// SPDX-License-Identifier: MIT /* * Copyright © 2020-2021 Intel Corporation */ #include "i915_drv.h" #include "i915_trace.h" #include "intel_display_types.h" #include "intel_dp_aux.h" #include "intel_pps.h" #include "intel_tc.h" u32 intel_dp_pack_aux(const u8 *src, int src_bytes) { int i; u32 v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((u32)src[i]) << ((3 - i) * 8); return v; } static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3 - i) * 8); } static u32 intel_dp_aux_wait_done(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); const unsigned int timeout_ms = 10; u32 status; bool done; #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) done = wait_event_timeout(i915->gmbus_wait_queue, C, msecs_to_jiffies_timeout(timeout_ms)); /* just trace the final value */ trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); if (!done) drm_err(&i915->drm, "%s: did not complete or timeout within %ums (status 0x%08x)\n", intel_dp->aux.name, timeout_ms, status); #undef C return status; } static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (index) return 0; /* * The clock divider is based off the hrawclk, and would like to run at * 2MHz. So, take the hrawclk value and divide by 2000 and use that */ return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000); } static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); u32 freq; if (index) return 0; /* * The clock divider is based off the cdclk or PCH rawclk, and would * like to run at 2MHz. So, take the cdclk or PCH rawclk value and * divide by 2000 and use that */ if (dig_port->aux_ch == AUX_CH_A) freq = dev_priv->cdclk.hw.cdclk; else freq = RUNTIME_INFO(dev_priv)->rawclk_freq; return DIV_ROUND_CLOSEST(freq, 2000); } static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { /* Workaround for non-ULT HSW */ switch (index) { case 0: return 63; case 1: return 72; default: return 0; } } return ilk_get_aux_clock_divider(intel_dp, index); } static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { /* * SKL doesn't need us to program the AUX clock divider (Hardware will * derive the clock from CDCLK automatically). We still implement the * get_aux_clock_divider vfunc to plug-in into the existing code. */ return index ? 0 : 1; } static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, int send_bytes, u32 aux_clock_divider) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); u32 timeout; /* Max timeout value on G4x-BDW: 1.6ms */ if (IS_BROADWELL(dev_priv)) timeout = DP_AUX_CH_CTL_TIME_OUT_600us; else timeout = DP_AUX_CH_CTL_TIME_OUT_400us; return DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_INTERRUPT | DP_AUX_CH_CTL_TIME_OUT_ERROR | timeout | DP_AUX_CH_CTL_RECEIVE_ERROR | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (3 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); } static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, int send_bytes, u32 unused) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); enum phy phy = intel_port_to_phy(i915, dig_port->base.port); u32 ret; /* * Max timeout values: * SKL-GLK: 1.6ms * CNL: 3.2ms * ICL+: 4ms */ ret = DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_INTERRUPT | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_TIME_OUT_MAX | DP_AUX_CH_CTL_RECEIVE_ERROR | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); if (intel_phy_is_tc(i915, phy) && dig_port->tc_mode == TC_PORT_TBT_ALT) ret |= DP_AUX_CH_CTL_TBT_IO; return ret; } static int intel_dp_aux_xfer(struct intel_dp *intel_dp, const u8 *send, int send_bytes, u8 *recv, int recv_size, u32 aux_send_ctl_flags) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_uncore *uncore = &i915->uncore; enum phy phy = intel_port_to_phy(i915, dig_port->base.port); bool is_tc_port = intel_phy_is_tc(i915, phy); i915_reg_t ch_ctl, ch_data[5]; u32 aux_clock_divider; enum intel_display_power_domain aux_domain; intel_wakeref_t aux_wakeref; intel_wakeref_t pps_wakeref; int i, ret, recv_bytes; int try, clock = 0; u32 status; bool vdd; ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); for (i = 0; i < ARRAY_SIZE(ch_data); i++) ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); if (is_tc_port) intel_tc_port_lock(dig_port); aux_domain = intel_aux_power_domain(dig_port); aux_wakeref = intel_display_power_get(i915, aux_domain); pps_wakeref = intel_pps_lock(intel_dp); /* * We will be called with VDD already enabled for dpcd/edid/oui reads. * In such cases we want to leave VDD enabled and it's up to upper layers * to turn it off. But for eg. i2c-dev access we need to turn it on/off * ourselves. */ vdd = intel_pps_vdd_on_unlocked(intel_dp); /* * dp aux is extremely sensitive to irq latency, hence request the * lowest possible wakeup latency and so prevent the cpu from going into * deep sleep states. */ cpu_latency_qos_update_request(&intel_dp->pm_qos, 0); intel_pps_check_power_unlocked(intel_dp); /* Try to wait for any previous AUX channel activity */ for (try = 0; try < 3; try++) { status = intel_uncore_read_notrace(uncore, ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; msleep(1); } /* just trace the final value */ trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); if (try == 3) { const u32 status = intel_uncore_read(uncore, ch_ctl); if (status != intel_dp->aux_busy_last_status) { drm_WARN(&i915->drm, 1, "%s: not started (status 0x%08x)\n", intel_dp->aux.name, status); intel_dp->aux_busy_last_status = status; } ret = -EBUSY; goto out; } /* Only 5 data registers! */ if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) { ret = -E2BIG; goto out; } while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, send_bytes, aux_clock_divider); send_ctl |= aux_send_ctl_flags; /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4) intel_uncore_write(uncore, ch_data[i >> 2], intel_dp_pack_aux(send + i, send_bytes - i)); /* Send the command and wait for it to complete */ intel_uncore_write(uncore, ch_ctl, send_ctl); status = intel_dp_aux_wait_done(intel_dp); /* Clear done status and any errors */ intel_uncore_write(uncore, ch_ctl, status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); /* * DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 * 400us delay required for errors and timeouts * Timeout errors from the HW already meet this * requirement so skip to next iteration */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) continue; if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { usleep_range(400, 500); continue; } if (status & DP_AUX_CH_CTL_DONE) goto done; } } if ((status & DP_AUX_CH_CTL_DONE) == 0) { drm_err(&i915->drm, "%s: not done (status 0x%08x)\n", intel_dp->aux.name, status); ret = -EBUSY; goto out; } done: /* * Check for timeout or receive error. Timeouts occur when the sink is * not connected. */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n", intel_dp->aux.name, status); ret = -EIO; goto out; } /* * Timeouts occur when the device isn't connected, so they're "normal" * -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n", intel_dp->aux.name, status); ret = -ETIMEDOUT; goto out; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); /* * By BSpec: "Message sizes of 0 or >20 are not allowed." * We have no idea of what happened so we return -EBUSY so * drm layer takes care for the necessary retries. */ if (recv_bytes == 0 || recv_bytes > 20) { drm_dbg_kms(&i915->drm, "%s: Forbidden recv_bytes = %d on aux transaction\n", intel_dp->aux.name, recv_bytes); ret = -EBUSY; goto out; } if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), recv + i, recv_bytes - i); ret = recv_bytes; out: cpu_latency_qos_update_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE); if (vdd) intel_pps_vdd_off_unlocked(intel_dp, false); intel_pps_unlock(intel_dp, pps_wakeref); intel_display_power_put_async(i915, aux_domain, aux_wakeref); if (is_tc_port) intel_tc_port_unlock(dig_port); return ret; } #define BARE_ADDRESS_SIZE 3 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) static void intel_dp_aux_header(u8 txbuf[HEADER_SIZE], const struct drm_dp_aux_msg *msg) { txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); txbuf[1] = (msg->address >> 8) & 0xff; txbuf[2] = msg->address & 0xff; txbuf[3] = msg->size - 1; } static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg) { /* * If we're trying to send the HDCP Aksv, we need to set a the Aksv * select bit to inform the hardware to send the Aksv after our header * since we can't access that data from software. */ if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE && msg->address == DP_AUX_HDCP_AKSV) return DP_AUX_CH_CTL_AUX_AKSV_SELECT; return 0; } static ssize_t intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 txbuf[20], rxbuf[20]; size_t txsize, rxsize; u32 flags = intel_dp_aux_xfer_flags(msg); int ret; intel_dp_aux_header(txbuf, msg); switch (msg->request & ~DP_AUX_I2C_MOT) { case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: case DP_AUX_I2C_WRITE_STATUS_UPDATE: txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; rxsize = 2; /* 0 or 1 data bytes */ if (drm_WARN_ON(&i915->drm, txsize > 20)) return -E2BIG; drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size); if (msg->buffer) memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, rxbuf, rxsize, flags); if (ret > 0) { msg->reply = rxbuf[0] >> 4; if (ret > 1) { /* Number of bytes written in a short write. */ ret = clamp_t(int, rxbuf[1], 0, msg->size); } else { /* Return payload size. */ ret = msg->size; } } break; case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; rxsize = msg->size + 1; if (drm_WARN_ON(&i915->drm, rxsize > 20)) return -E2BIG; ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, rxbuf, rxsize, flags); if (ret > 0) { msg->reply = rxbuf[0] >> 4; /* * Assume happy day, and copy the data. The caller is * expected to check msg->reply before touching it. * * Return payload size. */ ret--; memcpy(msg->buffer, rxbuf + 1, ret); } break; default: ret = -EINVAL; break; } return ret; } static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_B); } } static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_B, index); } } static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: return DP_AUX_CH_CTL(aux_ch); case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return PCH_DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_A); } } static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: return DP_AUX_CH_DATA(aux_ch, index); case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return PCH_DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_A, index); } } static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: case AUX_CH_E: case AUX_CH_F: return DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_A); } } static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: case AUX_CH_E: case AUX_CH_F: return DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_A, index); } } static i915_reg_t tgl_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: case AUX_CH_B: case AUX_CH_C: case AUX_CH_USBC1: case AUX_CH_USBC2: case AUX_CH_USBC3: case AUX_CH_USBC4: case AUX_CH_USBC5: /* aka AUX_CH_D_XELPD */ case AUX_CH_USBC6: /* aka AUX_CH_E_XELPD */ return DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_A); } } static i915_reg_t tgl_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: case AUX_CH_B: case AUX_CH_C: case AUX_CH_USBC1: case AUX_CH_USBC2: case AUX_CH_USBC3: case AUX_CH_USBC4: case AUX_CH_USBC5: /* aka AUX_CH_D_XELPD */ case AUX_CH_USBC6: /* aka AUX_CH_E_XELPD */ return DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_A, index); } } void intel_dp_aux_fini(struct intel_dp *intel_dp) { if (cpu_latency_qos_request_active(&intel_dp->pm_qos)) cpu_latency_qos_remove_request(&intel_dp->pm_qos); kfree(intel_dp->aux.name); } void intel_dp_aux_init(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &dig_port->base; enum aux_ch aux_ch = dig_port->aux_ch; if (DISPLAY_VER(dev_priv) >= 12) { intel_dp->aux_ch_ctl_reg = tgl_aux_ctl_reg; intel_dp->aux_ch_data_reg = tgl_aux_data_reg; } else if (DISPLAY_VER(dev_priv) >= 9) { intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; intel_dp->aux_ch_data_reg = skl_aux_data_reg; } else if (HAS_PCH_SPLIT(dev_priv)) { intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; intel_dp->aux_ch_data_reg = ilk_aux_data_reg; } else { intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; intel_dp->aux_ch_data_reg = g4x_aux_data_reg; } if (DISPLAY_VER(dev_priv) >= 9) intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; else if (HAS_PCH_SPLIT(dev_priv)) intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; else intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; if (DISPLAY_VER(dev_priv) >= 9) intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; else intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; intel_dp->aux.drm_dev = &dev_priv->drm; drm_dp_aux_init(&intel_dp->aux); /* Failure to allocate our preferred name is not critical */ if (DISPLAY_VER(dev_priv) >= 13 && aux_ch >= AUX_CH_D_XELPD) intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/%s", aux_ch_name(aux_ch - AUX_CH_D_XELPD + AUX_CH_D), encoder->base.name); else if (DISPLAY_VER(dev_priv) >= 12 && aux_ch >= AUX_CH_USBC1) intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX USBC%c/%s", aux_ch - AUX_CH_USBC1 + '1', encoder->base.name); else intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/%s", aux_ch_name(aux_ch), encoder->base.name); intel_dp->aux.transfer = intel_dp_aux_transfer; cpu_latency_qos_add_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE); }