specifically nv40 and *some* nv43 (devids 0 and 6, * not 8, others unknown), the blob always uses both plls. no problem * has yet been observed in allowing the use a single stage pll on all * nv43 however. the behaviour of single stage use is untested on nv40 */ if (drm->client.device.info.chipset > 0x40 && dot_clock <= (pll_lim.vco1.max_freq / 2)) memset(&pll_lim.vco2, 0, sizeof(pll_lim.vco2)); if (!clk->pll_calc(clk, &pll_lim, dot_clock, pv)) return; state->pllsel &= PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK; /* The blob uses this always, so let's do the same */ if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_USE_VPLL2_TRUE; /* again nv40 and some nv43 act more like nv3x as described above */ if (drm->client.device.info.chipset < 0x41) state->pllsel |= NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_MPLL | NV_PRAMDAC_PLL_COEFF_SELECT_SOURCE_PROG_NVPLL; state->pllsel |= nv_crtc->index ? PLLSEL_VPLL2_MASK : PLLSEL_VPLL1_MASK; if (pv->NM2) NV_DEBUG(drm, "vpll: n1 %d n2 %d m1 %d m2 %d log2p %d\n", pv->N1, pv->N2, pv->M1, pv->M2, pv->log2P); else NV_DEBUG(drm, "vpll: n %d m %d log2p %d\n", pv->N1, pv->M1, pv->log2P); nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset); } static void nv_crtc_dpms(struct drm_crtc *crtc, int mode) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); unsigned char seq1 = 0, crtc17 = 0; unsigned char crtc1A; NV_DEBUG(drm, "Setting dpms mode %d on CRTC %d\n", mode, nv_crtc->index); if (nv_crtc->last_dpms == mode) /* Don't do unnecessary mode changes. */ return; nv_crtc->last_dpms = mode; if (nv_two_heads(dev)) NVSetOwner(dev, nv_crtc->index); /* nv4ref indicates these two RPC1 bits inhibit h/v sync */ crtc1A = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX) & ~0xC0; switch (mode) { case DRM_MODE_DPMS_STANDBY: /* Screen: Off; HSync: Off, VSync: On -- Not Supported */ seq1 = 0x20; crtc17 = 0x80; crtc1A |= 0x80; break; case DRM_MODE_DPMS_SUSPEND: /* Screen: Off; HSync: On, VSync: Off -- Not Supported */ seq1 = 0x20; crtc17 = 0x80; crtc1A |= 0x40; break; case DRM_MODE_DPMS_OFF: /* Screen: Off; HSync: Off, VSync: Off */ seq1 = 0x20; crtc17 = 0x00; crtc1A |= 0xC0; break; case DRM_MODE_DPMS_ON: default: /* Screen: On; HSync: On, VSync: On */ seq1 = 0x00; crtc17 = 0x80; break; } NVVgaSeqReset(dev, nv_crtc->index, true); /* Each head has it's own sequencer, so we can turn it off when we want */ seq1 |= (NVReadVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX) & ~0x20); NVWriteVgaSeq(dev, nv_crtc->index, NV_VIO_SR_CLOCK_INDEX, seq1); crtc17 |= (NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX) & ~0x80); mdelay(10); NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CR_MODE_INDEX, crtc17); NVVgaSeqReset(dev, nv_crtc->index, false); NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RPC1_INDEX, crtc1A); } static void nv_crtc_mode_set_vga(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; struct drm_framebuffer *fb = crtc->primary->fb; /* Calculate our timings */ int horizDisplay = (mode->crtc_hdisplay >> 3) - 1; int horizStart = (mode->crtc_hsync_start >> 3) + 1; int horizEnd = (mode->crtc_hsync_end >> 3) + 1; int horizTotal = (mode->crtc_htotal >> 3) - 5; int horizBlankStart = (mode->crtc_hdisplay >> 3) - 1; int horizBlankEnd = (mode->crtc_htotal >> 3) - 1; int vertDisplay = mode->crtc_vdisplay - 1; int vertStart = mode->crtc_vsync_start - 1; int vertEnd = mode->crtc_vsync_end - 1; int vertTotal = mode->crtc_vtotal - 2; int vertBlankStart = mode->crtc_vdisplay - 1; int vertBlankEnd = mode->crtc_vtotal - 1; struct drm_encoder *encoder; bool fp_output = false; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); if (encoder->crtc == crtc && (nv_encoder->dcb->type == DCB_OUTPUT_LVDS || nv_encoder->dcb->type == DCB_OUTPUT_TMDS)) fp_output = true; } if (fp_output) { vertStart = vertTotal - 3; vertEnd = vertTotal - 2; vertBlankStart = vertStart; horizStart = horizTotal - 5; horizEnd = horizTotal - 2; horizBlankEnd = horizTotal + 4; #if 0 if (dev->overlayAdaptor && drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) /* This reportedly works around some video overlay bandwidth problems */ horizTotal += 2; #endif } if (mode->flags & DRM_MODE_FLAG_INTERLACE) vertTotal |= 1; #if 0 ErrorF("horizDisplay: 0x%X \n", horizDisplay); ErrorF("horizStart: 0x%X \n", horizStart); ErrorF("horizEnd: 0x%X \n", horizEnd); ErrorF("horizTotal: 0x%X \n", horizTotal); ErrorF("horizBlankStart: 0x%X \n", horizBlankStart); ErrorF("horizBlankEnd: 0x%X \n", horizBlankEnd); ErrorF("vertDisplay: 0x%X \n", vertDisplay); ErrorF("vertStart: 0x%X \n", vertStart); ErrorF("vertEnd: 0x%X \n", vertEnd); ErrorF("vertTotal: 0x%X \n", vertTotal); ErrorF("vertBlankStart: 0x%X \n", vertBlankStart); ErrorF("vertBlankEnd: 0x%X \n", vertBlankEnd); #endif /* * compute correct Hsync & Vsync polarity */ if ((mode->flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)) && (mode->flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) { regp->MiscOutReg = 0x23; if (mode->flags & DRM_MODE_FLAG_NHSYNC) regp->MiscOutReg |= 0x40; if (mode->flags & DRM_MODE_FLAG_NVSYNC) regp->MiscOutReg |= 0x80; } else { int vdisplay = mode->vdisplay; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) vdisplay *= 2; if (mode->vscan > 1) vdisplay *= mode->vscan; if (vdisplay < 400) regp->MiscOutReg = 0xA3; /* +hsync -vsync */ else if (vdisplay < 480) regp->MiscOutReg = 0x63; /* -hsync +vsync */ else if (vdisplay < 768) regp->MiscOutReg = 0xE3; /* -hsync -vsync */ else regp->MiscOutReg = 0x23; /* +hsync +vsync */ } /* * Time Sequencer */ regp->Sequencer[NV_VIO_SR_RESET_INDEX] = 0x00; /* 0x20 disables the sequencer */ if (mode->flags & DRM_MODE_FLAG_CLKDIV2) regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x29; else regp->Sequencer[NV_VIO_SR_CLOCK_INDEX] = 0x21; regp->Sequencer[NV_VIO_SR_PLANE_MASK_INDEX] = 0x0F; regp->Sequencer[NV_VIO_SR_CHAR_MAP_INDEX] = 0x00; regp->Sequencer[NV_VIO_SR_MEM_MODE_INDEX] = 0x0E; /* * CRTC */ regp->CRTC[NV_CIO_CR_HDT_INDEX] = horizTotal; regp->CRTC[NV_CIO_CR_HDE_INDEX] = horizDisplay; regp->CRTC[NV_CIO_CR_HBS_INDEX] = horizBlankStart; regp->CRTC[NV_CIO_CR_HBE_INDEX] = (1 << 7) | XLATE(horizBlankEnd, 0, NV_CIO_CR_HBE_4_0); regp->CRTC[NV_CIO_CR_HRS_INDEX] = horizStart; regp->CRTC[NV_CIO_CR_HRE_INDEX] = XLATE(horizBlankEnd, 5, NV_CIO_CR_HRE_HBE_5) | XLATE(horizEnd, 0, NV_CIO_CR_HRE_4_0); regp->CRTC[NV_CIO_CR_VDT_INDEX] = vertTotal; regp->CRTC[NV_CIO_CR_OVL_INDEX] = XLATE(vertStart, 9, NV_CIO_CR_OVL_VRS_9) | XLATE(vertDisplay, 9, NV_CIO_CR_OVL_VDE_9) | XLATE(vertTotal, 9, NV_CIO_CR_OVL_VDT_9) | (1 << 4) | XLATE(vertBlankStart, 8, NV_CIO_CR_OVL_VBS_8) | XLATE(vertStart, 8, NV_CIO_CR_OVL_VRS_8) | XLATE(vertDisplay, 8, NV_CIO_CR_OVL_VDE_8) | XLATE(vertTotal, 8, NV_CIO_CR_OVL_VDT_8); regp->CRTC[NV_CIO_CR_RSAL_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_CELL_HT_INDEX] = ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ? MASK(NV_CIO_CR_CELL_HT_SCANDBL) : 0) | 1 << 6 | XLATE(vertBlankStart, 9, NV_CIO_CR_CELL_HT_VBS_9); regp->CRTC[NV_CIO_CR_CURS_ST_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_CURS_END_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_SA_HI_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_SA_LO_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_TCOFF_HI_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_TCOFF_LO_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_VRS_INDEX] = vertStart; regp->CRTC[NV_CIO_CR_VRE_INDEX] = 1 << 5 | XLATE(vertEnd, 0, NV_CIO_CR_VRE_3_0); regp->CRTC[NV_CIO_CR_VDE_INDEX] = vertDisplay; /* framebuffer can be larger than crtc scanout area. */ regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = fb->pitches[0] / 8; regp->CRTC[NV_CIO_CR_ULINE_INDEX] = 0x00; regp->CRTC[NV_CIO_CR_VBS_INDEX] = vertBlankStart; regp->CRTC[NV_CIO_CR_VBE_INDEX] = vertBlankEnd; regp->CRTC[NV_CIO_CR_MODE_INDEX] = 0x43; regp->CRTC[NV_CIO_CR_LCOMP_INDEX] = 0xff; /* * Some extended CRTC registers (they are not saved with the rest of the vga regs). */ /* framebuffer can be larger than crtc scanout area. */ regp->CRTC[NV_CIO_CRE_RPC0_INDEX] = XLATE(fb->pitches[0] / 8, 8, NV_CIO_CRE_RPC0_OFFSET_10_8); regp->CRTC[NV_CIO_CRE_42] = XLATE(fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11); regp->CRTC[NV_CIO_CRE_RPC1_INDEX] = mode->crtc_hdisplay < 1280 ? MASK(NV_CIO_CRE_RPC1_LARGE) : 0x00; regp->CRTC[NV_CIO_CRE_LSR_INDEX] = XLATE(horizBlankEnd, 6, NV_CIO_CRE_LSR_HBE_6) | XLATE(vertBlankStart, 10, NV_CIO_CRE_LSR_VBS_10) | XLATE(vertStart, 10, NV_CIO_CRE_LSR_VRS_10) | XLATE(vertDisplay, 10, NV_CIO_CRE_LSR_VDE_10) | XLATE(vertTotal, 10, NV_CIO_CRE_LSR_VDT_10); regp->CRTC[NV_CIO_CRE_HEB__INDEX] = XLATE(horizStart, 8, NV_CIO_CRE_HEB_HRS_8) | XLATE(horizBlankStart, 8, NV_CIO_CRE_HEB_HBS_8) | XLATE(horizDisplay, 8, NV_CIO_CRE_HEB_HDE_8) | XLATE(horizTotal, 8, NV_CIO_CRE_HEB_HDT_8); regp->CRTC[NV_CIO_CRE_EBR_INDEX] = XLATE(vertBlankStart, 11, NV_CIO_CRE_EBR_VBS_11) | XLATE(vertStart, 11, NV_CIO_CRE_EBR_VRS_11) | XLATE(vertDisplay, 11, NV_CIO_CRE_EBR_VDE_11) | XLATE(vertTotal, 11, NV_CIO_CRE_EBR_VDT_11); if (mode->flags & DRM_MODE_FLAG_INTERLACE) { horizTotal = (horizTotal >> 1) & ~1; regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = horizTotal; regp->CRTC[NV_CIO_CRE_HEB__INDEX] |= XLATE(horizTotal, 8, NV_CIO_CRE_HEB_ILC_8); } else regp->CRTC[NV_CIO_CRE_ILACE__INDEX] = 0xff; /* interlace off */ /* * Graphics Display Controller */ regp->Graphics[NV_VIO_GX_SR_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_SREN_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_CCOMP_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_ROP_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_READ_MAP_INDEX] = 0x00; regp->Graphics[NV_VIO_GX_MODE_INDEX] = 0x40; /* 256 color mode */ regp->Graphics[NV_VIO_GX_MISC_INDEX] = 0x05; /* map 64k mem + graphic mode */ regp->Graphics[NV_VIO_GX_DONT_CARE_INDEX] = 0x0F; regp->Graphics[NV_VIO_GX_BIT_MASK_INDEX] = 0xFF; regp->Attribute[0] = 0x00; /* standard colormap translation */ regp->Attribute[1] = 0x01; regp->Attribute[2] = 0x02; regp->Attribute[3] = 0x03; regp->Attribute[4] = 0x04; regp->Attribute[5] = 0x05; regp->Attribute[6] = 0x06; regp->Attribute[7] = 0x07; regp->Attribute[8] = 0x08; regp->Attribute[9] = 0x09; regp->Attribute[10] = 0x0A; regp->Attribute[11] = 0x0B; regp->Attribute[12] = 0x0C; regp->Attribute[13] = 0x0D; regp->Attribute[14] = 0x0E; regp->Attribute[15] = 0x0F; regp->Attribute[NV_CIO_AR_MODE_INDEX] = 0x01; /* Enable graphic mode */ /* Non-vga */ regp->Attribute[NV_CIO_AR_OSCAN_INDEX] = 0x00; regp->Attribute[NV_CIO_AR_PLANE_INDEX] = 0x0F; /* enable all color planes */ regp->Attribute[NV_CIO_AR_HPP_INDEX] = 0x00; regp->Attribute[NV_CIO_AR_CSEL_INDEX] = 0x00; } /** * Sets up registers for the given mode/adjusted_mode pair. * * The clocks, CRTCs and outputs attached to this CRTC must be off. * * This shouldn't enable any clocks, CRTCs, or outputs, but they should * be easily turned on/off after this. */ static void nv_crtc_mode_set_regs(struct drm_crtc *crtc, struct drm_display_mode * mode) { struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index]; const struct drm_framebuffer *fb = crtc->primary->fb; struct drm_encoder *encoder; bool lvds_output = false, tmds_output = false, tv_output = false, off_chip_digital = false; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); bool digital = false; if (encoder->crtc != crtc) continue; if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) digital = lvds_output = true; if (nv_encoder->dcb->type == DCB_OUTPUT_TV) tv_output = true; if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) digital = tmds_output = true; if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && digital) off_chip_digital = true; } /* Registers not directly related to the (s)vga mode */ /* What is the meaning of this register? */ /* A few popular values are 0x18, 0x1c, 0x38, 0x3c */ regp->CRTC[NV_CIO_CRE_ENH_INDEX] = savep->CRTC[NV_CIO_CRE_ENH_INDEX] & ~(1<<5); regp->crtc_eng_ctrl = 0; /* Except for rare conditions I2C is enabled on the primary crtc */ if (nv_crtc->index == 0) regp->crtc_eng_ctrl |= NV_CRTC_FSEL_I2C; #if 0 /* Set overlay to desired crtc. */ if (dev->overlayAdaptor) { NVPortPrivPtr pPriv = GET_OVERLAY_PRIVATE(dev); if (pPriv->overlayCRTC == nv_crtc->index) regp->crtc_eng_ctrl |= NV_CRTC_FSEL_OVERLAY; } #endif /* ADDRESS_SPACE_PNVM is the same as setting HCUR_ASI */ regp->cursor_cfg = NV_PCRTC_CURSOR_CONFIG_CUR_LINES_64 | NV_PCRTC_CURSOR_CONFIG_CUR_PIXELS_64 | NV_PCRTC_CURSOR_CONFIG_ADDRESS_SPACE_PNVM; if (drm->client.device.info.chipset >= 0x11) regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_CUR_BPP_32; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) regp->cursor_cfg |= NV_PCRTC_CURSOR_CONFIG_DOUBLE_SCAN_ENABLE; /* Unblock some timings */ regp->CRTC[NV_CIO_CRE_53] = 0; regp->CRTC[NV_CIO_CRE_54] = 0; /* 0x00 is disabled, 0x11 is lvds, 0x22 crt and 0x88 tmds */ if (lvds_output) regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x11; else if (tmds_output) regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x88; else regp->CRTC[NV_CIO_CRE_SCRATCH3__INDEX] = 0x22; /* These values seem to vary */ /* This register seems to be used by the bios to make certain decisions on some G70 cards? */ regp->CRTC[NV_CIO_CRE_SCRATCH4__INDEX] = savep->CRTC[NV_CIO_CRE_SCRATCH4__INDEX]; nv_crtc_set_digital_vibrance(crtc, nv_crtc->saturation); /* probably a scratch reg, but kept for cargo-cult purposes: * bit0: crtc0?, head A * bit6: lvds, head A * bit7: (only in X), head A */ if (nv_crtc->index == 0) regp->CRTC[NV_CIO_CRE_4B] = savep->CRTC[NV_CIO_CRE_4B] | 0x80; /* The blob seems to take the current value from crtc 0, add 4 to that * and reuse the old value for crtc 1 */ regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] = nv04_display(dev)->saved_reg.crtc_reg[0].CRTC[NV_CIO_CRE_TVOUT_LATENCY]; if (!nv_crtc->index) regp->CRTC[NV_CIO_CRE_TVOUT_LATENCY] += 4; /* the blob sometimes sets |= 0x10 (which is the same as setting |= * 1 << 30 on 0x60.830), for no apparent reason */ regp->CRTC[NV_CIO_CRE_59] = off_chip_digital; if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) regp->CRTC[0x9f] = off_chip_digital ? 0x11 : 0x1; regp->crtc_830 = mode->crtc_vdisplay - 3; regp->crtc_834 = mode->crtc_vdisplay - 1; if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) /* This is what the blob does */ regp->crtc_850 = NVReadCRTC(dev, 0, NV_PCRTC_850); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE) regp->gpio_ext = NVReadCRTC(dev, 0, NV_PCRTC_GPIO_EXT); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) regp->crtc_cfg = NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC; else regp->crtc_cfg = NV04_PCRTC_CONFIG_START_ADDRESS_HSYNC; /* Some misc regs */ if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) { regp->CRTC[NV_CIO_CRE_85] = 0xFF; regp->CRTC[NV_CIO_CRE_86] = 0x1; } regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] = (fb->format->depth + 1) / 8; /* Enable slaved mode (called MODE_TV in nv4ref.h) */ if (lvds_output || tmds_output || tv_output) regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (1 << 7); /* Generic PRAMDAC regs */ if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) /* Only bit that bios and blob set. */ regp->nv10_cursync = (1 << 25); regp->ramdac_gen_ctrl = NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS | NV_PRAMDAC_GENERAL_CONTROL_VGA_STATE_SEL | NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON; if (fb->format->depth == 16) regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL; if (drm->client.device.info.chipset >= 0x11) regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_PIPE_LONG; regp->ramdac_630 = 0; /* turn off green mode (tv test pattern?) */ regp->tv_setup = 0; nv_crtc_set_image_sharpening(crtc, nv_crtc->sharpness); /* Some values the blob sets */ regp->ramdac_8c0 = 0x100; regp->ramdac_a20 = 0x0; regp->ramdac_a24 = 0xfffff; regp->ramdac_a34 = 0x1; } static int nv_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb) { struct nv04_display *disp = nv04_display(crtc->dev); struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); int ret; ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM, false); if (ret == 0) { if (disp->image[nv_crtc->index]) nouveau_bo_unpin(disp->image[nv_crtc->index]); nouveau_bo_ref(nvfb->nvbo, &disp->image[nv_crtc->index]); } return ret; } /** * Sets up registers for the given mode/adjusted_mode pair. * * The clocks, CRTCs and outputs attached to this CRTC must be off. * * This shouldn't enable any clocks, CRTCs, or outputs, but they should * be easily turned on/off after this. */ static int nv_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_drm *drm = nouveau_drm(dev); int ret; NV_DEBUG(drm, "CTRC mode on CRTC %d:\n", nv_crtc->index); drm_mode_debug_printmodeline(adjusted_mode); ret = nv_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; /* unlock must come after turning off FP_TG_CONTROL in output_prepare */ nv_lock_vga_crtc_shadow(dev, nv_crtc->index, -1); nv_crtc_mode_set_vga(crtc, adjusted_mode); /* calculated in nv04_dfp_prepare, nv40 needs it written before calculating PLLs */ if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk); nv_crtc_mode_set_regs(crtc, adjusted_mode); nv_crtc_calc_state_ext(crtc, mode, adjusted_mode->clock); return 0; } static void nv_crtc_save(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nv04_mode_state *state = &nv04_display(dev)->mode_reg; struct nv04_crtc_reg *crtc_state = &state->crtc_reg[nv_crtc->index]; struct nv04_mode_state *saved = &nv04_display(dev)->saved_reg; struct nv04_crtc_reg *crtc_saved = &saved->crtc_reg[nv_crtc->index]; if (nv_two_heads(crtc->dev)) NVSetOwner(crtc->dev, nv_crtc->index); nouveau_hw_save_state(crtc->dev, nv_crtc->index, saved); /* init some state to saved value */ state->sel_clk = saved->sel_clk & ~(0x5 << 16); crtc_state->CRTC[NV_CIO_CRE_LCD__INDEX] = crtc_saved->CRTC[NV_CIO_CRE_LCD__INDEX]; state->pllsel = saved->pllsel & ~(PLLSEL_VPLL1_MASK | PLLSEL_VPLL2_MASK | PLLSEL_TV_MASK); crtc_state->gpio_ext = crtc_saved->gpio_ext; } static void nv_crtc_restore(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; int head = nv_crtc->index; uint8_t saved_cr21 = nv04_display(dev)->saved_reg.crtc_reg[head].CRTC[NV_CIO_CRE_21]; if (nv_two_heads(crtc->dev)) NVSetOwner(crtc->dev, head); nouveau_hw_load_state(crtc->dev, head, &nv04_display(dev)->saved_reg); nv_lock_vga_crtc_shadow(crtc->dev, head, saved_cr21); nv_crtc->last_dpms = NV_DPMS_CLEARED; } static void nv_crtc_prepare(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); const struct drm_crtc_helper_funcs *funcs = crtc->helper_private; if (nv_two_heads(dev)) NVSetOwner(dev, nv_crtc->index); drm_crtc_vblank_off(crtc); funcs->dpms(crtc, DRM_MODE_DPMS_OFF); NVBlankScreen(dev, nv_crtc->index, true); /* Some more preparation. */ NVWriteCRTC(dev, nv_crtc->index, NV_PCRTC_CONFIG, NV_PCRTC_CONFIG_START_ADDRESS_NON_VGA); if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) { uint32_t reg900 = NVReadRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900); NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_900, reg900 & ~0x10000); } } static void nv_crtc_commit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; const struct drm_crtc_helper_funcs *funcs = crtc->helper_private; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nouveau_hw_load_state(dev, nv_crtc->index, &nv04_display(dev)->mode_reg); nv04_crtc_mode_set_base(crtc, crtc->x, crtc->y, NULL); #ifdef __BIG_ENDIAN /* turn on LFB swapping */ { uint8_t tmp = NVReadVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR); tmp |= MASK(NV_CIO_CRE_RCR_ENDIAN_BIG); NVWriteVgaCrtc(dev, nv_crtc->index, NV_CIO_CRE_RCR, tmp); } #endif funcs->dpms(crtc, DRM_MODE_DPMS_ON); drm_crtc_vblank_on(crtc); } static void nv_crtc_destroy(struct drm_crtc *crtc) { struct nv04_display *disp = nv04_display(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); if (!nv_crtc) return; drm_crtc_cleanup(crtc); if (disp->image[nv_crtc->index]) nouveau_bo_unpin(disp->image[nv_crtc->index]); nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]); nouveau_bo_unmap(nv_crtc->cursor.nvbo); nouveau_bo_unpin(nv_crtc->cursor.nvbo); nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); kfree(nv_crtc); } static void nv_crtc_gamma_load(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = nv_crtc->base.dev; struct rgb { uint8_t r, g, b; } __attribute__((packed)) *rgbs; u16 *r, *g, *b; int i; rgbs = (struct rgb *)nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].DAC; r = crtc->gamma_store; g = r + crtc->gamma_size; b = g + crtc->gamma_size; for (i = 0; i < 256; i++) { rgbs[i].r = *r++ >> 8; rgbs[i].g = *g++ >> 8; rgbs[i].b = *b++ >> 8; } nouveau_hw_load_state_palette(dev, nv_crtc->index, &nv04_display(dev)->mode_reg); } static void nv_crtc_disable(struct drm_crtc *crtc) { struct nv04_display *disp = nv04_display(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); if (disp->image[nv_crtc->index]) nouveau_bo_unpin(disp->image[nv_crtc->index]); nouveau_bo_ref(NULL, &disp->image[nv_crtc->index]); } static int nv_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t size, struct drm_modeset_acquire_ctx *ctx) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); /* We need to know the depth before we upload, but it's possible to * get called before a framebuffer is bound. If this is the case, * mark the lut values as dirty by setting depth==0, and it'll be * uploaded on the first mode_set_base() */ if (!nv_crtc->base.primary->fb) { nv_crtc->lut.depth = 0; return 0; } nv_crtc_gamma_load(crtc); return 0; } static int nv04_crtc_do_mode_set_base(struct drm_crtc *crtc, struct drm_framebuffer *passed_fb, int x, int y, bool atomic) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index]; struct drm_framebuffer *drm_fb; struct nouveau_framebuffer *fb; int arb_burst, arb_lwm; NV_DEBUG(drm, "index %d\n", nv_crtc->index); /* no fb bound */ if (!atomic && !crtc->primary->fb) { NV_DEBUG(drm, "No FB bound\n"); return 0; } /* If atomic, we want to switch to the fb we were passed, so * now we update pointers to do that. */ if (atomic) { drm_fb = passed_fb; fb = nouveau_framebuffer(passed_fb); } else { drm_fb = crtc->primary->fb; fb = nouveau_framebuffer(crtc->primary->fb); } nv_crtc->fb.offset = fb->nvbo->bo.offset; if (nv_crtc->lut.depth != drm_fb->format->depth) { nv_crtc->lut.depth = drm_fb->format->depth; nv_crtc_gamma_load(crtc); } /* Update the framebuffer format. */ regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] &= ~3; regp->CRTC[NV_CIO_CRE_PIXEL_INDEX] |= (drm_fb->format->depth + 1) / 8; regp->ramdac_gen_ctrl &= ~NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL; if (drm_fb->format->depth == 16) regp->ramdac_gen_ctrl |= NV_PRAMDAC_GENERAL_CONTROL_ALT_MODE_SEL; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_PIXEL_INDEX); NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl); regp->CRTC[NV_CIO_CR_OFFSET_INDEX] = drm_fb->pitches[0] >> 3; regp->CRTC[NV_CIO_CRE_RPC0_INDEX] = XLATE(drm_fb->pitches[0] >> 3, 8, NV_CIO_CRE_RPC0_OFFSET_10_8); regp->CRTC[NV_CIO_CRE_42] = XLATE(drm_fb->pitches[0] / 8, 11, NV_CIO_CRE_42_OFFSET_11); crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_RPC0_INDEX); crtc_wr_cio_state(crtc, regp, NV_CIO_CR_OFFSET_INDEX); crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_42); /* Update the framebuffer location. */ regp->fb_start = nv_crtc->fb.offset & ~3; regp->fb_start += (y * drm_fb->pitches[0]) + (x * drm_fb->format->cpp[0]); nv_set_crtc_base(dev, nv_crtc->index, regp->fb_start); /* Update the arbitration parameters. */ nouveau_calc_arb(dev, crtc->mode.clock, drm_fb->format->cpp[0] * 8, &arb_burst, &arb_lwm); regp->CRTC[NV_CIO_CRE_FF_INDEX] = arb_burst; regp->CRTC[NV_CIO_CRE_FFLWM__INDEX] = arb_lwm & 0xff; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FF_INDEX); crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_FFLWM__INDEX); if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_KELVIN) { regp->CRTC[NV_CIO_CRE_47] = arb_lwm >> 8; crtc_wr_cio_state(crtc, regp, NV_CIO_CRE_47); } return 0; } static int nv04_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { int ret = nv_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; return nv04_crtc_do_mode_set_base(crtc, old_fb, x, y, false); } static int nv04_crtc_mode_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct drm_device *dev = drm->dev; if (state == ENTER_ATOMIC_MODE_SET) nouveau_fbcon_accel_save_disable(dev); else nouveau_fbcon_accel_restore(dev); return nv04_crtc_do_mode_set_base(crtc, fb, x, y, true); } static void nv04_cursor_upload(struct drm_device *dev, struct nouveau_bo *src, struct nouveau_bo *dst) { int width = nv_cursor_width(dev); uint32_t pixel; int i, j; for (i = 0; i < width; i++) { for (j = 0; j < width; j++) { pixel = nouveau_bo_rd32(src, i*64 + j); nouveau_bo_wr16(dst, i*width + j, (pixel & 0x80000000) >> 16 | (pixel & 0xf80000) >> 9 | (pixel & 0xf800) >> 6 | (pixel & 0xf8) >> 3); } } } static void nv11_cursor_upload(struct drm_device *dev, struct nouveau_bo *src, struct nouveau_bo *dst) { uint32_t pixel; int alpha, i; /* nv11+ supports premultiplied (PM), or non-premultiplied (NPM) alpha * cursors (though NPM in combination with fp dithering may not work on * nv11, from "nv" driver history) * NPM mode needs NV_PCRTC_CURSOR_CONFIG_ALPHA_BLEND set and is what the * blob uses, however we get given PM cursors so we use PM mode */ for (i = 0; i < 64 * 64; i++) { pixel = nouveau_bo_rd32(src, i); /* hw gets unhappy if alpha <= rgb values. for a PM image "less * than" shouldn't happen; fix "equal to" case by adding one to * alpha channel (slightly inaccurate, but so is attempting to * get back to NPM images, due to limits of integer precision) */ alpha = pixel >> 24; if (alpha > 0 && alpha < 255) pixel = (pixel & 0x00ffffff) | ((alpha + 1) << 24); #ifdef __BIG_ENDIAN { struct nouveau_drm *drm = nouveau_drm(dev); if (drm->client.device.info.chipset == 0x11) { pixel = ((pixel & 0x000000ff) << 24) | ((pixel & 0x0000ff00) << 8) | ((pixel & 0x00ff0000) >> 8) | ((pixel & 0xff000000) >> 24); } } #endif nouveau_bo_wr32(dst, i, pixel); } } static int nv04_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t buffer_handle, uint32_t width, uint32_t height) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct drm_device *dev = drm->dev; struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_bo *cursor = NULL; struct drm_gem_object *gem; int ret = 0; if (!buffer_handle) { nv_crtc->cursor.hide(nv_crtc, true); return 0; } if (width != 64 || height != 64) return -EINVAL; gem = drm_gem_object_lookup(file_priv, buffer_handle); if (!gem) return -ENOENT; cursor = nouveau_gem_object(gem); ret = nouveau_bo_map(cursor); if (ret) goto out; if (drm->client.device.info.chipset >= 0x11) nv11_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo); else nv04_cursor_upload(dev, cursor, nv_crtc->cursor.nvbo); nouveau_bo_unmap(cursor); nv_crtc->cursor.offset = nv_crtc->cursor.nvbo->bo.offset; nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.offset); nv_crtc->cursor.show(nv_crtc, true); out: drm_gem_object_put_unlocked(gem); return ret; } static int nv04_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nv_crtc->cursor.set_pos(nv_crtc, x, y); return 0; } struct nv04_page_flip_state { struct list_head head; struct drm_pending_vblank_event *event; struct drm_crtc *crtc; int bpp, pitch; u64 offset; }; static int nv04_finish_page_flip(struct nouveau_channel *chan, struct nv04_page_flip_state *ps) { struct nouveau_fence_chan *fctx = chan->fence; struct nouveau_drm *drm = chan->drm; struct drm_device *dev = drm->dev; struct nv04_page_flip_state *s; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (list_empty(&fctx->flip)) { NV_ERROR(drm, "unexpected pageflip\n"); spin_unlock_irqrestore(&dev->event_lock, flags); return -EINVAL; } s = list_first_entry(&fctx->flip, struct nv04_page_flip_state, head); if (s->event) { drm_crtc_arm_vblank_event(s->crtc, s->event); } else { /* Give up ownership of vblank for page-flipped crtc */ drm_crtc_vblank_put(s->crtc); } list_del(&s->head); if (ps) *ps = *s; kfree(s); spin_unlock_irqrestore(&dev->event_lock, flags); return 0; } int nv04_flip_complete(struct nvif_notify *notify) { struct nouveau_cli *cli = (void *)notify->object->client; struct nouveau_drm *drm = cli->drm; struct nouveau_channel *chan = drm->channel; struct nv04_page_flip_state state; if (!nv04_finish_page_flip(chan, &state)) { nv_set_crtc_base(drm->dev, drm_crtc_index(state.crtc), state.offset + state.crtc->y * state.pitch + state.crtc->x * state.bpp / 8); } return NVIF_NOTIFY_KEEP; } static int nv04_page_flip_emit(struct nouveau_channel *chan, struct nouveau_bo *old_bo, struct nouveau_bo *new_bo, struct nv04_page_flip_state *s, struct nouveau_fence **pfence) { struct nouveau_fence_chan *fctx = chan->fence; struct nouveau_drm *drm = chan->drm; struct drm_device *dev = drm->dev; unsigned long flags; int ret; /* Queue it to the pending list */ spin_lock_irqsave(&dev->event_lock, flags); list_add_tail(&s->head, &fctx->flip); spin_unlock_irqrestore(&dev->event_lock, flags); /* Synchronize with the old framebuffer */ ret = nouveau_fence_sync(old_bo, chan, false, false); if (ret) goto fail; /* Emit the pageflip */ ret = RING_SPACE(chan, 2); if (ret) goto fail; BEGIN_NV04(chan, NvSubSw, NV_SW_PAGE_FLIP, 1); OUT_RING (chan, 0x00000000); FIRE_RING (chan); ret = nouveau_fence_new(chan, false, pfence); if (ret) goto fail; return 0; fail: spin_lock_irqsave(&dev->event_lock, flags); list_del(&s->head); spin_unlock_irqrestore(&dev->event_lock, flags); return ret; } static int nv04_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, u32 flags, struct drm_modeset_acquire_ctx *ctx) { const int swap_interval = (flags & DRM_MODE_PAGE_FLIP_ASYNC) ? 0 : 1; struct drm_device *dev = crtc->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_bo *old_bo = nouveau_framebuffer(crtc->primary->fb)->nvbo; struct nouveau_bo *new_bo = nouveau_framebuffer(fb)->nvbo; struct nv04_page_flip_state *s; struct nouveau_channel *chan; struct nouveau_cli *cli; struct nouveau_fence *fence; struct nv04_display *dispnv04 = nv04_display(dev); int head = nouveau_crtc(crtc)->index; int ret; chan = drm->channel; if (!chan) return -ENODEV; cli = (void *)chan->user.client; s = kzalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; if (new_bo != old_bo) { ret = nouveau_bo_pin(new_bo, TTM_PL_FLAG_VRAM, true); if (ret) goto fail_free; } mutex_lock(&cli->mutex); ret = ttm_bo_reserve(&new_bo->bo, true, false, NULL); if (ret) goto fail_unpin; /* synchronise rendering channel with the kernel's channel */ ret = nouveau_fence_sync(new_bo, chan, false, true); if (ret) { ttm_bo_unreserve(&new_bo->bo); goto fail_unpin; } if (new_bo != old_bo) { ttm_bo_unreserve(&new_bo->bo); ret = ttm_bo_reserve(&old_bo->bo, true, false, NULL); if (ret) goto fail_unpin; } /* Initialize a page flip struct */ *s = (struct nv04_page_flip_state) { { }, event, crtc, fb->format->cpp[0] * 8, fb->pitches[0], new_bo->bo.offset }; /* Keep vblanks on during flip, for the target crtc of this flip */ drm_crtc_vblank_get(crtc); /* Emit a page flip */ if (swap_interval) { ret = RING_SPACE(chan, 8); if (ret) goto fail_unreserve; BEGIN_NV04(chan, NvSubImageBlit, 0x012c, 1); OUT_RING (chan, 0); BEGIN_NV04(chan, NvSubImageBlit, 0x0134, 1); OUT_RING (chan, head); BEGIN_NV04(chan, NvSubImageBlit, 0x0100, 1); OUT_RING (chan, 0); BEGIN_NV04(chan, NvSubImageBlit, 0x0130, 1); OUT_RING (chan, 0); } nouveau_bo_ref(new_bo, &dispnv04->image[head]); ret = nv04_page_flip_emit(chan, old_bo, new_bo, s, &fence); if (ret) goto fail_unreserve; mutex_unlock(&cli->mutex); /* Update the crtc struct and cleanup */ crtc->primary->fb = fb; nouveau_bo_fence(old_bo, fence, false); ttm_bo_unreserve(&old_bo->bo); if (old_bo != new_bo) nouveau_bo_unpin(old_bo); nouveau_fence_unref(&fence); return 0; fail_unreserve: drm_crtc_vblank_put(crtc); ttm_bo_unreserve(&old_bo->bo); fail_unpin: mutex_unlock(&cli->mutex); if (old_bo != new_bo) nouveau_bo_unpin(new_bo); fail_free: kfree(s); return ret; } static const struct drm_crtc_funcs nv04_crtc_funcs = { .cursor_set = nv04_crtc_cursor_set, .cursor_move = nv04_crtc_cursor_move, .gamma_set = nv_crtc_gamma_set, .set_config = drm_crtc_helper_set_config, .page_flip = nv04_crtc_page_flip, .destroy = nv_crtc_destroy, .enable_vblank = nouveau_display_vblank_enable, .disable_vblank = nouveau_display_vblank_disable, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, }; static const struct drm_crtc_helper_funcs nv04_crtc_helper_funcs = { .dpms = nv_crtc_dpms, .prepare = nv_crtc_prepare, .commit = nv_crtc_commit, .mode_set = nv_crtc_mode_set, .mode_set_base = nv04_crtc_mode_set_base, .mode_set_base_atomic = nv04_crtc_mode_set_base_atomic, .disable = nv_crtc_disable, .get_scanout_position = nouveau_display_scanoutpos, }; static const uint32_t modeset_formats[] = { DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB1555, }; static struct drm_plane * create_primary_plane(struct drm_device *dev) { struct drm_plane *primary; int ret; primary = kzalloc(sizeof(*primary), GFP_KERNEL); if (primary == NULL) { DRM_DEBUG_KMS("Failed to allocate primary plane\n"); return NULL; } /* possible_crtc's will be filled in later by crtc_init */ ret = drm_universal_plane_init(dev, primary, 0, &drm_primary_helper_funcs, modeset_formats, ARRAY_SIZE(modeset_formats), NULL, DRM_PLANE_TYPE_PRIMARY, NULL); if (ret) { kfree(primary); primary = NULL; } return primary; } int nv04_crtc_create(struct drm_device *dev, int crtc_num) { struct nouveau_crtc *nv_crtc; int ret; nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL); if (!nv_crtc) return -ENOMEM; nv_crtc->lut.depth = 0; nv_crtc->index = crtc_num; nv_crtc->last_dpms = NV_DPMS_CLEARED; nv_crtc->save = nv_crtc_save; nv_crtc->restore = nv_crtc_restore; drm_crtc_init_with_planes(dev, &nv_crtc->base, create_primary_plane(dev), NULL, &nv04_crtc_funcs, NULL); drm_crtc_helper_add(&nv_crtc->base, &nv04_crtc_helper_funcs); drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256); ret = nouveau_bo_new(&nouveau_drm(dev)->client, 64*64*4, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, NULL, &nv_crtc->cursor.nvbo); if (!ret) { ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM, false); if (!ret) { ret = nouveau_bo_map(nv_crtc->cursor.nvbo); if (ret) nouveau_bo_unpin(nv_crtc->cursor.nvbo); } if (ret) nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); } nv04_cursor_init(nv_crtc); return 0; }