/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include "i915_drv.h" #include "i915_reset.h" #include "intel_ringbuffer.h" #include "intel_lrc.h" /* Haswell does have the CXT_SIZE register however it does not appear to be * valid. Now, docs explain in dwords what is in the context object. The full * size is 70720 bytes, however, the power context and execlist context will * never be saved (power context is stored elsewhere, and execlists don't work * on HSW) - so the final size, including the extra state required for the * Resource Streamer, is 66944 bytes, which rounds to 17 pages. */ #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) struct engine_class_info { const char *name; int (*init_legacy)(struct intel_engine_cs *engine); int (*init_execlists)(struct intel_engine_cs *engine); u8 uabi_class; }; static const struct engine_class_info intel_engine_classes[] = { [RENDER_CLASS] = { .name = "rcs", .init_execlists = logical_render_ring_init, .init_legacy = intel_init_render_ring_buffer, .uabi_class = I915_ENGINE_CLASS_RENDER, }, [COPY_ENGINE_CLASS] = { .name = "bcs", .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_blt_ring_buffer, .uabi_class = I915_ENGINE_CLASS_COPY, }, [VIDEO_DECODE_CLASS] = { .name = "vcs", .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_bsd_ring_buffer, .uabi_class = I915_ENGINE_CLASS_VIDEO, }, [VIDEO_ENHANCEMENT_CLASS] = { .name = "vecs", .init_execlists = logical_xcs_ring_init, .init_legacy = intel_init_vebox_ring_buffer, .uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE, }, }; #define MAX_MMIO_BASES 3 struct engine_info { unsigned int hw_id; u8 class; u8 instance; /* mmio bases table *must* be sorted in reverse gen order */ struct engine_mmio_base { u32 gen : 8; u32 base : 24; } mmio_bases[MAX_MMIO_BASES]; }; static const struct engine_info intel_engines[] = { [RCS0] = { .hw_id = RCS0_HW, .class = RENDER_CLASS, .instance = 0, .mmio_bases = { { .gen = 1, .base = RENDER_RING_BASE } }, }, [BCS0] = { .hw_id = BCS0_HW, .class = COPY_ENGINE_CLASS, .instance = 0, .mmio_bases = { { .gen = 6, .base = BLT_RING_BASE } }, }, [VCS0] = { .hw_id = VCS0_HW, .class = VIDEO_DECODE_CLASS, .instance = 0, .mmio_bases = { { .gen = 11, .base = GEN11_BSD_RING_BASE }, { .gen = 6, .base = GEN6_BSD_RING_BASE }, { .gen = 4, .base = BSD_RING_BASE } }, }, [VCS1] = { .hw_id = VCS1_HW, .class = VIDEO_DECODE_CLASS, .instance = 1, .mmio_bases = { { .gen = 11, .base = GEN11_BSD2_RING_BASE }, { .gen = 8, .base = GEN8_BSD2_RING_BASE } }, }, [VCS2] = { .hw_id = VCS2_HW, .class = VIDEO_DECODE_CLASS, .instance = 2, .mmio_bases = { { .gen = 11, .base = GEN11_BSD3_RING_BASE } }, }, [VCS3] = { .hw_id = VCS3_HW, .class = VIDEO_DECODE_CLASS, .instance = 3, .mmio_bases = { { .gen = 11, .base = GEN11_BSD4_RING_BASE } }, }, [VECS0] = { .hw_id = VECS0_HW, .class = VIDEO_ENHANCEMENT_CLASS, .instance = 0, .mmio_bases = { { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, { .gen = 7, .base = VEBOX_RING_BASE } }, }, [VECS1] = { .hw_id = VECS1_HW, .class = VIDEO_ENHANCEMENT_CLASS, .instance = 1, .mmio_bases = { { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } }, }, }; /** * ___intel_engine_context_size() - return the size of the context for an engine * @dev_priv: i915 device private * @class: engine class * * Each engine class may require a different amount of space for a context * image. * * Return: size (in bytes) of an engine class specific context image * * Note: this size includes the HWSP, which is part of the context image * in LRC mode, but does not include the "shared data page" used with * GuC submission. The caller should account for this if using the GuC. */ static u32 __intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class) { u32 cxt_size; BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); switch (class) { case RENDER_CLASS: switch (INTEL_GEN(dev_priv)) { default: MISSING_CASE(INTEL_GEN(dev_priv)); return DEFAULT_LR_CONTEXT_RENDER_SIZE; case 11: return GEN11_LR_CONTEXT_RENDER_SIZE; case 10: return GEN10_LR_CONTEXT_RENDER_SIZE; case 9: return GEN9_LR_CONTEXT_RENDER_SIZE; case 8: return GEN8_LR_CONTEXT_RENDER_SIZE; case 7: if (IS_HASWELL(dev_priv)) return HSW_CXT_TOTAL_SIZE; cxt_size = I915_READ(GEN7_CXT_SIZE); return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, PAGE_SIZE); case 6: cxt_size = I915_READ(CXT_SIZE); return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, PAGE_SIZE); case 5: case 4: case 3: case 2: /* For the special day when i810 gets merged. */ case 1: return 0; } break; default: MISSING_CASE(class); /* fall through */ case VIDEO_DECODE_CLASS: case VIDEO_ENHANCEMENT_CLASS: case COPY_ENGINE_CLASS: if (INTEL_GEN(dev_priv) < 8) return 0; return GEN8_LR_CONTEXT_OTHER_SIZE; } } static u32 __engine_mmio_base(struct drm_i915_private *i915, const struct engine_mmio_base *bases) { int i; for (i = 0; i < MAX_MMIO_BASES; i++) if (INTEL_GEN(i915) >= bases[i].gen) break; GEM_BUG_ON(i == MAX_MMIO_BASES); GEM_BUG_ON(!bases[i].base); return bases[i].base; } static void __sprint_engine_name(char *name, const struct engine_info *info) { WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u", intel_engine_classes[info->class].name, info->instance) >= INTEL_ENGINE_CS_MAX_NAME); } void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) { /* * Though they added more rings on g4x/ilk, they did not add * per-engine HWSTAM until gen6. */ if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS) return; if (INTEL_GEN(engine->i915) >= 3) ENGINE_WRITE(engine, RING_HWSTAM, mask); else ENGINE_WRITE16(engine, RING_HWSTAM, mask); } static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) { /* Mask off all writes into the unknown HWSP */ intel_engine_set_hwsp_writemask(engine, ~0u); } static int intel_engine_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id) { const struct engine_info *info = &intel_engines[id]; struct intel_engine_cs *engine; GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes)); BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) return -EINVAL; if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) return -EINVAL; if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance])) return -EINVAL; GEM_BUG_ON(dev_priv->engine[id]); engine = kzalloc(sizeof(*engine), GFP_KERNEL); if (!engine) return -ENOMEM; BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); engine->id = id; engine->mask = BIT(id); engine->i915 = dev_priv; engine->uncore = &dev_priv->uncore; __sprint_engine_name(engine->name, info); engine->hw_id = engine->guc_id = info->hw_id; engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases); engine->class = info->class; engine->instance = info->instance; engine->uabi_class = intel_engine_classes[info->class].uabi_class; engine->context_size = __intel_engine_context_size(dev_priv, engine->class); if (WARN_ON(engine->context_size > BIT(20))) engine->context_size = 0; if (engine->context_size) DRIVER_CAPS(dev_priv)->has_logical_contexts = true; /* Nothing to do here, execute in order of dependencies */ engine->schedule = NULL; seqlock_init(&engine->stats.lock); ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); /* Scrub mmio state on takeover */ intel_engine_sanitize_mmio(engine); dev_priv->engine_class[info->class][info->instance] = engine; dev_priv->engine[id] = engine; return 0; } /** * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers * @dev_priv: i915 device private * * Return: non-zero if the initialization failed. */ int intel_engines_init_mmio(struct drm_i915_private *dev_priv) { struct intel_device_info *device_info = mkwrite_device_info(dev_priv); const unsigned int engine_mask = INTEL_INFO(dev_priv)->engine_mask; struct intel_engine_cs *engine; enum intel_engine_id id; unsigned int mask = 0; unsigned int i; int err; WARN_ON(engine_mask == 0); WARN_ON(engine_mask & GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); if (i915_inject_load_failure()) return -ENODEV; for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { if (!HAS_ENGINE(dev_priv, i)) continue; err = intel_engine_setup(dev_priv, i); if (err) goto cleanup; mask |= BIT(i); } /* * Catch failures to update intel_engines table when the new engines * are added to the driver by a warning and disabling the forgotten * engines. */ if (WARN_ON(mask != engine_mask)) device_info->engine_mask = mask; /* We always presume we have at least RCS available for later probing */ if (WARN_ON(!HAS_ENGINE(dev_priv, RCS0))) { err = -ENODEV; goto cleanup; } RUNTIME_INFO(dev_priv)->num_engines = hweight32(mask); i915_check_and_clear_faults(dev_priv); return 0; cleanup: for_each_engine(engine, dev_priv, id) kfree(engine); return err; } /** * intel_engines_init() - init the Engine Command Streamers * @dev_priv: i915 device private * * Return: non-zero if the initialization failed. */ int intel_engines_init(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id, err_id; int err; for_each_engine(engine, dev_priv, id) { const struct engine_class_info *class_info = &intel_engine_classes[engine->class]; int (*init)(struct intel_engine_cs *engine); if (HAS_EXECLISTS(dev_priv)) init = class_info->init_execlists; else init = class_info->init_legacy; err = -EINVAL; err_id = id; if (GEM_DEBUG_WARN_ON(!init)) goto cleanup; err = init(engine); if (err) goto cleanup; GEM_BUG_ON(!engine->submit_request); } return 0; cleanup: for_each_engine(engine, dev_priv, id) { if (id >= err_id) { kfree(engine); dev_priv->engine[id] = NULL; } else { dev_priv->gt.cleanup_engine(engine); } } return err; } static void intel_engine_init_batch_pool(struct intel_engine_cs *engine) { i915_gem_batch_pool_init(&engine->batch_pool, engine); } static void intel_engine_init_execlist(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; execlists->port_mask = 1; GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); execlists->queue_priority_hint = INT_MIN; execlists->queue = RB_ROOT_CACHED; } static void cleanup_status_page(struct intel_engine_cs *engine) { struct i915_vma *vma; /* Prevent writes into HWSP after returning the page to the system */ intel_engine_set_hwsp_writemask(engine, ~0u); vma = fetch_and_zero(&engine->status_page.vma); if (!vma) return; if (!HWS_NEEDS_PHYSICAL(engine->i915)) i915_vma_unpin(vma); i915_gem_object_unpin_map(vma->obj); __i915_gem_object_release_unless_active(vma->obj); } static int pin_ggtt_status_page(struct intel_engine_cs *engine, struct i915_vma *vma) { unsigned int flags; flags = PIN_GLOBAL; if (!HAS_LLC(engine->i915)) /* * On g33, we cannot place HWS above 256MiB, so * restrict its pinning to the low mappable arena. * Though this restriction is not documented for * gen4, gen5, or byt, they also behave similarly * and hang if the HWS is placed at the top of the * GTT. To generalise, it appears that all !llc * platforms have issues with us placing the HWS * above the mappable region (even though we never * actually map it). */ flags |= PIN_MAPPABLE; else flags |= PIN_HIGH; return i915_vma_pin(vma, 0, 0, flags); } static int init_status_page(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_vma *vma; void *vaddr; int ret; /* * Though the HWS register does support 36bit addresses, historically * we have had hangs and corruption reported due to wild writes if * the HWS is placed above 4G. We only allow objects to be allocated * in GFP_DMA32 for i965, and no earlier physical address users had * access to more than 4G. */ obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); if (IS_ERR(obj)) { DRM_ERROR("Failed to allocate status page\n"); return PTR_ERR(obj); } i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err; } engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); engine->status_page.vma = vma; if (!HWS_NEEDS_PHYSICAL(engine->i915)) { ret = pin_ggtt_status_page(engine, vma); if (ret) goto err_unpin; } return 0; err_unpin: i915_gem_object_unpin_map(obj); err: i915_gem_object_put(obj); return ret; } /** * intel_engines_setup_common - setup engine state not requiring hw access * @engine: Engine to setup. * * Initializes @engine@ structure members shared between legacy and execlists * submission modes which do not require hardware access. * * Typically done early in the submission mode specific engine setup stage. */ int intel_engine_setup_common(struct intel_engine_cs *engine) { int err; err = init_status_page(engine); if (err) return err; err = i915_timeline_init(engine->i915, &engine->timeline, engine->status_page.vma); if (err) goto err_hwsp; i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE); intel_engine_init_breadcrumbs(engine); intel_engine_init_execlist(engine); intel_engine_init_hangcheck(engine); intel_engine_init_batch_pool(engine); intel_engine_init_cmd_parser(engine); return 0; err_hwsp: cleanup_status_page(engine); return err; } void intel_engines_set_scheduler_caps(struct drm_i915_private *i915) { static const struct { u8 engine; u8 sched; } map[] = { #define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) } MAP(PREEMPTION, PREEMPTION), MAP(SEMAPHORES, SEMAPHORES), #undef MAP }; struct intel_engine_cs *engine; enum intel_engine_id id; u32 enabled, disabled; enabled = 0; disabled = 0; for_each_engine(engine, i915, id) { /* all engines must agree! */ int i; if (engine->schedule) enabled |= (I915_SCHEDULER_CAP_ENABLED | I915_SCHEDULER_CAP_PRIORITY); else disabled |= (I915_SCHEDULER_CAP_ENABLED | I915_SCHEDULER_CAP_PRIORITY); for (i = 0; i < ARRAY_SIZE(map); i++) { if (engine->flags & BIT(map[i].engine)) enabled |= BIT(map[i].sched); else disabled |= BIT(map[i].sched); } } i915->caps.scheduler = enabled & ~disabled; if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED)) i915->caps.scheduler = 0; } struct measure_breadcrumb { struct i915_request rq; struct i915_timeline timeline; struct intel_ring ring; u32 cs[1024]; }; static int measure_breadcrumb_dw(struct intel_engine_cs *engine) { struct measure_breadcrumb *frame; int dw = -ENOMEM; GEM_BUG_ON(!engine->i915->gt.scratch); frame = kzalloc(sizeof(*frame), GFP_KERNEL); if (!frame) return -ENOMEM; if (i915_timeline_init(engine->i915, &frame->timeline, engine->status_page.vma)) goto out_frame; INIT_LIST_HEAD(&frame->ring.request_list); frame->ring.timeline = &frame->timeline; frame->ring.vaddr = frame->cs; frame->ring.size = sizeof(frame->cs); frame->ring.effective_size = frame->ring.size; intel_ring_update_space(&frame->ring); frame->rq.i915 = engine->i915; frame->rq.engine = engine; frame->rq.ring = &frame->ring; frame->rq.timeline = &frame->timeline; dw = i915_timeline_pin(&frame->timeline); if (dw < 0) goto out_timeline; dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; i915_timeline_unpin(&frame->timeline); out_timeline: i915_timeline_fini(&frame->timeline); out_frame: kfree(frame); return dw; } static int pin_context(struct i915_gem_context *ctx, struct intel_engine_cs *engine, struct intel_context **out) { struct intel_context *ce; ce = intel_context_pin(ctx, engine); if (IS_ERR(ce)) return PTR_ERR(ce); *out = ce; return 0; } /** * intel_engines_init_common - initialize cengine state which might require hw access * @engine: Engine to initialize. * * Initializes @engine@ structure members shared between legacy and execlists * submission modes which do require hardware access. * * Typcally done at later stages of submission mode specific engine setup. * * Returns zero on success or an error code on failure. */ int intel_engine_init_common(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; int ret; /* We may need to do things with the shrinker which * require us to immediately switch back to the default * context. This can cause a problem as pinning the * default context also requires GTT space which may not * be available. To avoid this we always pin the default * context. */ ret = pin_context(i915->kernel_context, engine, &engine->kernel_context); if (ret) return ret; /* * Similarly the preempt context must always be available so that * we can interrupt the engine at any time. However, as preemption * is optional, we allow it to fail. */ if (i915->preempt_context) pin_context(i915->preempt_context, engine, &engine->preempt_context); ret = measure_breadcrumb_dw(engine); if (ret < 0) goto err_unpin; engine->emit_fini_breadcrumb_dw = ret; engine->set_default_submission(engine); return 0; err_unpin: if (engine->preempt_context) intel_context_unpin(engine->preempt_context); intel_context_unpin(engine->kernel_context); return ret; } /** * intel_engines_cleanup_common - cleans up the engine state created by * the common initiailizers. * @engine: Engine to cleanup. * * This cleans up everything created by the common helpers. */ void intel_engine_cleanup_common(struct intel_engine_cs *engine) { cleanup_status_page(engine); intel_engine_fini_breadcrumbs(engine); intel_engine_cleanup_cmd_parser(engine); i915_gem_batch_pool_fini(&engine->batch_pool); if (engine->default_state) i915_gem_object_put(engine->default_state); if (engine->preempt_context) intel_context_unpin(engine->preempt_context); intel_context_unpin(engine->kernel_context); i915_timeline_fini(&engine->timeline); intel_wa_list_free(&engine->ctx_wa_list); intel_wa_list_free(&engine->wa_list); intel_wa_list_free(&engine->whitelist); } u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; u64 acthd; if (INTEL_GEN(i915) >= 8) acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); else if (INTEL_GEN(i915) >= 4) acthd = ENGINE_READ(engine, RING_ACTHD); else acthd = ENGINE_READ(engine, ACTHD); return acthd; } u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) { u64 bbaddr; if (INTEL_GEN(engine->i915) >= 8) bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); else bbaddr = ENGINE_READ(engine, RING_BBADDR); return bbaddr; } int intel_engine_stop_cs(struct intel_engine_cs *engine) { struct intel_uncore *uncore = engine->uncore; const u32 base = engine->mmio_base; const i915_reg_t mode = RING_MI_MODE(base); int err; if (INTEL_GEN(engine->i915) < 3) return -ENODEV; GEM_TRACE("%s\n", engine->name); intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); err = 0; if (__intel_wait_for_register_fw(uncore, mode, MODE_IDLE, MODE_IDLE, 1000, 0, NULL)) { GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name); err = -ETIMEDOUT; } /* A final mmio read to let GPU writes be hopefully flushed to memory */ intel_uncore_posting_read_fw(uncore, mode); return err; } void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) { GEM_TRACE("%s\n", engine->name); ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); } const char *i915_cache_level_str(struct drm_i915_private *i915, int type) { switch (type) { case I915_CACHE_NONE: return " uncached"; case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; case I915_CACHE_L3_LLC: return " L3+LLC"; case I915_CACHE_WT: return " WT"; default: return ""; } } u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv) { const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; u32 mcr_s_ss_select; u32 slice = fls(sseu->slice_mask); u32 subslice = fls(sseu->subslice_mask[slice]); if (IS_GEN(dev_priv, 10)) mcr_s_ss_select = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); else if (INTEL_GEN(dev_priv) >= 11) mcr_s_ss_select = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); else mcr_s_ss_select = 0; return mcr_s_ss_select; } static inline u32 read_subslice_reg(struct drm_i915_private *dev_priv, int slice, int subslice, i915_reg_t reg) { struct intel_uncore *uncore = &dev_priv->uncore; u32 mcr_slice_subslice_mask; u32 mcr_slice_subslice_select; u32 default_mcr_s_ss_select; u32 mcr; u32 ret; enum forcewake_domains fw_domains; if (INTEL_GEN(dev_priv) >= 11) { mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); } else { mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); } default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv); fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ); fw_domains |= intel_uncore_forcewake_for_reg(uncore, GEN8_MCR_SELECTOR, FW_REG_READ | FW_REG_WRITE); spin_lock_irq(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw_domains); mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) != default_mcr_s_ss_select); mcr &= ~mcr_slice_subslice_mask; mcr |= mcr_slice_subslice_select; intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); ret = intel_uncore_read_fw(uncore, reg); mcr &= ~mcr_slice_subslice_mask; mcr |= default_mcr_s_ss_select; intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); intel_uncore_forcewake_put__locked(uncore, fw_domains); spin_unlock_irq(&uncore->lock); return ret; } /* NB: please notice the memset */ void intel_engine_get_instdone(struct intel_engine_cs *engine, struct intel_instdone *instdone) { struct drm_i915_private *dev_priv = engine->i915; struct intel_uncore *uncore = engine->uncore; u32 mmio_base = engine->mmio_base; int slice; int subslice; memset(instdone, 0, sizeof(*instdone)); switch (INTEL_GEN(dev_priv)) { default: instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id != RCS0) break; instdone->slice_common = intel_uncore_read(uncore, GEN7_SC_INSTDONE); for_each_instdone_slice_subslice(dev_priv, slice, subslice) { instdone->sampler[slice][subslice] = read_subslice_reg(dev_priv, slice, subslice, GEN7_SAMPLER_INSTDONE); instdone->row[slice][subslice] = read_subslice_reg(dev_priv, slice, subslice, GEN7_ROW_INSTDONE); } break; case 7: instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id != RCS0) break; instdone->slice_common = intel_uncore_read(uncore, GEN7_SC_INSTDONE); instdone->sampler[0][0] = intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); instdone->row[0][0] = intel_uncore_read(uncore, GEN7_ROW_INSTDONE); break; case 6: case 5: case 4: instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id == RCS0) /* HACK: Using the wrong struct member */ instdone->slice_common = intel_uncore_read(uncore, GEN4_INSTDONE1); break; case 3: case 2: instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); break; } } static bool ring_is_idle(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; intel_wakeref_t wakeref; bool idle = true; if (I915_SELFTEST_ONLY(!engine->mmio_base)) return true; /* If the whole device is asleep, the engine must be idle */ wakeref = intel_runtime_pm_get_if_in_use(dev_priv); if (!wakeref) return true; /* First check that no commands are left in the ring */ if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) idle = false; /* No bit for gen2, so assume the CS parser is idle */ if (INTEL_GEN(dev_priv) > 2 && !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) idle = false; intel_runtime_pm_put(dev_priv, wakeref); return idle; } /** * intel_engine_is_idle() - Report if the engine has finished process all work * @engine: the intel_engine_cs * * Return true if there are no requests pending, nothing left to be submitted * to hardware, and that the engine is idle. */ bool intel_engine_is_idle(struct intel_engine_cs *engine) { /* More white lies, if wedged, hw state is inconsistent */ if (i915_reset_failed(engine->i915)) return true; /* Waiting to drain ELSP? */ if (READ_ONCE(engine->execlists.active)) { struct tasklet_struct *t = &engine->execlists.tasklet; local_bh_disable(); if (tasklet_trylock(t)) { /* Must wait for any GPU reset in progress. */ if (__tasklet_is_enabled(t)) t->func(t->data); tasklet_unlock(t); } local_bh_enable(); /* Otherwise flush the tasklet if it was on another cpu */ tasklet_unlock_wait(t); if (READ_ONCE(engine->execlists.active)) return false; } /* ELSP is empty, but there are ready requests? E.g. after reset */ if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) return false; /* Ring stopped? */ return ring_is_idle(engine); } bool intel_engines_are_idle(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; /* * If the driver is wedged, HW state may be very inconsistent and * report that it is still busy, even though we have stopped using it. */ if (i915_reset_failed(i915)) return true; /* Already parked (and passed an idleness test); must still be idle */ if (!READ_ONCE(i915->gt.awake)) return true; for_each_engine(engine, i915, id) { if (!intel_engine_is_idle(engine)) return false; } return true; } void intel_engines_reset_default_submission(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, i915, id) engine->set_default_submission(engine); } static bool reset_engines(struct drm_i915_private *i915) { if (INTEL_INFO(i915)->gpu_reset_clobbers_display) return false; return intel_gpu_reset(i915, ALL_ENGINES) == 0; } /** * intel_engines_sanitize: called after the GPU has lost power * @i915: the i915 device * @force: ignore a failed reset and sanitize engine state anyway * * Anytime we reset the GPU, either with an explicit GPU reset or through a * PCI power cycle, the GPU loses state and we must reset our state tracking * to match. Note that calling intel_engines_sanitize() if the GPU has not * been reset results in much confusion! */ void intel_engines_sanitize(struct drm_i915_private *i915, bool force) { struct intel_engine_cs *engine; enum intel_engine_id id; GEM_TRACE("\n"); if (!reset_engines(i915) && !force) return; for_each_engine(engine, i915, id) intel_engine_reset(engine, false); } /** * intel_engines_park: called when the GT is transitioning from busy->idle * @i915: the i915 device * * The GT is now idle and about to go to sleep (maybe never to wake again?). * Time for us to tidy and put away our toys (release resources back to the * system). */ void intel_engines_park(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, i915, id) { /* Flush the residual irq tasklets first. */ intel_engine_disarm_breadcrumbs(engine); tasklet_kill(&engine->execlists.tasklet); /* * We are committed now to parking the engines, make sure there * will be no more interrupts arriving later and the engines * are truly idle. */ if (wait_for(intel_engine_is_idle(engine), 10)) { struct drm_printer p = drm_debug_printer(__func__); dev_err(i915->drm.dev, "%s is not idle before parking\n", engine->name); intel_engine_dump(engine, &p, NULL); } /* Must be reset upon idling, or we may miss the busy wakeup. */ GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN); if (engine->park) engine->park(engine); if (engine->pinned_default_state) { i915_gem_object_unpin_map(engine->default_state); engine->pinned_default_state = NULL; } i915_gem_batch_pool_fini(&engine->batch_pool); engine->execlists.no_priolist = false; } i915->gt.active_engines = 0; } /** * intel_engines_unpark: called when the GT is transitioning from idle->busy * @i915: the i915 device * * The GT was idle and now about to fire up with some new user requests. */ void intel_engines_unpark(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, i915, id) { void *map; /* Pin the default state for fast resets from atomic context. */ map = NULL; if (engine->default_state) map = i915_gem_object_pin_map(engine->default_state, I915_MAP_WB); if (!IS_ERR_OR_NULL(map)) engine->pinned_default_state = map; if (engine->unpark) engine->unpark(engine); intel_engine_init_hangcheck(engine); } } /** * intel_engine_lost_context: called when the GPU is reset into unknown state * @engine: the engine * * We have either reset the GPU or otherwise about to lose state tracking of * the current GPU logical state (e.g. suspend). On next use, it is therefore * imperative that we make no presumptions about the current state and load * from scratch. */ void intel_engine_lost_context(struct intel_engine_cs *engine) { struct intel_context *ce; lockdep_assert_held(&engine->i915->drm.struct_mutex); ce = fetch_and_zero(&engine->last_retired_context); if (ce) intel_context_unpin(ce); } bool intel_engine_can_store_dword(struct intel_engine_cs *engine) { switch (INTEL_GEN(engine->i915)) { case 2: return false; /* uses physical not virtual addresses */ case 3: /* maybe only uses physical not virtual addresses */ return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); case 6: return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ default: return true; } } unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915) { struct intel_engine_cs *engine; enum intel_engine_id id; unsigned int which; which = 0; for_each_engine(engine, i915, id) if (engine->default_state) which |= BIT(engine->uabi_class); return which; } static int print_sched_attr(struct drm_i915_private *i915, const struct i915_sched_attr *attr, char *buf, int x, int len) { if (attr->priority == I915_PRIORITY_INVALID) return x; x += snprintf(buf + x, len - x, " prio=%d", attr->priority); return x; } static void print_request(struct drm_printer *m, struct i915_request *rq, const char *prefix) { const char *name = rq->fence.ops->get_timeline_name(&rq->fence); char buf[80] = ""; int x = 0; x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf)); drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n", prefix, rq->fence.context, rq->fence.seqno, i915_request_completed(rq) ? "!" : i915_request_started(rq) ? "*" : "", test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags) ? "+" : "", buf, jiffies_to_msecs(jiffies - rq->emitted_jiffies), name); } static void hexdump(struct drm_printer *m, const void *buf, size_t len) { const size_t rowsize = 8 * sizeof(u32); const void *prev = NULL; bool skip = false; size_t pos; for (pos = 0; pos < len; pos += rowsize) { char line[128]; if (prev && !memcmp(prev, buf + pos, rowsize)) { if (!skip) { drm_printf(m, "*\n"); skip = true; } continue; } WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, rowsize, sizeof(u32), line, sizeof(line), false) >= sizeof(line)); drm_printf(m, "[%04zx] %s\n", pos, line); prev = buf + pos; skip = false; } } static void intel_engine_print_registers(const struct intel_engine_cs *engine, struct drm_printer *m) { struct drm_i915_private *dev_priv = engine->i915; const struct intel_engine_execlists * const execlists = &engine->execlists; u64 addr; if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7)) drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); drm_printf(m, "\tRING_START: 0x%08x\n", ENGINE_READ(engine, RING_START)); drm_printf(m, "\tRING_HEAD: 0x%08x\n", ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); drm_printf(m, "\tRING_TAIL: 0x%08x\n", ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); drm_printf(m, "\tRING_CTL: 0x%08x%s\n", ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); if (INTEL_GEN(engine->i915) > 2) { drm_printf(m, "\tRING_MODE: 0x%08x%s\n", ENGINE_READ(engine, RING_MI_MODE), ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); } if (INTEL_GEN(dev_priv) >= 6) { drm_printf(m, "\tRING_IMR: %08x\n", ENGINE_READ(engine, RING_IMR)); } addr = intel_engine_get_active_head(engine); drm_printf(m, "\tACTHD: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); addr = intel_engine_get_last_batch_head(engine); drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); if (INTEL_GEN(dev_priv) >= 8) addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); else if (INTEL_GEN(dev_priv) >= 4) addr = ENGINE_READ(engine, RING_DMA_FADD); else addr = ENGINE_READ(engine, DMA_FADD_I8XX); drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); if (INTEL_GEN(dev_priv) >= 4) { drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, RING_IPEIR)); drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, RING_IPEHR)); } else { drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); } if (HAS_EXECLISTS(dev_priv)) { const u32 *hws = &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; unsigned int idx; u8 read, write; drm_printf(m, "\tExeclist status: 0x%08x %08x\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); read = execlists->csb_head; write = READ_ONCE(*execlists->csb_write); drm_printf(m, "\tExeclist CSB read %d, write %d [mmio:%d], tasklet queued? %s (%s)\n", read, write, GEN8_CSB_WRITE_PTR(ENGINE_READ(engine, RING_CONTEXT_STATUS_PTR)), yesno(test_bit(TASKLET_STATE_SCHED, &engine->execlists.tasklet.state)), enableddisabled(!atomic_read(&engine->execlists.tasklet.count))); if (read >= GEN8_CSB_ENTRIES) read = 0; if (write >= GEN8_CSB_ENTRIES) write = 0; if (read > write) write += GEN8_CSB_ENTRIES; while (read < write) { idx = ++read % GEN8_CSB_ENTRIES; drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [mmio:0x%08x], context: %d [mmio:%d]\n", idx, hws[idx * 2], ENGINE_READ_IDX(engine, RING_CONTEXT_STATUS_BUF_LO, idx), hws[idx * 2 + 1], ENGINE_READ_IDX(engine, RING_CONTEXT_STATUS_BUF_HI, idx)); } rcu_read_lock(); for (idx = 0; idx < execlists_num_ports(execlists); idx++) { struct i915_request *rq; unsigned int count; rq = port_unpack(&execlists->port[idx], &count); if (rq) { char hdr[80]; snprintf(hdr, sizeof(hdr), "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ", idx, count, i915_ggtt_offset(rq->ring->vma), rq->timeline->hwsp_offset, hwsp_seqno(rq)); print_request(m, rq, hdr); } else { drm_printf(m, "\t\tELSP[%d] idle\n", idx); } } drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active); rcu_read_unlock(); } else if (INTEL_GEN(dev_priv) > 6) { drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_BASE)); drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_DCLV)); } } static void print_request_ring(struct drm_printer *m, struct i915_request *rq) { void *ring; int size; drm_printf(m, "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", rq->head, rq->postfix, rq->tail, rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); size = rq->tail - rq->head; if (rq->tail < rq->head) size += rq->ring->size; ring = kmalloc(size, GFP_ATOMIC); if (ring) { const void *vaddr = rq->ring->vaddr; unsigned int head = rq->head; unsigned int len = 0; if (rq->tail < head) { len = rq->ring->size - head; memcpy(ring, vaddr + head, len); head = 0; } memcpy(ring + len, vaddr + head, size - len); hexdump(m, ring, size); kfree(ring); } } void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...) { struct i915_gpu_error * const error = &engine->i915->gpu_error; struct i915_request *rq; intel_wakeref_t wakeref; if (header) { va_list ap; va_start(ap, header); drm_vprintf(m, header, &ap); va_end(ap); } if (i915_reset_failed(engine->i915)) drm_printf(m, "*** WEDGED ***\n"); drm_printf(m, "\tHangcheck %x:%x [%d ms]\n", engine->hangcheck.last_seqno, engine->hangcheck.next_seqno, jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp)); drm_printf(m, "\tReset count: %d (global %d)\n", i915_reset_engine_count(error, engine), i915_reset_count(error)); rcu_read_lock(); drm_printf(m, "\tRequests:\n"); rq = list_first_entry(&engine->timeline.requests, struct i915_request, link); if (&rq->link != &engine->timeline.requests) print_request(m, rq, "\t\tfirst "); rq = list_last_entry(&engine->timeline.requests, struct i915_request, link); if (&rq->link != &engine->timeline.requests) print_request(m, rq, "\t\tlast "); rq = intel_engine_find_active_request(engine); if (rq) { print_request(m, rq, "\t\tactive "); drm_printf(m, "\t\tring->start: 0x%08x\n", i915_ggtt_offset(rq->ring->vma)); drm_printf(m, "\t\tring->head: 0x%08x\n", rq->ring->head); drm_printf(m, "\t\tring->tail: 0x%08x\n", rq->ring->tail); drm_printf(m, "\t\tring->emit: 0x%08x\n", rq->ring->emit); drm_printf(m, "\t\tring->space: 0x%08x\n", rq->ring->space); drm_printf(m, "\t\tring->hwsp: 0x%08x\n", rq->timeline->hwsp_offset); print_request_ring(m, rq); } rcu_read_unlock(); wakeref = intel_runtime_pm_get_if_in_use(engine->i915); if (wakeref) { intel_engine_print_registers(engine, m); intel_runtime_pm_put(engine->i915, wakeref); } else { drm_printf(m, "\tDevice is asleep; skipping register dump\n"); } intel_execlists_show_requests(engine, m, print_request, 8); drm_printf(m, "HWSP:\n"); hexdump(m, engine->status_page.addr, PAGE_SIZE); drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); intel_engine_print_breadcrumbs(engine, m); } static u8 user_class_map[] = { [I915_ENGINE_CLASS_RENDER] = RENDER_CLASS, [I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS, [I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS, [I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS, }; struct intel_engine_cs * intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance) { if (class >= ARRAY_SIZE(user_class_map)) return NULL; class = user_class_map[class]; GEM_BUG_ON(class > MAX_ENGINE_CLASS); if (instance > MAX_ENGINE_INSTANCE) return NULL; return i915->engine_class[class][instance]; } /** * intel_enable_engine_stats() - Enable engine busy tracking on engine * @engine: engine to enable stats collection * * Start collecting the engine busyness data for @engine. * * Returns 0 on success or a negative error code. */ int intel_enable_engine_stats(struct intel_engine_cs *engine) { struct intel_engine_execlists *execlists = &engine->execlists; unsigned long flags; int err = 0; if (!intel_engine_supports_stats(engine)) return -ENODEV; spin_lock_irqsave(&engine->timeline.lock, flags); write_seqlock(&engine->stats.lock); if (unlikely(engine->stats.enabled == ~0)) { err = -EBUSY; goto unlock; } if (engine->stats.enabled++ == 0) { const struct execlist_port *port = execlists->port; unsigned int num_ports = execlists_num_ports(execlists); engine->stats.enabled_at = ktime_get(); /* XXX submission method oblivious? */ while (num_ports-- && port_isset(port)) { engine->stats.active++; port++; } if (engine->stats.active) engine->stats.start = engine->stats.enabled_at; } unlock: write_sequnlock(&engine->stats.lock); spin_unlock_irqrestore(&engine->timeline.lock, flags); return err; } static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine) { ktime_t total = engine->stats.total; /* * If the engine is executing something at the moment * add it to the total. */ if (engine->stats.active) total = ktime_add(total, ktime_sub(ktime_get(), engine->stats.start)); return total; } /** * intel_engine_get_busy_time() - Return current accumulated engine busyness * @engine: engine to report on * * Returns accumulated time @engine was busy since engine stats were enabled. */ ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine) { unsigned int seq; ktime_t total; do { seq = read_seqbegin(&engine->stats.lock); total = __intel_engine_get_busy_time(engine); } while (read_seqretry(&engine->stats.lock, seq)); return total; } /** * intel_disable_engine_stats() - Disable engine busy tracking on engine * @engine: engine to disable stats collection * * Stops collecting the engine busyness data for @engine. */ void intel_disable_engine_stats(struct intel_engine_cs *engine) { unsigned long flags; if (!intel_engine_supports_stats(engine)) return; write_seqlock_irqsave(&engine->stats.lock, flags); WARN_ON_ONCE(engine->stats.enabled == 0); if (--engine->stats.enabled == 0) { engine->stats.total = __intel_engine_get_busy_time(engine); engine->stats.active = 0; } write_sequnlock_irqrestore(&engine->stats.lock, flags); } static bool match_ring(struct i915_request *rq) { u32 ring = ENGINE_READ(rq->engine, RING_START); return ring == i915_ggtt_offset(rq->ring->vma); } struct i915_request * intel_engine_find_active_request(struct intel_engine_cs *engine) { struct i915_request *request, *active = NULL; unsigned long flags; /* * We are called by the error capture, reset and to dump engine * state at random points in time. In particular, note that neither is * crucially ordered with an interrupt. After a hang, the GPU is dead * and we assume that no more writes can happen (we waited long enough * for all writes that were in transaction to be flushed) - adding an * extra delay for a recent interrupt is pointless. Hence, we do * not need an engine->irq_seqno_barrier() before the seqno reads. * At all other times, we must assume the GPU is still running, but * we only care about the snapshot of this moment. */ spin_lock_irqsave(&engine->timeline.lock, flags); list_for_each_entry(request, &engine->timeline.requests, link) { if (i915_request_completed(request)) continue; if (!i915_request_started(request)) break; /* More than one preemptible request may match! */ if (!match_ring(request)) break; active = request; break; } spin_unlock_irqrestore(&engine->timeline.lock, flags); return active; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/mock_engine.c" #include "selftests/intel_engine_cs.c" #endif