/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include #include #include #include #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_trace.h" #include "amdgpu_i2c.h" #include "atom.h" #include "amdgpu_atombios.h" #include "amdgpu_atomfirmware.h" #include "amd_pcie.h" #ifdef CONFIG_DRM_AMDGPU_SI #include "si.h" #endif #ifdef CONFIG_DRM_AMDGPU_CIK #include "cik.h" #endif #include "vi.h" #include "soc15.h" #include "nv.h" #include "bif/bif_4_1_d.h" #include #include #include "amdgpu_vf_error.h" #include "amdgpu_amdkfd.h" #include "amdgpu_pm.h" #include "amdgpu_xgmi.h" #include "amdgpu_ras.h" #include "amdgpu_pmu.h" #include "amdgpu_fru_eeprom.h" #include "amdgpu_reset.h" #include #include #include #include MODULE_FIRMWARE("amdgpu/vega10_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/vega12_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/raven_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/picasso_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/raven2_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/arcturus_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/renoir_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/navi10_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/navi14_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/navi12_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/vangogh_gpu_info.bin"); MODULE_FIRMWARE("amdgpu/yellow_carp_gpu_info.bin"); #define AMDGPU_RESUME_MS 2000 const char *amdgpu_asic_name[] = { "TAHITI", "PITCAIRN", "VERDE", "OLAND", "HAINAN", "BONAIRE", "KAVERI", "KABINI", "HAWAII", "MULLINS", "TOPAZ", "TONGA", "FIJI", "CARRIZO", "STONEY", "POLARIS10", "POLARIS11", "POLARIS12", "VEGAM", "VEGA10", "VEGA12", "VEGA20", "RAVEN", "ARCTURUS", "RENOIR", "ALDEBARAN", "NAVI10", "CYAN_SKILLFISH", "NAVI14", "NAVI12", "SIENNA_CICHLID", "NAVY_FLOUNDER", "VANGOGH", "DIMGREY_CAVEFISH", "BEIGE_GOBY", "YELLOW_CARP", "IP DISCOVERY", "LAST", }; /** * DOC: pcie_replay_count * * The amdgpu driver provides a sysfs API for reporting the total number * of PCIe replays (NAKs) * The file pcie_replay_count is used for this and returns the total * number of replays as a sum of the NAKs generated and NAKs received */ static ssize_t amdgpu_device_get_pcie_replay_count(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint64_t cnt = amdgpu_asic_get_pcie_replay_count(adev); return sysfs_emit(buf, "%llu\n", cnt); } static DEVICE_ATTR(pcie_replay_count, S_IRUGO, amdgpu_device_get_pcie_replay_count, NULL); static void amdgpu_device_get_pcie_info(struct amdgpu_device *adev); /** * DOC: product_name * * The amdgpu driver provides a sysfs API for reporting the product name * for the device * The file serial_number is used for this and returns the product name * as returned from the FRU. * NOTE: This is only available for certain server cards */ static ssize_t amdgpu_device_get_product_name(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); return sysfs_emit(buf, "%s\n", adev->product_name); } static DEVICE_ATTR(product_name, S_IRUGO, amdgpu_device_get_product_name, NULL); /** * DOC: product_number * * The amdgpu driver provides a sysfs API for reporting the part number * for the device * The file serial_number is used for this and returns the part number * as returned from the FRU. * NOTE: This is only available for certain server cards */ static ssize_t amdgpu_device_get_product_number(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); return sysfs_emit(buf, "%s\n", adev->product_number); } static DEVICE_ATTR(product_number, S_IRUGO, amdgpu_device_get_product_number, NULL); /** * DOC: serial_number * * The amdgpu driver provides a sysfs API for reporting the serial number * for the device * The file serial_number is used for this and returns the serial number * as returned from the FRU. * NOTE: This is only available for certain server cards */ static ssize_t amdgpu_device_get_serial_number(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); return sysfs_emit(buf, "%s\n", adev->serial); } static DEVICE_ATTR(serial_number, S_IRUGO, amdgpu_device_get_serial_number, NULL); /** * amdgpu_device_supports_px - Is the device a dGPU with ATPX power control * * @dev: drm_device pointer * * Returns true if the device is a dGPU with ATPX power control, * otherwise return false. */ bool amdgpu_device_supports_px(struct drm_device *dev) { struct amdgpu_device *adev = drm_to_adev(dev); if ((adev->flags & AMD_IS_PX) && !amdgpu_is_atpx_hybrid()) return true; return false; } /** * amdgpu_device_supports_boco - Is the device a dGPU with ACPI power resources * * @dev: drm_device pointer * * Returns true if the device is a dGPU with ACPI power control, * otherwise return false. */ bool amdgpu_device_supports_boco(struct drm_device *dev) { struct amdgpu_device *adev = drm_to_adev(dev); if (adev->has_pr3 || ((adev->flags & AMD_IS_PX) && amdgpu_is_atpx_hybrid())) return true; return false; } /** * amdgpu_device_supports_baco - Does the device support BACO * * @dev: drm_device pointer * * Returns true if the device supporte BACO, * otherwise return false. */ bool amdgpu_device_supports_baco(struct drm_device *dev) { struct amdgpu_device *adev = drm_to_adev(dev); return amdgpu_asic_supports_baco(adev); } /** * amdgpu_device_supports_smart_shift - Is the device dGPU with * smart shift support * * @dev: drm_device pointer * * Returns true if the device is a dGPU with Smart Shift support, * otherwise returns false. */ bool amdgpu_device_supports_smart_shift(struct drm_device *dev) { return (amdgpu_device_supports_boco(dev) && amdgpu_acpi_is_power_shift_control_supported()); } /* * VRAM access helper functions */ /** * amdgpu_device_mm_access - access vram by MM_INDEX/MM_DATA * * @adev: amdgpu_device pointer * @pos: offset of the buffer in vram * @buf: virtual address of the buffer in system memory * @size: read/write size, sizeof(@buf) must > @size * @write: true - write to vram, otherwise - read from vram */ void amdgpu_device_mm_access(struct amdgpu_device *adev, loff_t pos, void *buf, size_t size, bool write) { unsigned long flags; uint32_t hi = ~0, tmp = 0; uint32_t *data = buf; uint64_t last; int idx; if (!drm_dev_enter(adev_to_drm(adev), &idx)) return; BUG_ON(!IS_ALIGNED(pos, 4) || !IS_ALIGNED(size, 4)); spin_lock_irqsave(&adev->mmio_idx_lock, flags); for (last = pos + size; pos < last; pos += 4) { tmp = pos >> 31; WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)pos) | 0x80000000); if (tmp != hi) { WREG32_NO_KIQ(mmMM_INDEX_HI, tmp); hi = tmp; } if (write) WREG32_NO_KIQ(mmMM_DATA, *data++); else *data++ = RREG32_NO_KIQ(mmMM_DATA); } spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); drm_dev_exit(idx); } /** * amdgpu_device_aper_access - access vram by vram aperature * * @adev: amdgpu_device pointer * @pos: offset of the buffer in vram * @buf: virtual address of the buffer in system memory * @size: read/write size, sizeof(@buf) must > @size * @write: true - write to vram, otherwise - read from vram * * The return value means how many bytes have been transferred. */ size_t amdgpu_device_aper_access(struct amdgpu_device *adev, loff_t pos, void *buf, size_t size, bool write) { #ifdef CONFIG_64BIT void __iomem *addr; size_t count = 0; uint64_t last; if (!adev->mman.aper_base_kaddr) return 0; last = min(pos + size, adev->gmc.visible_vram_size); if (last > pos) { addr = adev->mman.aper_base_kaddr + pos; count = last - pos; if (write) { memcpy_toio(addr, buf, count); mb(); amdgpu_device_flush_hdp(adev, NULL); } else { amdgpu_device_invalidate_hdp(adev, NULL); mb(); memcpy_fromio(buf, addr, count); } } return count; #else return 0; #endif } /** * amdgpu_device_vram_access - read/write a buffer in vram * * @adev: amdgpu_device pointer * @pos: offset of the buffer in vram * @buf: virtual address of the buffer in system memory * @size: read/write size, sizeof(@buf) must > @size * @write: true - write to vram, otherwise - read from vram */ void amdgpu_device_vram_access(struct amdgpu_device *adev, loff_t pos, void *buf, size_t size, bool write) { size_t count; /* try to using vram apreature to access vram first */ count = amdgpu_device_aper_access(adev, pos, buf, size, write); size -= count; if (size) { /* using MM to access rest vram */ pos += count; buf += count; amdgpu_device_mm_access(adev, pos, buf, size, write); } } /* * register access helper functions. */ /* Check if hw access should be skipped because of hotplug or device error */ bool amdgpu_device_skip_hw_access(struct amdgpu_device *adev) { if (adev->no_hw_access) return true; #ifdef CONFIG_LOCKDEP /* * This is a bit complicated to understand, so worth a comment. What we assert * here is that the GPU reset is not running on another thread in parallel. * * For this we trylock the read side of the reset semaphore, if that succeeds * we know that the reset is not running in paralell. * * If the trylock fails we assert that we are either already holding the read * side of the lock or are the reset thread itself and hold the write side of * the lock. */ if (in_task()) { if (down_read_trylock(&adev->reset_sem)) up_read(&adev->reset_sem); else lockdep_assert_held(&adev->reset_sem); } #endif return false; } /** * amdgpu_device_rreg - read a memory mapped IO or indirect register * * @adev: amdgpu_device pointer * @reg: dword aligned register offset * @acc_flags: access flags which require special behavior * * Returns the 32 bit value from the offset specified. */ uint32_t amdgpu_device_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t acc_flags) { uint32_t ret; if (amdgpu_device_skip_hw_access(adev)) return 0; if ((reg * 4) < adev->rmmio_size) { if (!(acc_flags & AMDGPU_REGS_NO_KIQ) && amdgpu_sriov_runtime(adev) && down_read_trylock(&adev->reset_sem)) { ret = amdgpu_kiq_rreg(adev, reg); up_read(&adev->reset_sem); } else { ret = readl(((void __iomem *)adev->rmmio) + (reg * 4)); } } else { ret = adev->pcie_rreg(adev, reg * 4); } trace_amdgpu_device_rreg(adev->pdev->device, reg, ret); return ret; } /* * MMIO register read with bytes helper functions * @offset:bytes offset from MMIO start * */ /** * amdgpu_mm_rreg8 - read a memory mapped IO register * * @adev: amdgpu_device pointer * @offset: byte aligned register offset * * Returns the 8 bit value from the offset specified. */ uint8_t amdgpu_mm_rreg8(struct amdgpu_device *adev, uint32_t offset) { if (amdgpu_device_skip_hw_access(adev)) return 0; if (offset < adev->rmmio_size) return (readb(adev->rmmio + offset)); BUG(); } /* * MMIO register write with bytes helper functions * @offset:bytes offset from MMIO start * @value: the value want to be written to the register * */ /** * amdgpu_mm_wreg8 - read a memory mapped IO register * * @adev: amdgpu_device pointer * @offset: byte aligned register offset * @value: 8 bit value to write * * Writes the value specified to the offset specified. */ void amdgpu_mm_wreg8(struct amdgpu_device *adev, uint32_t offset, uint8_t value) { if (amdgpu_device_skip_hw_access(adev)) return; if (offset < adev->rmmio_size) writeb(value, adev->rmmio + offset); else BUG(); } /** * amdgpu_device_wreg - write to a memory mapped IO or indirect register * * @adev: amdgpu_device pointer * @reg: dword aligned register offset * @v: 32 bit value to write to the register * @acc_flags: access flags which require special behavior * * Writes the value specified to the offset specified. */ void amdgpu_device_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t acc_flags) { if (amdgpu_device_skip_hw_access(adev)) return; if ((reg * 4) < adev->rmmio_size) { if (!(acc_flags & AMDGPU_REGS_NO_KIQ) && amdgpu_sriov_runtime(adev) && down_read_trylock(&adev->reset_sem)) { amdgpu_kiq_wreg(adev, reg, v); up_read(&adev->reset_sem); } else { writel(v, ((void __iomem *)adev->rmmio) + (reg * 4)); } } else { adev->pcie_wreg(adev, reg * 4, v); } trace_amdgpu_device_wreg(adev->pdev->device, reg, v); } /** * amdgpu_mm_wreg_mmio_rlc - write register either with mmio or with RLC path if in range * * this function is invoked only the debugfs register access */ void amdgpu_mm_wreg_mmio_rlc(struct amdgpu_device *adev, uint32_t reg, uint32_t v) { if (amdgpu_device_skip_hw_access(adev)) return; if (amdgpu_sriov_fullaccess(adev) && adev->gfx.rlc.funcs && adev->gfx.rlc.funcs->is_rlcg_access_range) { if (adev->gfx.rlc.funcs->is_rlcg_access_range(adev, reg)) return adev->gfx.rlc.funcs->sriov_wreg(adev, reg, v, 0, 0); } else { writel(v, ((void __iomem *)adev->rmmio) + (reg * 4)); } } /** * amdgpu_mm_rdoorbell - read a doorbell dword * * @adev: amdgpu_device pointer * @index: doorbell index * * Returns the value in the doorbell aperture at the * requested doorbell index (CIK). */ u32 amdgpu_mm_rdoorbell(struct amdgpu_device *adev, u32 index) { if (amdgpu_device_skip_hw_access(adev)) return 0; if (index < adev->doorbell.num_doorbells) { return readl(adev->doorbell.ptr + index); } else { DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", index); return 0; } } /** * amdgpu_mm_wdoorbell - write a doorbell dword * * @adev: amdgpu_device pointer * @index: doorbell index * @v: value to write * * Writes @v to the doorbell aperture at the * requested doorbell index (CIK). */ void amdgpu_mm_wdoorbell(struct amdgpu_device *adev, u32 index, u32 v) { if (amdgpu_device_skip_hw_access(adev)) return; if (index < adev->doorbell.num_doorbells) { writel(v, adev->doorbell.ptr + index); } else { DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", index); } } /** * amdgpu_mm_rdoorbell64 - read a doorbell Qword * * @adev: amdgpu_device pointer * @index: doorbell index * * Returns the value in the doorbell aperture at the * requested doorbell index (VEGA10+). */ u64 amdgpu_mm_rdoorbell64(struct amdgpu_device *adev, u32 index) { if (amdgpu_device_skip_hw_access(adev)) return 0; if (index < adev->doorbell.num_doorbells) { return atomic64_read((atomic64_t *)(adev->doorbell.ptr + index)); } else { DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", index); return 0; } } /** * amdgpu_mm_wdoorbell64 - write a doorbell Qword * * @adev: amdgpu_device pointer * @index: doorbell index * @v: value to write * * Writes @v to the doorbell aperture at the * requested doorbell index (VEGA10+). */ void amdgpu_mm_wdoorbell64(struct amdgpu_device *adev, u32 index, u64 v) { if (amdgpu_device_skip_hw_access(adev)) return; if (index < adev->doorbell.num_doorbells) { atomic64_set((atomic64_t *)(adev->doorbell.ptr + index), v); } else { DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", index); } } /** * amdgpu_device_indirect_rreg - read an indirect register * * @adev: amdgpu_device pointer * @pcie_index: mmio register offset * @pcie_data: mmio register offset * @reg_addr: indirect register address to read from * * Returns the value of indirect register @reg_addr */ u32 amdgpu_device_indirect_rreg(struct amdgpu_device *adev, u32 pcie_index, u32 pcie_data, u32 reg_addr) { unsigned long flags; u32 r; void __iomem *pcie_index_offset; void __iomem *pcie_data_offset; spin_lock_irqsave(&adev->pcie_idx_lock, flags); pcie_index_offset = (void __iomem *)adev->rmmio + pcie_index * 4; pcie_data_offset = (void __iomem *)adev->rmmio + pcie_data * 4; writel(reg_addr, pcie_index_offset); readl(pcie_index_offset); r = readl(pcie_data_offset); spin_unlock_irqrestore(&adev->pcie_idx_lock, flags); return r; } /** * amdgpu_device_indirect_rreg64 - read a 64bits indirect register * * @adev: amdgpu_device pointer * @pcie_index: mmio register offset * @pcie_data: mmio register offset * @reg_addr: indirect register address to read from * * Returns the value of indirect register @reg_addr */ u64 amdgpu_device_indirect_rreg64(struct amdgpu_device *adev, u32 pcie_index, u32 pcie_data, u32 reg_addr) { unsigned long flags; u64 r; void __iomem *pcie_index_offset; void __iomem *pcie_data_offset; spin_lock_irqsave(&adev->pcie_idx_lock, flags); pcie_index_offset = (void __iomem *)adev->rmmio + pcie_index * 4; pcie_data_offset = (void __iomem *)adev->rmmio + pcie_data * 4; /* read low 32 bits */ writel(reg_addr, pcie_index_offset); readl(pcie_index_offset); r = readl(pcie_data_offset); /* read high 32 bits */ writel(reg_addr + 4, pcie_index_offset); readl(pcie_index_offset); r |= ((u64)readl(pcie_data_offset) << 32); spin_unlock_irqrestore(&adev->pcie_idx_lock, flags); return r; } /** * amdgpu_device_indirect_wreg - write an indirect register address * * @adev: amdgpu_device pointer * @pcie_index: mmio register offset * @pcie_data: mmio register offset * @reg_addr: indirect register offset * @reg_data: indirect register data * */ void amdgpu_device_indirect_wreg(struct amdgpu_device *adev, u32 pcie_index, u32 pcie_data, u32 reg_addr, u32 reg_data) { unsigned long flags; void __iomem *pcie_index_offset; void __iomem *pcie_data_offset; spin_lock_irqsave(&adev->pcie_idx_lock, flags); pcie_index_offset = (void __iomem *)adev->rmmio + pcie_index * 4; pcie_data_offset = (void __iomem *)adev->rmmio + pcie_data * 4; writel(reg_addr, pcie_index_offset); readl(pcie_index_offset); writel(reg_data, pcie_data_offset); readl(pcie_data_offset); spin_unlock_irqrestore(&adev->pcie_idx_lock, flags); } /** * amdgpu_device_indirect_wreg64 - write a 64bits indirect register address * * @adev: amdgpu_device pointer * @pcie_index: mmio register offset * @pcie_data: mmio register offset * @reg_addr: indirect register offset * @reg_data: indirect register data * */ void amdgpu_device_indirect_wreg64(struct amdgpu_device *adev, u32 pcie_index, u32 pcie_data, u32 reg_addr, u64 reg_data) { unsigned long flags; void __iomem *pcie_index_offset; void __iomem *pcie_data_offset; spin_lock_irqsave(&adev->pcie_idx_lock, flags); pcie_index_offset = (void __iomem *)adev->rmmio + pcie_index * 4; pcie_data_offset = (void __iomem *)adev->rmmio + pcie_data * 4; /* write low 32 bits */ writel(reg_addr, pcie_index_offset); readl(pcie_index_offset); writel((u32)(reg_data & 0xffffffffULL), pcie_data_offset); readl(pcie_data_offset); /* write high 32 bits */ writel(reg_addr + 4, pcie_index_offset); readl(pcie_index_offset); writel((u32)(reg_data >> 32), pcie_data_offset); readl(pcie_data_offset); spin_unlock_irqrestore(&adev->pcie_idx_lock, flags); } /** * amdgpu_invalid_rreg - dummy reg read function * * @adev: amdgpu_device pointer * @reg: offset of register * * Dummy register read function. Used for register blocks * that certain asics don't have (all asics). * Returns the value in the register. */ static uint32_t amdgpu_invalid_rreg(struct amdgpu_device *adev, uint32_t reg) { DRM_ERROR("Invalid callback to read register 0x%04X\n", reg); BUG(); return 0; } /** * amdgpu_invalid_wreg - dummy reg write function * * @adev: amdgpu_device pointer * @reg: offset of register * @v: value to write to the register * * Dummy register read function. Used for register blocks * that certain asics don't have (all asics). */ static void amdgpu_invalid_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) { DRM_ERROR("Invalid callback to write register 0x%04X with 0x%08X\n", reg, v); BUG(); } /** * amdgpu_invalid_rreg64 - dummy 64 bit reg read function * * @adev: amdgpu_device pointer * @reg: offset of register * * Dummy register read function. Used for register blocks * that certain asics don't have (all asics). * Returns the value in the register. */ static uint64_t amdgpu_invalid_rreg64(struct amdgpu_device *adev, uint32_t reg) { DRM_ERROR("Invalid callback to read 64 bit register 0x%04X\n", reg); BUG(); return 0; } /** * amdgpu_invalid_wreg64 - dummy reg write function * * @adev: amdgpu_device pointer * @reg: offset of register * @v: value to write to the register * * Dummy register read function. Used for register blocks * that certain asics don't have (all asics). */ static void amdgpu_invalid_wreg64(struct amdgpu_device *adev, uint32_t reg, uint64_t v) { DRM_ERROR("Invalid callback to write 64 bit register 0x%04X with 0x%08llX\n", reg, v); BUG(); } /** * amdgpu_block_invalid_rreg - dummy reg read function * * @adev: amdgpu_device pointer * @block: offset of instance * @reg: offset of register * * Dummy register read function. Used for register blocks * that certain asics don't have (all asics). * Returns the value in the register. */ static uint32_t amdgpu_block_invalid_rreg(struct amdgpu_device *adev, uint32_t block, uint32_t reg) { DRM_ERROR("Invalid callback to read register 0x%04X in block 0x%04X\n", reg, block); BUG(); return 0; } /** * amdgpu_block_invalid_wreg - dummy reg write function * * @adev: amdgpu_device pointer * @block: offset of instance * @reg: offset of register * @v: value to write to the register * * Dummy register read function. Used for register blocks * that certain asics don't have (all asics). */ static void amdgpu_block_invalid_wreg(struct amdgpu_device *adev, uint32_t block, uint32_t reg, uint32_t v) { DRM_ERROR("Invalid block callback to write register 0x%04X in block 0x%04X with 0x%08X\n", reg, block, v); BUG(); } /** * amdgpu_device_asic_init - Wrapper for atom asic_init * * @adev: amdgpu_device pointer * * Does any asic specific work and then calls atom asic init. */ static int amdgpu_device_asic_init(struct amdgpu_device *adev) { amdgpu_asic_pre_asic_init(adev); return amdgpu_atom_asic_init(adev->mode_info.atom_context); } /** * amdgpu_device_vram_scratch_init - allocate the VRAM scratch page * * @adev: amdgpu_device pointer * * Allocates a scratch page of VRAM for use by various things in the * driver. */ static int amdgpu_device_vram_scratch_init(struct amdgpu_device *adev) { return amdgpu_bo_create_kernel(adev, AMDGPU_GPU_PAGE_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &adev->vram_scratch.robj, &adev->vram_scratch.gpu_addr, (void **)&adev->vram_scratch.ptr); } /** * amdgpu_device_vram_scratch_fini - Free the VRAM scratch page * * @adev: amdgpu_device pointer * * Frees the VRAM scratch page. */ static void amdgpu_device_vram_scratch_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->vram_scratch.robj, NULL, NULL); } /** * amdgpu_device_program_register_sequence - program an array of registers. * * @adev: amdgpu_device pointer * @registers: pointer to the register array * @array_size: size of the register array * * Programs an array or registers with and and or masks. * This is a helper for setting golden registers. */ void amdgpu_device_program_register_sequence(struct amdgpu_device *adev, const u32 *registers, const u32 array_size) { u32 tmp, reg, and_mask, or_mask; int i; if (array_size % 3) return; for (i = 0; i < array_size; i +=3) { reg = registers[i + 0]; and_mask = registers[i + 1]; or_mask = registers[i + 2]; if (and_mask == 0xffffffff) { tmp = or_mask; } else { tmp = RREG32(reg); tmp &= ~and_mask; if (adev->family >= AMDGPU_FAMILY_AI) tmp |= (or_mask & and_mask); else tmp |= or_mask; } WREG32(reg, tmp); } } /** * amdgpu_device_pci_config_reset - reset the GPU * * @adev: amdgpu_device pointer * * Resets the GPU using the pci config reset sequence. * Only applicable to asics prior to vega10. */ void amdgpu_device_pci_config_reset(struct amdgpu_device *adev) { pci_write_config_dword(adev->pdev, 0x7c, AMDGPU_ASIC_RESET_DATA); } /** * amdgpu_device_pci_reset - reset the GPU using generic PCI means * * @adev: amdgpu_device pointer * * Resets the GPU using generic pci reset interfaces (FLR, SBR, etc.). */ int amdgpu_device_pci_reset(struct amdgpu_device *adev) { return pci_reset_function(adev->pdev); } /* * GPU doorbell aperture helpers function. */ /** * amdgpu_device_doorbell_init - Init doorbell driver information. * * @adev: amdgpu_device pointer * * Init doorbell driver information (CIK) * Returns 0 on success, error on failure. */ static int amdgpu_device_doorbell_init(struct amdgpu_device *adev) { /* No doorbell on SI hardware generation */ if (adev->asic_type < CHIP_BONAIRE) { adev->doorbell.base = 0; adev->doorbell.size = 0; adev->doorbell.num_doorbells = 0; adev->doorbell.ptr = NULL; return 0; } if (pci_resource_flags(adev->pdev, 2) & IORESOURCE_UNSET) return -EINVAL; amdgpu_asic_init_doorbell_index(adev); /* doorbell bar mapping */ adev->doorbell.base = pci_resource_start(adev->pdev, 2); adev->doorbell.size = pci_resource_len(adev->pdev, 2); adev->doorbell.num_doorbells = min_t(u32, adev->doorbell.size / sizeof(u32), adev->doorbell_index.max_assignment+1); if (adev->doorbell.num_doorbells == 0) return -EINVAL; /* For Vega, reserve and map two pages on doorbell BAR since SDMA * paging queue doorbell use the second page. The * AMDGPU_DOORBELL64_MAX_ASSIGNMENT definition assumes all the * doorbells are in the first page. So with paging queue enabled, * the max num_doorbells should + 1 page (0x400 in dword) */ if (adev->asic_type >= CHIP_VEGA10) adev->doorbell.num_doorbells += 0x400; adev->doorbell.ptr = ioremap(adev->doorbell.base, adev->doorbell.num_doorbells * sizeof(u32)); if (adev->doorbell.ptr == NULL) return -ENOMEM; return 0; } /** * amdgpu_device_doorbell_fini - Tear down doorbell driver information. * * @adev: amdgpu_device pointer * * Tear down doorbell driver information (CIK) */ static void amdgpu_device_doorbell_fini(struct amdgpu_device *adev) { iounmap(adev->doorbell.ptr); adev->doorbell.ptr = NULL; } /* * amdgpu_device_wb_*() * Writeback is the method by which the GPU updates special pages in memory * with the status of certain GPU events (fences, ring pointers,etc.). */ /** * amdgpu_device_wb_fini - Disable Writeback and free memory * * @adev: amdgpu_device pointer * * Disables Writeback and frees the Writeback memory (all asics). * Used at driver shutdown. */ static void amdgpu_device_wb_fini(struct amdgpu_device *adev) { if (adev->wb.wb_obj) { amdgpu_bo_free_kernel(&adev->wb.wb_obj, &adev->wb.gpu_addr, (void **)&adev->wb.wb); adev->wb.wb_obj = NULL; } } /** * amdgpu_device_wb_init - Init Writeback driver info and allocate memory * * @adev: amdgpu_device pointer * * Initializes writeback and allocates writeback memory (all asics). * Used at driver startup. * Returns 0 on success or an -error on failure. */ static int amdgpu_device_wb_init(struct amdgpu_device *adev) { int r; if (adev->wb.wb_obj == NULL) { /* AMDGPU_MAX_WB * sizeof(uint32_t) * 8 = AMDGPU_MAX_WB 256bit slots */ r = amdgpu_bo_create_kernel(adev, AMDGPU_MAX_WB * sizeof(uint32_t) * 8, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->wb.wb_obj, &adev->wb.gpu_addr, (void **)&adev->wb.wb); if (r) { dev_warn(adev->dev, "(%d) create WB bo failed\n", r); return r; } adev->wb.num_wb = AMDGPU_MAX_WB; memset(&adev->wb.used, 0, sizeof(adev->wb.used)); /* clear wb memory */ memset((char *)adev->wb.wb, 0, AMDGPU_MAX_WB * sizeof(uint32_t) * 8); } return 0; } /** * amdgpu_device_wb_get - Allocate a wb entry * * @adev: amdgpu_device pointer * @wb: wb index * * Allocate a wb slot for use by the driver (all asics). * Returns 0 on success or -EINVAL on failure. */ int amdgpu_device_wb_get(struct amdgpu_device *adev, u32 *wb) { unsigned long offset = find_first_zero_bit(adev->wb.used, adev->wb.num_wb); if (offset < adev->wb.num_wb) { __set_bit(offset, adev->wb.used); *wb = offset << 3; /* convert to dw offset */ return 0; } else { return -EINVAL; } } /** * amdgpu_device_wb_free - Free a wb entry * * @adev: amdgpu_device pointer * @wb: wb index * * Free a wb slot allocated for use by the driver (all asics) */ void amdgpu_device_wb_free(struct amdgpu_device *adev, u32 wb) { wb >>= 3; if (wb < adev->wb.num_wb) __clear_bit(wb, adev->wb.used); } /** * amdgpu_device_resize_fb_bar - try to resize FB BAR * * @adev: amdgpu_device pointer * * Try to resize FB BAR to make all VRAM CPU accessible. We try very hard not * to fail, but if any of the BARs is not accessible after the size we abort * driver loading by returning -ENODEV. */ int amdgpu_device_resize_fb_bar(struct amdgpu_device *adev) { int rbar_size = pci_rebar_bytes_to_size(adev->gmc.real_vram_size); struct pci_bus *root; struct resource *res; unsigned i; u16 cmd; int r; /* Bypass for VF */ if (amdgpu_sriov_vf(adev)) return 0; /* skip if the bios has already enabled large BAR */ if (adev->gmc.real_vram_size && (pci_resource_len(adev->pdev, 0) >= adev->gmc.real_vram_size)) return 0; /* Check if the root BUS has 64bit memory resources */ root = adev->pdev->bus; while (root->parent) root = root->parent; pci_bus_for_each_resource(root, res, i) { if (res && res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) && res->start > 0x100000000ull) break; } /* Trying to resize is pointless without a root hub window above 4GB */ if (!res) return 0; /* Limit the BAR size to what is available */ rbar_size = min(fls(pci_rebar_get_possible_sizes(adev->pdev, 0)) - 1, rbar_size); /* Disable memory decoding while we change the BAR addresses and size */ pci_read_config_word(adev->pdev, PCI_COMMAND, &cmd); pci_write_config_word(adev->pdev, PCI_COMMAND, cmd & ~PCI_COMMAND_MEMORY); /* Free the VRAM and doorbell BAR, we most likely need to move both. */ amdgpu_device_doorbell_fini(adev); if (adev->asic_type >= CHIP_BONAIRE) pci_release_resource(adev->pdev, 2); pci_release_resource(adev->pdev, 0); r = pci_resize_resource(adev->pdev, 0, rbar_size); if (r == -ENOSPC) DRM_INFO("Not enough PCI address space for a large BAR."); else if (r && r != -ENOTSUPP) DRM_ERROR("Problem resizing BAR0 (%d).", r); pci_assign_unassigned_bus_resources(adev->pdev->bus); /* When the doorbell or fb BAR isn't available we have no chance of * using the device. */ r = amdgpu_device_doorbell_init(adev); if (r || (pci_resource_flags(adev->pdev, 0) & IORESOURCE_UNSET)) return -ENODEV; pci_write_config_word(adev->pdev, PCI_COMMAND, cmd); return 0; } /* * GPU helpers function. */ /** * amdgpu_device_need_post - check if the hw need post or not * * @adev: amdgpu_device pointer * * Check if the asic has been initialized (all asics) at driver startup * or post is needed if hw reset is performed. * Returns true if need or false if not. */ bool amdgpu_device_need_post(struct amdgpu_device *adev) { uint32_t reg; if (amdgpu_sriov_vf(adev)) return false; if (amdgpu_passthrough(adev)) { /* for FIJI: In whole GPU pass-through virtualization case, after VM reboot * some old smc fw still need driver do vPost otherwise gpu hang, while * those smc fw version above 22.15 doesn't have this flaw, so we force * vpost executed for smc version below 22.15 */ if (adev->asic_type == CHIP_FIJI) { int err; uint32_t fw_ver; err = request_firmware(&adev->pm.fw, "amdgpu/fiji_smc.bin", adev->dev); /* force vPost if error occured */ if (err) return true; fw_ver = *((uint32_t *)adev->pm.fw->data + 69); if (fw_ver < 0x00160e00) return true; } } /* Don't post if we need to reset whole hive on init */ if (adev->gmc.xgmi.pending_reset) return false; if (adev->has_hw_reset) { adev->has_hw_reset = false; return true; } /* bios scratch used on CIK+ */ if (adev->asic_type >= CHIP_BONAIRE) return amdgpu_atombios_scratch_need_asic_init(adev); /* check MEM_SIZE for older asics */ reg = amdgpu_asic_get_config_memsize(adev); if ((reg != 0) && (reg != 0xffffffff)) return false; return true; } /* if we get transitioned to only one device, take VGA back */ /** * amdgpu_device_vga_set_decode - enable/disable vga decode * * @pdev: PCI device pointer * @state: enable/disable vga decode * * Enable/disable vga decode (all asics). * Returns VGA resource flags. */ static unsigned int amdgpu_device_vga_set_decode(struct pci_dev *pdev, bool state) { struct amdgpu_device *adev = drm_to_adev(pci_get_drvdata(pdev)); amdgpu_asic_set_vga_state(adev, state); if (state) return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM | VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; else return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; } /** * amdgpu_device_check_block_size - validate the vm block size * * @adev: amdgpu_device pointer * * Validates the vm block size specified via module parameter. * The vm block size defines number of bits in page table versus page directory, * a page is 4KB so we have 12 bits offset, minimum 9 bits in the * page table and the remaining bits are in the page directory. */ static void amdgpu_device_check_block_size(struct amdgpu_device *adev) { /* defines number of bits in page table versus page directory, * a page is 4KB so we have 12 bits offset, minimum 9 bits in the * page table and the remaining bits are in the page directory */ if (amdgpu_vm_block_size == -1) return; if (amdgpu_vm_block_size < 9) { dev_warn(adev->dev, "VM page table size (%d) too small\n", amdgpu_vm_block_size); amdgpu_vm_block_size = -1; } } /** * amdgpu_device_check_vm_size - validate the vm size * * @adev: amdgpu_device pointer * * Validates the vm size in GB specified via module parameter. * The VM size is the size of the GPU virtual memory space in GB. */ static void amdgpu_device_check_vm_size(struct amdgpu_device *adev) { /* no need to check the default value */ if (amdgpu_vm_size == -1) return; if (amdgpu_vm_size < 1) { dev_warn(adev->dev, "VM size (%d) too small, min is 1GB\n", amdgpu_vm_size); amdgpu_vm_size = -1; } } static void amdgpu_device_check_smu_prv_buffer_size(struct amdgpu_device *adev) { struct sysinfo si; bool is_os_64 = (sizeof(void *) == 8); uint64_t total_memory; uint64_t dram_size_seven_GB = 0x1B8000000; uint64_t dram_size_three_GB = 0xB8000000; if (amdgpu_smu_memory_pool_size == 0) return; if (!is_os_64) { DRM_WARN("Not 64-bit OS, feature not supported\n"); goto def_value; } si_meminfo(&si); total_memory = (uint64_t)si.totalram * si.mem_unit; if ((amdgpu_smu_memory_pool_size == 1) || (amdgpu_smu_memory_pool_size == 2)) { if (total_memory < dram_size_three_GB) goto def_value1; } else if ((amdgpu_smu_memory_pool_size == 4) || (amdgpu_smu_memory_pool_size == 8)) { if (total_memory < dram_size_seven_GB) goto def_value1; } else { DRM_WARN("Smu memory pool size not supported\n"); goto def_value; } adev->pm.smu_prv_buffer_size = amdgpu_smu_memory_pool_size << 28; return; def_value1: DRM_WARN("No enough system memory\n"); def_value: adev->pm.smu_prv_buffer_size = 0; } static int amdgpu_device_init_apu_flags(struct amdgpu_device *adev) { if (!(adev->flags & AMD_IS_APU) || adev->asic_type < CHIP_RAVEN) return 0; switch (adev->asic_type) { case CHIP_RAVEN: if (adev->pdev->device == 0x15dd) adev->apu_flags |= AMD_APU_IS_RAVEN; if (adev->pdev->device == 0x15d8) adev->apu_flags |= AMD_APU_IS_PICASSO; break; case CHIP_RENOIR: if ((adev->pdev->device == 0x1636) || (adev->pdev->device == 0x164c)) adev->apu_flags |= AMD_APU_IS_RENOIR; else adev->apu_flags |= AMD_APU_IS_GREEN_SARDINE; break; case CHIP_VANGOGH: adev->apu_flags |= AMD_APU_IS_VANGOGH; break; case CHIP_YELLOW_CARP: break; case CHIP_CYAN_SKILLFISH: if (adev->pdev->device == 0x13FE) adev->apu_flags |= AMD_APU_IS_CYAN_SKILLFISH2; break; default: return -EINVAL; } return 0; } /** * amdgpu_device_check_arguments - validate module params * * @adev: amdgpu_device pointer * * Validates certain module parameters and updates * the associated values used by the driver (all asics). */ static int amdgpu_device_check_arguments(struct amdgpu_device *adev) { if (amdgpu_sched_jobs < 4) { dev_warn(adev->dev, "sched jobs (%d) must be at least 4\n", amdgpu_sched_jobs); amdgpu_sched_jobs = 4; } else if (!is_power_of_2(amdgpu_sched_jobs)){ dev_warn(adev->dev, "sched jobs (%d) must be a power of 2\n", amdgpu_sched_jobs); amdgpu_sched_jobs = roundup_pow_of_two(amdgpu_sched_jobs); } if (amdgpu_gart_size != -1 && amdgpu_gart_size < 32) { /* gart size must be greater or equal to 32M */ dev_warn(adev->dev, "gart size (%d) too small\n", amdgpu_gart_size); amdgpu_gart_size = -1; } if (amdgpu_gtt_size != -1 && amdgpu_gtt_size < 32) { /* gtt size must be greater or equal to 32M */ dev_warn(adev->dev, "gtt size (%d) too small\n", amdgpu_gtt_size); amdgpu_gtt_size = -1; } /* valid range is between 4 and 9 inclusive */ if (amdgpu_vm_fragment_size != -1 && (amdgpu_vm_fragment_size > 9 || amdgpu_vm_fragment_size < 4)) { dev_warn(adev->dev, "valid range is between 4 and 9\n"); amdgpu_vm_fragment_size = -1; } if (amdgpu_sched_hw_submission < 2) { dev_warn(adev->dev, "sched hw submission jobs (%d) must be at least 2\n", amdgpu_sched_hw_submission); amdgpu_sched_hw_submission = 2; } else if (!is_power_of_2(amdgpu_sched_hw_submission)) { dev_warn(adev->dev, "sched hw submission jobs (%d) must be a power of 2\n", amdgpu_sched_hw_submission); amdgpu_sched_hw_submission = roundup_pow_of_two(amdgpu_sched_hw_submission); } amdgpu_device_check_smu_prv_buffer_size(adev); amdgpu_device_check_vm_size(adev); amdgpu_device_check_block_size(adev); adev->firmware.load_type = amdgpu_ucode_get_load_type(adev, amdgpu_fw_load_type); amdgpu_gmc_tmz_set(adev); amdgpu_gmc_noretry_set(adev); return 0; } /** * amdgpu_switcheroo_set_state - set switcheroo state * * @pdev: pci dev pointer * @state: vga_switcheroo state * * Callback for the switcheroo driver. Suspends or resumes the * the asics before or after it is powered up using ACPI methods. */ static void amdgpu_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state) { struct drm_device *dev = pci_get_drvdata(pdev); int r; if (amdgpu_device_supports_px(dev) && state == VGA_SWITCHEROO_OFF) return; if (state == VGA_SWITCHEROO_ON) { pr_info("switched on\n"); /* don't suspend or resume card normally */ dev->switch_power_state = DRM_SWITCH_POWER_CHANGING; pci_set_power_state(pdev, PCI_D0); amdgpu_device_load_pci_state(pdev); r = pci_enable_device(pdev); if (r) DRM_WARN("pci_enable_device failed (%d)\n", r); amdgpu_device_resume(dev, true); dev->switch_power_state = DRM_SWITCH_POWER_ON; } else { pr_info("switched off\n"); dev->switch_power_state = DRM_SWITCH_POWER_CHANGING; amdgpu_device_suspend(dev, true); amdgpu_device_cache_pci_state(pdev); /* Shut down the device */ pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3cold); dev->switch_power_state = DRM_SWITCH_POWER_OFF; } } /** * amdgpu_switcheroo_can_switch - see if switcheroo state can change * * @pdev: pci dev pointer * * Callback for the switcheroo driver. Check of the switcheroo * state can be changed. * Returns true if the state can be changed, false if not. */ static bool amdgpu_switcheroo_can_switch(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); /* * FIXME: open_count is protected by drm_global_mutex but that would lead to * locking inversion with the driver load path. And the access here is * completely racy anyway. So don't bother with locking for now. */ return atomic_read(&dev->open_count) == 0; } static const struct vga_switcheroo_client_ops amdgpu_switcheroo_ops = { .set_gpu_state = amdgpu_switcheroo_set_state, .reprobe = NULL, .can_switch = amdgpu_switcheroo_can_switch, }; /** * amdgpu_device_ip_set_clockgating_state - set the CG state * * @dev: amdgpu_device pointer * @block_type: Type of hardware IP (SMU, GFX, UVD, etc.) * @state: clockgating state (gate or ungate) * * Sets the requested clockgating state for all instances of * the hardware IP specified. * Returns the error code from the last instance. */ int amdgpu_device_ip_set_clockgating_state(void *dev, enum amd_ip_block_type block_type, enum amd_clockgating_state state) { struct amdgpu_device *adev = dev; int i, r = 0; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].version->type != block_type) continue; if (!adev->ip_blocks[i].version->funcs->set_clockgating_state) continue; r = adev->ip_blocks[i].version->funcs->set_clockgating_state( (void *)adev, state); if (r) DRM_ERROR("set_clockgating_state of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); } return r; } /** * amdgpu_device_ip_set_powergating_state - set the PG state * * @dev: amdgpu_device pointer * @block_type: Type of hardware IP (SMU, GFX, UVD, etc.) * @state: powergating state (gate or ungate) * * Sets the requested powergating state for all instances of * the hardware IP specified. * Returns the error code from the last instance. */ int amdgpu_device_ip_set_powergating_state(void *dev, enum amd_ip_block_type block_type, enum amd_powergating_state state) { struct amdgpu_device *adev = dev; int i, r = 0; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].version->type != block_type) continue; if (!adev->ip_blocks[i].version->funcs->set_powergating_state) continue; r = adev->ip_blocks[i].version->funcs->set_powergating_state( (void *)adev, state); if (r) DRM_ERROR("set_powergating_state of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); } return r; } /** * amdgpu_device_ip_get_clockgating_state - get the CG state * * @adev: amdgpu_device pointer * @flags: clockgating feature flags * * Walks the list of IPs on the device and updates the clockgating * flags for each IP. * Updates @flags with the feature flags for each hardware IP where * clockgating is enabled. */ void amdgpu_device_ip_get_clockgating_state(struct amdgpu_device *adev, u32 *flags) { int i; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].version->funcs->get_clockgating_state) adev->ip_blocks[i].version->funcs->get_clockgating_state((void *)adev, flags); } } /** * amdgpu_device_ip_wait_for_idle - wait for idle * * @adev: amdgpu_device pointer * @block_type: Type of hardware IP (SMU, GFX, UVD, etc.) * * Waits for the request hardware IP to be idle. * Returns 0 for success or a negative error code on failure. */ int amdgpu_device_ip_wait_for_idle(struct amdgpu_device *adev, enum amd_ip_block_type block_type) { int i, r; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].version->type == block_type) { r = adev->ip_blocks[i].version->funcs->wait_for_idle((void *)adev); if (r) return r; break; } } return 0; } /** * amdgpu_device_ip_is_idle - is the hardware IP idle * * @adev: amdgpu_device pointer * @block_type: Type of hardware IP (SMU, GFX, UVD, etc.) * * Check if the hardware IP is idle or not. * Returns true if it the IP is idle, false if not. */ bool amdgpu_device_ip_is_idle(struct amdgpu_device *adev, enum amd_ip_block_type block_type) { int i; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].version->type == block_type) return adev->ip_blocks[i].version->funcs->is_idle((void *)adev); } return true; } /** * amdgpu_device_ip_get_ip_block - get a hw IP pointer * * @adev: amdgpu_device pointer * @type: Type of hardware IP (SMU, GFX, UVD, etc.) * * Returns a pointer to the hardware IP block structure * if it exists for the asic, otherwise NULL. */ struct amdgpu_ip_block * amdgpu_device_ip_get_ip_block(struct amdgpu_device *adev, enum amd_ip_block_type type) { int i; for (i = 0; i < adev->num_ip_blocks; i++) if (adev->ip_blocks[i].version->type == type) return &adev->ip_blocks[i]; return NULL; } /** * amdgpu_device_ip_block_version_cmp * * @adev: amdgpu_device pointer * @type: enum amd_ip_block_type * @major: major version * @minor: minor version * * return 0 if equal or greater * return 1 if smaller or the ip_block doesn't exist */ int amdgpu_device_ip_block_version_cmp(struct amdgpu_device *adev, enum amd_ip_block_type type, u32 major, u32 minor) { struct amdgpu_ip_block *ip_block = amdgpu_device_ip_get_ip_block(adev, type); if (ip_block && ((ip_block->version->major > major) || ((ip_block->version->major == major) && (ip_block->version->minor >= minor)))) return 0; return 1; } /** * amdgpu_device_ip_block_add * * @adev: amdgpu_device pointer * @ip_block_version: pointer to the IP to add * * Adds the IP block driver information to the collection of IPs * on the asic. */ int amdgpu_device_ip_block_add(struct amdgpu_device *adev, const struct amdgpu_ip_block_version *ip_block_version) { if (!ip_block_version) return -EINVAL; switch (ip_block_version->type) { case AMD_IP_BLOCK_TYPE_VCN: if (adev->harvest_ip_mask & AMD_HARVEST_IP_VCN_MASK) return 0; break; case AMD_IP_BLOCK_TYPE_JPEG: if (adev->harvest_ip_mask & AMD_HARVEST_IP_JPEG_MASK) return 0; break; default: break; } DRM_INFO("add ip block number %d <%s>\n", adev->num_ip_blocks, ip_block_version->funcs->name); adev->ip_blocks[adev->num_ip_blocks++].version = ip_block_version; return 0; } /** * amdgpu_device_enable_virtual_display - enable virtual display feature * * @adev: amdgpu_device pointer * * Enabled the virtual display feature if the user has enabled it via * the module parameter virtual_display. This feature provides a virtual * display hardware on headless boards or in virtualized environments. * This function parses and validates the configuration string specified by * the user and configues the virtual display configuration (number of * virtual connectors, crtcs, etc.) specified. */ static void amdgpu_device_enable_virtual_display(struct amdgpu_device *adev) { adev->enable_virtual_display = false; if (amdgpu_virtual_display) { const char *pci_address_name = pci_name(adev->pdev); char *pciaddstr, *pciaddstr_tmp, *pciaddname_tmp, *pciaddname; pciaddstr = kstrdup(amdgpu_virtual_display, GFP_KERNEL); pciaddstr_tmp = pciaddstr; while ((pciaddname_tmp = strsep(&pciaddstr_tmp, ";"))) { pciaddname = strsep(&pciaddname_tmp, ","); if (!strcmp("all", pciaddname) || !strcmp(pci_address_name, pciaddname)) { long num_crtc; int res = -1; adev->enable_virtual_display = true; if (pciaddname_tmp) res = kstrtol(pciaddname_tmp, 10, &num_crtc); if (!res) { if (num_crtc < 1) num_crtc = 1; if (num_crtc > 6) num_crtc = 6; adev->mode_info.num_crtc = num_crtc; } else { adev->mode_info.num_crtc = 1; } break; } } DRM_INFO("virtual display string:%s, %s:virtual_display:%d, num_crtc:%d\n", amdgpu_virtual_display, pci_address_name, adev->enable_virtual_display, adev->mode_info.num_crtc); kfree(pciaddstr); } } /** * amdgpu_device_parse_gpu_info_fw - parse gpu info firmware * * @adev: amdgpu_device pointer * * Parses the asic configuration parameters specified in the gpu info * firmware and makes them availale to the driver for use in configuring * the asic. * Returns 0 on success, -EINVAL on failure. */ static int amdgpu_device_parse_gpu_info_fw(struct amdgpu_device *adev) { const char *chip_name; char fw_name[40]; int err; const struct gpu_info_firmware_header_v1_0 *hdr; adev->firmware.gpu_info_fw = NULL; if (adev->mman.discovery_bin) { amdgpu_discovery_get_gfx_info(adev); /* * FIXME: The bounding box is still needed by Navi12, so * temporarily read it from gpu_info firmware. Should be droped * when DAL no longer needs it. */ if (adev->asic_type != CHIP_NAVI12) return 0; } switch (adev->asic_type) { #ifdef CONFIG_DRM_AMDGPU_SI case CHIP_VERDE: case CHIP_TAHITI: case CHIP_PITCAIRN: case CHIP_OLAND: case CHIP_HAINAN: #endif #ifdef CONFIG_DRM_AMDGPU_CIK case CHIP_BONAIRE: case CHIP_HAWAII: case CHIP_KAVERI: case CHIP_KABINI: case CHIP_MULLINS: #endif case CHIP_TOPAZ: case CHIP_TONGA: case CHIP_FIJI: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: case CHIP_CARRIZO: case CHIP_STONEY: case CHIP_VEGA20: case CHIP_ALDEBARAN: case CHIP_SIENNA_CICHLID: case CHIP_NAVY_FLOUNDER: case CHIP_DIMGREY_CAVEFISH: case CHIP_BEIGE_GOBY: default: return 0; case CHIP_VEGA10: chip_name = "vega10"; break; case CHIP_VEGA12: chip_name = "vega12"; break; case CHIP_RAVEN: if (adev->apu_flags & AMD_APU_IS_RAVEN2) chip_name = "raven2"; else if (adev->apu_flags & AMD_APU_IS_PICASSO) chip_name = "picasso"; else chip_name = "raven"; break; case CHIP_ARCTURUS: chip_name = "arcturus"; break; case CHIP_RENOIR: if (adev->apu_flags & AMD_APU_IS_RENOIR) chip_name = "renoir"; else chip_name = "green_sardine"; break; case CHIP_NAVI10: chip_name = "navi10"; break; case CHIP_NAVI14: chip_name = "navi14"; break; case CHIP_NAVI12: chip_name = "navi12"; break; case CHIP_VANGOGH: chip_name = "vangogh"; break; case CHIP_YELLOW_CARP: chip_name = "yellow_carp"; break; } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_gpu_info.bin", chip_name); err = request_firmware(&adev->firmware.gpu_info_fw, fw_name, adev->dev); if (err) { dev_err(adev->dev, "Failed to load gpu_info firmware \"%s\"\n", fw_name); goto out; } err = amdgpu_ucode_validate(adev->firmware.gpu_info_fw); if (err) { dev_err(adev->dev, "Failed to validate gpu_info firmware \"%s\"\n", fw_name); goto out; } hdr = (const struct gpu_info_firmware_header_v1_0 *)adev->firmware.gpu_info_fw->data; amdgpu_ucode_print_gpu_info_hdr(&hdr->header); switch (hdr->version_major) { case 1: { const struct gpu_info_firmware_v1_0 *gpu_info_fw = (const struct gpu_info_firmware_v1_0 *)(adev->firmware.gpu_info_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); /* * Should be droped when DAL no longer needs it. */ if (adev->asic_type == CHIP_NAVI12) goto parse_soc_bounding_box; adev->gfx.config.max_shader_engines = le32_to_cpu(gpu_info_fw->gc_num_se); adev->gfx.config.max_cu_per_sh = le32_to_cpu(gpu_info_fw->gc_num_cu_per_sh); adev->gfx.config.max_sh_per_se = le32_to_cpu(gpu_info_fw->gc_num_sh_per_se); adev->gfx.config.max_backends_per_se = le32_to_cpu(gpu_info_fw->gc_num_rb_per_se); adev->gfx.config.max_texture_channel_caches = le32_to_cpu(gpu_info_fw->gc_num_tccs); adev->gfx.config.max_gprs = le32_to_cpu(gpu_info_fw->gc_num_gprs); adev->gfx.config.max_gs_threads = le32_to_cpu(gpu_info_fw->gc_num_max_gs_thds); adev->gfx.config.gs_vgt_table_depth = le32_to_cpu(gpu_info_fw->gc_gs_table_depth); adev->gfx.config.gs_prim_buffer_depth = le32_to_cpu(gpu_info_fw->gc_gsprim_buff_depth); adev->gfx.config.double_offchip_lds_buf = le32_to_cpu(gpu_info_fw->gc_double_offchip_lds_buffer); adev->gfx.cu_info.wave_front_size = le32_to_cpu(gpu_info_fw->gc_wave_size); adev->gfx.cu_info.max_waves_per_simd = le32_to_cpu(gpu_info_fw->gc_max_waves_per_simd); adev->gfx.cu_info.max_scratch_slots_per_cu = le32_to_cpu(gpu_info_fw->gc_max_scratch_slots_per_cu); adev->gfx.cu_info.lds_size = le32_to_cpu(gpu_info_fw->gc_lds_size); if (hdr->version_minor >= 1) { const struct gpu_info_firmware_v1_1 *gpu_info_fw = (const struct gpu_info_firmware_v1_1 *)(adev->firmware.gpu_info_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); adev->gfx.config.num_sc_per_sh = le32_to_cpu(gpu_info_fw->num_sc_per_sh); adev->gfx.config.num_packer_per_sc = le32_to_cpu(gpu_info_fw->num_packer_per_sc); } parse_soc_bounding_box: /* * soc bounding box info is not integrated in disocovery table, * we always need to parse it from gpu info firmware if needed. */ if (hdr->version_minor == 2) { const struct gpu_info_firmware_v1_2 *gpu_info_fw = (const struct gpu_info_firmware_v1_2 *)(adev->firmware.gpu_info_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); adev->dm.soc_bounding_box = &gpu_info_fw->soc_bounding_box; } break; } default: dev_err(adev->dev, "Unsupported gpu_info table %d\n", hdr->header.ucode_version); err = -EINVAL; goto out; } out: return err; } /** * amdgpu_device_ip_early_init - run early init for hardware IPs * * @adev: amdgpu_device pointer * * Early initialization pass for hardware IPs. The hardware IPs that make * up each asic are discovered each IP's early_init callback is run. This * is the first stage in initializing the asic. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_early_init(struct amdgpu_device *adev) { int i, r; amdgpu_device_enable_virtual_display(adev); if (amdgpu_sriov_vf(adev)) { r = amdgpu_virt_request_full_gpu(adev, true); if (r) return r; } switch (adev->asic_type) { #ifdef CONFIG_DRM_AMDGPU_SI case CHIP_VERDE: case CHIP_TAHITI: case CHIP_PITCAIRN: case CHIP_OLAND: case CHIP_HAINAN: adev->family = AMDGPU_FAMILY_SI; r = si_set_ip_blocks(adev); if (r) return r; break; #endif #ifdef CONFIG_DRM_AMDGPU_CIK case CHIP_BONAIRE: case CHIP_HAWAII: case CHIP_KAVERI: case CHIP_KABINI: case CHIP_MULLINS: if (adev->flags & AMD_IS_APU) adev->family = AMDGPU_FAMILY_KV; else adev->family = AMDGPU_FAMILY_CI; r = cik_set_ip_blocks(adev); if (r) return r; break; #endif case CHIP_TOPAZ: case CHIP_TONGA: case CHIP_FIJI: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: case CHIP_CARRIZO: case CHIP_STONEY: if (adev->flags & AMD_IS_APU) adev->family = AMDGPU_FAMILY_CZ; else adev->family = AMDGPU_FAMILY_VI; r = vi_set_ip_blocks(adev); if (r) return r; break; default: r = amdgpu_discovery_set_ip_blocks(adev); if (r) return r; break; } amdgpu_amdkfd_device_probe(adev); adev->pm.pp_feature = amdgpu_pp_feature_mask; if (amdgpu_sriov_vf(adev) || sched_policy == KFD_SCHED_POLICY_NO_HWS) adev->pm.pp_feature &= ~PP_GFXOFF_MASK; if (amdgpu_sriov_vf(adev) && adev->asic_type == CHIP_SIENNA_CICHLID) adev->pm.pp_feature &= ~PP_OVERDRIVE_MASK; for (i = 0; i < adev->num_ip_blocks; i++) { if ((amdgpu_ip_block_mask & (1 << i)) == 0) { DRM_ERROR("disabled ip block: %d <%s>\n", i, adev->ip_blocks[i].version->funcs->name); adev->ip_blocks[i].status.valid = false; } else { if (adev->ip_blocks[i].version->funcs->early_init) { r = adev->ip_blocks[i].version->funcs->early_init((void *)adev); if (r == -ENOENT) { adev->ip_blocks[i].status.valid = false; } else if (r) { DRM_ERROR("early_init of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } else { adev->ip_blocks[i].status.valid = true; } } else { adev->ip_blocks[i].status.valid = true; } } /* get the vbios after the asic_funcs are set up */ if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON) { r = amdgpu_device_parse_gpu_info_fw(adev); if (r) return r; /* Read BIOS */ if (!amdgpu_get_bios(adev)) return -EINVAL; r = amdgpu_atombios_init(adev); if (r) { dev_err(adev->dev, "amdgpu_atombios_init failed\n"); amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_ATOMBIOS_INIT_FAIL, 0, 0); return r; } /*get pf2vf msg info at it's earliest time*/ if (amdgpu_sriov_vf(adev)) amdgpu_virt_init_data_exchange(adev); } } adev->cg_flags &= amdgpu_cg_mask; adev->pg_flags &= amdgpu_pg_mask; return 0; } static int amdgpu_device_ip_hw_init_phase1(struct amdgpu_device *adev) { int i, r; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.sw) continue; if (adev->ip_blocks[i].status.hw) continue; if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON || (amdgpu_sriov_vf(adev) && (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP)) || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH) { r = adev->ip_blocks[i].version->funcs->hw_init(adev); if (r) { DRM_ERROR("hw_init of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } adev->ip_blocks[i].status.hw = true; } } return 0; } static int amdgpu_device_ip_hw_init_phase2(struct amdgpu_device *adev) { int i, r; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.sw) continue; if (adev->ip_blocks[i].status.hw) continue; r = adev->ip_blocks[i].version->funcs->hw_init(adev); if (r) { DRM_ERROR("hw_init of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } adev->ip_blocks[i].status.hw = true; } return 0; } static int amdgpu_device_fw_loading(struct amdgpu_device *adev) { int r = 0; int i; uint32_t smu_version; if (adev->asic_type >= CHIP_VEGA10) { for (i = 0; i < adev->num_ip_blocks; i++) { if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_PSP) continue; if (!adev->ip_blocks[i].status.sw) continue; /* no need to do the fw loading again if already done*/ if (adev->ip_blocks[i].status.hw == true) break; if (amdgpu_in_reset(adev) || adev->in_suspend) { r = adev->ip_blocks[i].version->funcs->resume(adev); if (r) { DRM_ERROR("resume of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } } else { r = adev->ip_blocks[i].version->funcs->hw_init(adev); if (r) { DRM_ERROR("hw_init of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } } adev->ip_blocks[i].status.hw = true; break; } } if (!amdgpu_sriov_vf(adev) || adev->asic_type == CHIP_TONGA) r = amdgpu_pm_load_smu_firmware(adev, &smu_version); return r; } /** * amdgpu_device_ip_init - run init for hardware IPs * * @adev: amdgpu_device pointer * * Main initialization pass for hardware IPs. The list of all the hardware * IPs that make up the asic is walked and the sw_init and hw_init callbacks * are run. sw_init initializes the software state associated with each IP * and hw_init initializes the hardware associated with each IP. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_init(struct amdgpu_device *adev) { int i, r; r = amdgpu_ras_init(adev); if (r) return r; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; r = adev->ip_blocks[i].version->funcs->sw_init((void *)adev); if (r) { DRM_ERROR("sw_init of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); goto init_failed; } adev->ip_blocks[i].status.sw = true; /* need to do gmc hw init early so we can allocate gpu mem */ if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) { /* Try to reserve bad pages early */ if (amdgpu_sriov_vf(adev)) amdgpu_virt_exchange_data(adev); r = amdgpu_device_vram_scratch_init(adev); if (r) { DRM_ERROR("amdgpu_vram_scratch_init failed %d\n", r); goto init_failed; } r = adev->ip_blocks[i].version->funcs->hw_init((void *)adev); if (r) { DRM_ERROR("hw_init %d failed %d\n", i, r); goto init_failed; } r = amdgpu_device_wb_init(adev); if (r) { DRM_ERROR("amdgpu_device_wb_init failed %d\n", r); goto init_failed; } adev->ip_blocks[i].status.hw = true; /* right after GMC hw init, we create CSA */ if (amdgpu_mcbp || amdgpu_sriov_vf(adev)) { r = amdgpu_allocate_static_csa(adev, &adev->virt.csa_obj, AMDGPU_GEM_DOMAIN_VRAM, AMDGPU_CSA_SIZE); if (r) { DRM_ERROR("allocate CSA failed %d\n", r); goto init_failed; } } } } if (amdgpu_sriov_vf(adev)) amdgpu_virt_exchange_data(adev); r = amdgpu_ib_pool_init(adev); if (r) { dev_err(adev->dev, "IB initialization failed (%d).\n", r); amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_IB_INIT_FAIL, 0, r); goto init_failed; } r = amdgpu_ucode_create_bo(adev); /* create ucode bo when sw_init complete*/ if (r) goto init_failed; r = amdgpu_device_ip_hw_init_phase1(adev); if (r) goto init_failed; r = amdgpu_device_fw_loading(adev); if (r) goto init_failed; r = amdgpu_device_ip_hw_init_phase2(adev); if (r) goto init_failed; /* * retired pages will be loaded from eeprom and reserved here, * it should be called after amdgpu_device_ip_hw_init_phase2 since * for some ASICs the RAS EEPROM code relies on SMU fully functioning * for I2C communication which only true at this point. * * amdgpu_ras_recovery_init may fail, but the upper only cares the * failure from bad gpu situation and stop amdgpu init process * accordingly. For other failed cases, it will still release all * the resource and print error message, rather than returning one * negative value to upper level. * * Note: theoretically, this should be called before all vram allocations * to protect retired page from abusing */ r = amdgpu_ras_recovery_init(adev); if (r) goto init_failed; if (adev->gmc.xgmi.num_physical_nodes > 1) amdgpu_xgmi_add_device(adev); /* Don't init kfd if whole hive need to be reset during init */ if (!adev->gmc.xgmi.pending_reset) amdgpu_amdkfd_device_init(adev); amdgpu_fru_get_product_info(adev); init_failed: if (amdgpu_sriov_vf(adev)) amdgpu_virt_release_full_gpu(adev, true); return r; } /** * amdgpu_device_fill_reset_magic - writes reset magic to gart pointer * * @adev: amdgpu_device pointer * * Writes a reset magic value to the gart pointer in VRAM. The driver calls * this function before a GPU reset. If the value is retained after a * GPU reset, VRAM has not been lost. Some GPU resets may destry VRAM contents. */ static void amdgpu_device_fill_reset_magic(struct amdgpu_device *adev) { memcpy(adev->reset_magic, adev->gart.ptr, AMDGPU_RESET_MAGIC_NUM); } /** * amdgpu_device_check_vram_lost - check if vram is valid * * @adev: amdgpu_device pointer * * Checks the reset magic value written to the gart pointer in VRAM. * The driver calls this after a GPU reset to see if the contents of * VRAM is lost or now. * returns true if vram is lost, false if not. */ static bool amdgpu_device_check_vram_lost(struct amdgpu_device *adev) { if (memcmp(adev->gart.ptr, adev->reset_magic, AMDGPU_RESET_MAGIC_NUM)) return true; if (!amdgpu_in_reset(adev)) return false; /* * For all ASICs with baco/mode1 reset, the VRAM is * always assumed to be lost. */ switch (amdgpu_asic_reset_method(adev)) { case AMD_RESET_METHOD_BACO: case AMD_RESET_METHOD_MODE1: return true; default: return false; } } /** * amdgpu_device_set_cg_state - set clockgating for amdgpu device * * @adev: amdgpu_device pointer * @state: clockgating state (gate or ungate) * * The list of all the hardware IPs that make up the asic is walked and the * set_clockgating_state callbacks are run. * Late initialization pass enabling clockgating for hardware IPs. * Fini or suspend, pass disabling clockgating for hardware IPs. * Returns 0 on success, negative error code on failure. */ int amdgpu_device_set_cg_state(struct amdgpu_device *adev, enum amd_clockgating_state state) { int i, j, r; if (amdgpu_emu_mode == 1) return 0; for (j = 0; j < adev->num_ip_blocks; j++) { i = state == AMD_CG_STATE_GATE ? j : adev->num_ip_blocks - j - 1; if (!adev->ip_blocks[i].status.late_initialized) continue; /* skip CG for GFX on S0ix */ if (adev->in_s0ix && adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GFX) continue; /* skip CG for VCE/UVD, it's handled specially */ if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_UVD && adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCE && adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCN && adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_JPEG && adev->ip_blocks[i].version->funcs->set_clockgating_state) { /* enable clockgating to save power */ r = adev->ip_blocks[i].version->funcs->set_clockgating_state((void *)adev, state); if (r) { DRM_ERROR("set_clockgating_state(gate) of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } } } return 0; } int amdgpu_device_set_pg_state(struct amdgpu_device *adev, enum amd_powergating_state state) { int i, j, r; if (amdgpu_emu_mode == 1) return 0; for (j = 0; j < adev->num_ip_blocks; j++) { i = state == AMD_PG_STATE_GATE ? j : adev->num_ip_blocks - j - 1; if (!adev->ip_blocks[i].status.late_initialized) continue; /* skip PG for GFX on S0ix */ if (adev->in_s0ix && adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GFX) continue; /* skip CG for VCE/UVD, it's handled specially */ if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_UVD && adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCE && adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_VCN && adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_JPEG && adev->ip_blocks[i].version->funcs->set_powergating_state) { /* enable powergating to save power */ r = adev->ip_blocks[i].version->funcs->set_powergating_state((void *)adev, state); if (r) { DRM_ERROR("set_powergating_state(gate) of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } } } return 0; } static int amdgpu_device_enable_mgpu_fan_boost(void) { struct amdgpu_gpu_instance *gpu_ins; struct amdgpu_device *adev; int i, ret = 0; mutex_lock(&mgpu_info.mutex); /* * MGPU fan boost feature should be enabled * only when there are two or more dGPUs in * the system */ if (mgpu_info.num_dgpu < 2) goto out; for (i = 0; i < mgpu_info.num_dgpu; i++) { gpu_ins = &(mgpu_info.gpu_ins[i]); adev = gpu_ins->adev; if (!(adev->flags & AMD_IS_APU) && !gpu_ins->mgpu_fan_enabled) { ret = amdgpu_dpm_enable_mgpu_fan_boost(adev); if (ret) break; gpu_ins->mgpu_fan_enabled = 1; } } out: mutex_unlock(&mgpu_info.mutex); return ret; } /** * amdgpu_device_ip_late_init - run late init for hardware IPs * * @adev: amdgpu_device pointer * * Late initialization pass for hardware IPs. The list of all the hardware * IPs that make up the asic is walked and the late_init callbacks are run. * late_init covers any special initialization that an IP requires * after all of the have been initialized or something that needs to happen * late in the init process. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_late_init(struct amdgpu_device *adev) { struct amdgpu_gpu_instance *gpu_instance; int i = 0, r; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.hw) continue; if (adev->ip_blocks[i].version->funcs->late_init) { r = adev->ip_blocks[i].version->funcs->late_init((void *)adev); if (r) { DRM_ERROR("late_init of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } } adev->ip_blocks[i].status.late_initialized = true; } amdgpu_ras_set_error_query_ready(adev, true); amdgpu_device_set_cg_state(adev, AMD_CG_STATE_GATE); amdgpu_device_set_pg_state(adev, AMD_PG_STATE_GATE); amdgpu_device_fill_reset_magic(adev); r = amdgpu_device_enable_mgpu_fan_boost(); if (r) DRM_ERROR("enable mgpu fan boost failed (%d).\n", r); /* For passthrough configuration on arcturus and aldebaran, enable special handling SBR */ if (amdgpu_passthrough(adev) && ((adev->asic_type == CHIP_ARCTURUS && adev->gmc.xgmi.num_physical_nodes > 1)|| adev->asic_type == CHIP_ALDEBARAN )) smu_handle_passthrough_sbr(&adev->smu, true); if (adev->gmc.xgmi.num_physical_nodes > 1) { mutex_lock(&mgpu_info.mutex); /* * Reset device p-state to low as this was booted with high. * * This should be performed only after all devices from the same * hive get initialized. * * However, it's unknown how many device in the hive in advance. * As this is counted one by one during devices initializations. * * So, we wait for all XGMI interlinked devices initialized. * This may bring some delays as those devices may come from * different hives. But that should be OK. */ if (mgpu_info.num_dgpu == adev->gmc.xgmi.num_physical_nodes) { for (i = 0; i < mgpu_info.num_gpu; i++) { gpu_instance = &(mgpu_info.gpu_ins[i]); if (gpu_instance->adev->flags & AMD_IS_APU) continue; r = amdgpu_xgmi_set_pstate(gpu_instance->adev, AMDGPU_XGMI_PSTATE_MIN); if (r) { DRM_ERROR("pstate setting failed (%d).\n", r); break; } } } mutex_unlock(&mgpu_info.mutex); } return 0; } /** * amdgpu_device_smu_fini_early - smu hw_fini wrapper * * @adev: amdgpu_device pointer * * For ASICs need to disable SMC first */ static void amdgpu_device_smu_fini_early(struct amdgpu_device *adev) { int i, r; if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) return; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.hw) continue; if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) { r = adev->ip_blocks[i].version->funcs->hw_fini((void *)adev); /* XXX handle errors */ if (r) { DRM_DEBUG("hw_fini of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); } adev->ip_blocks[i].status.hw = false; break; } } } static int amdgpu_device_ip_fini_early(struct amdgpu_device *adev) { int i, r; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].version->funcs->early_fini) continue; r = adev->ip_blocks[i].version->funcs->early_fini((void *)adev); if (r) { DRM_DEBUG("early_fini of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); } } amdgpu_amdkfd_suspend(adev, false); amdgpu_device_set_pg_state(adev, AMD_PG_STATE_UNGATE); amdgpu_device_set_cg_state(adev, AMD_CG_STATE_UNGATE); /* Workaroud for ASICs need to disable SMC first */ amdgpu_device_smu_fini_early(adev); for (i = adev->num_ip_blocks - 1; i >= 0; i--) { if (!adev->ip_blocks[i].status.hw) continue; r = adev->ip_blocks[i].version->funcs->hw_fini((void *)adev); /* XXX handle errors */ if (r) { DRM_DEBUG("hw_fini of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); } adev->ip_blocks[i].status.hw = false; } if (amdgpu_sriov_vf(adev)) { if (amdgpu_virt_release_full_gpu(adev, false)) DRM_ERROR("failed to release exclusive mode on fini\n"); } return 0; } /** * amdgpu_device_ip_fini - run fini for hardware IPs * * @adev: amdgpu_device pointer * * Main teardown pass for hardware IPs. The list of all the hardware * IPs that make up the asic is walked and the hw_fini and sw_fini callbacks * are run. hw_fini tears down the hardware associated with each IP * and sw_fini tears down any software state associated with each IP. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_fini(struct amdgpu_device *adev) { int i, r; if (amdgpu_sriov_vf(adev) && adev->virt.ras_init_done) amdgpu_virt_release_ras_err_handler_data(adev); if (adev->gmc.xgmi.num_physical_nodes > 1) amdgpu_xgmi_remove_device(adev); amdgpu_amdkfd_device_fini_sw(adev); for (i = adev->num_ip_blocks - 1; i >= 0; i--) { if (!adev->ip_blocks[i].status.sw) continue; if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) { amdgpu_ucode_free_bo(adev); amdgpu_free_static_csa(&adev->virt.csa_obj); amdgpu_device_wb_fini(adev); amdgpu_device_vram_scratch_fini(adev); amdgpu_ib_pool_fini(adev); } r = adev->ip_blocks[i].version->funcs->sw_fini((void *)adev); /* XXX handle errors */ if (r) { DRM_DEBUG("sw_fini of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); } adev->ip_blocks[i].status.sw = false; adev->ip_blocks[i].status.valid = false; } for (i = adev->num_ip_blocks - 1; i >= 0; i--) { if (!adev->ip_blocks[i].status.late_initialized) continue; if (adev->ip_blocks[i].version->funcs->late_fini) adev->ip_blocks[i].version->funcs->late_fini((void *)adev); adev->ip_blocks[i].status.late_initialized = false; } amdgpu_ras_fini(adev); return 0; } /** * amdgpu_device_delayed_init_work_handler - work handler for IB tests * * @work: work_struct. */ static void amdgpu_device_delayed_init_work_handler(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, delayed_init_work.work); int r; r = amdgpu_ib_ring_tests(adev); if (r) DRM_ERROR("ib ring test failed (%d).\n", r); } static void amdgpu_device_delay_enable_gfx_off(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, gfx.gfx_off_delay_work.work); WARN_ON_ONCE(adev->gfx.gfx_off_state); WARN_ON_ONCE(adev->gfx.gfx_off_req_count); if (!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, true)) adev->gfx.gfx_off_state = true; } /** * amdgpu_device_ip_suspend_phase1 - run suspend for hardware IPs (phase 1) * * @adev: amdgpu_device pointer * * Main suspend function for hardware IPs. The list of all the hardware * IPs that make up the asic is walked, clockgating is disabled and the * suspend callbacks are run. suspend puts the hardware and software state * in each IP into a state suitable for suspend. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_suspend_phase1(struct amdgpu_device *adev) { int i, r; amdgpu_device_set_pg_state(adev, AMD_PG_STATE_UNGATE); amdgpu_device_set_cg_state(adev, AMD_CG_STATE_UNGATE); for (i = adev->num_ip_blocks - 1; i >= 0; i--) { if (!adev->ip_blocks[i].status.valid) continue; /* displays are handled separately */ if (adev->ip_blocks[i].version->type != AMD_IP_BLOCK_TYPE_DCE) continue; /* XXX handle errors */ r = adev->ip_blocks[i].version->funcs->suspend(adev); /* XXX handle errors */ if (r) { DRM_ERROR("suspend of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } adev->ip_blocks[i].status.hw = false; } return 0; } /** * amdgpu_device_ip_suspend_phase2 - run suspend for hardware IPs (phase 2) * * @adev: amdgpu_device pointer * * Main suspend function for hardware IPs. The list of all the hardware * IPs that make up the asic is walked, clockgating is disabled and the * suspend callbacks are run. suspend puts the hardware and software state * in each IP into a state suitable for suspend. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_suspend_phase2(struct amdgpu_device *adev) { int i, r; if (adev->in_s0ix) amdgpu_gfx_state_change_set(adev, sGpuChangeState_D3Entry); for (i = adev->num_ip_blocks - 1; i >= 0; i--) { if (!adev->ip_blocks[i].status.valid) continue; /* displays are handled in phase1 */ if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_DCE) continue; /* PSP lost connection when err_event_athub occurs */ if (amdgpu_ras_intr_triggered() && adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP) { adev->ip_blocks[i].status.hw = false; continue; } /* skip unnecessary suspend if we do not initialize them yet */ if (adev->gmc.xgmi.pending_reset && !(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH)) { adev->ip_blocks[i].status.hw = false; continue; } /* skip suspend of gfx and psp for S0ix * gfx is in gfxoff state, so on resume it will exit gfxoff just * like at runtime. PSP is also part of the always on hardware * so no need to suspend it. */ if (adev->in_s0ix && (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GFX)) continue; /* XXX handle errors */ r = adev->ip_blocks[i].version->funcs->suspend(adev); /* XXX handle errors */ if (r) { DRM_ERROR("suspend of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); } adev->ip_blocks[i].status.hw = false; /* handle putting the SMC in the appropriate state */ if(!amdgpu_sriov_vf(adev)){ if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) { r = amdgpu_dpm_set_mp1_state(adev, adev->mp1_state); if (r) { DRM_ERROR("SMC failed to set mp1 state %d, %d\n", adev->mp1_state, r); return r; } } } } return 0; } /** * amdgpu_device_ip_suspend - run suspend for hardware IPs * * @adev: amdgpu_device pointer * * Main suspend function for hardware IPs. The list of all the hardware * IPs that make up the asic is walked, clockgating is disabled and the * suspend callbacks are run. suspend puts the hardware and software state * in each IP into a state suitable for suspend. * Returns 0 on success, negative error code on failure. */ int amdgpu_device_ip_suspend(struct amdgpu_device *adev) { int r; if (amdgpu_sriov_vf(adev)) { amdgpu_virt_fini_data_exchange(adev); amdgpu_virt_request_full_gpu(adev, false); } r = amdgpu_device_ip_suspend_phase1(adev); if (r) return r; r = amdgpu_device_ip_suspend_phase2(adev); if (amdgpu_sriov_vf(adev)) amdgpu_virt_release_full_gpu(adev, false); return r; } static int amdgpu_device_ip_reinit_early_sriov(struct amdgpu_device *adev) { int i, r; static enum amd_ip_block_type ip_order[] = { AMD_IP_BLOCK_TYPE_GMC, AMD_IP_BLOCK_TYPE_COMMON, AMD_IP_BLOCK_TYPE_PSP, AMD_IP_BLOCK_TYPE_IH, }; for (i = 0; i < adev->num_ip_blocks; i++) { int j; struct amdgpu_ip_block *block; block = &adev->ip_blocks[i]; block->status.hw = false; for (j = 0; j < ARRAY_SIZE(ip_order); j++) { if (block->version->type != ip_order[j] || !block->status.valid) continue; r = block->version->funcs->hw_init(adev); DRM_INFO("RE-INIT-early: %s %s\n", block->version->funcs->name, r?"failed":"succeeded"); if (r) return r; block->status.hw = true; } } return 0; } static int amdgpu_device_ip_reinit_late_sriov(struct amdgpu_device *adev) { int i, r; static enum amd_ip_block_type ip_order[] = { AMD_IP_BLOCK_TYPE_SMC, AMD_IP_BLOCK_TYPE_DCE, AMD_IP_BLOCK_TYPE_GFX, AMD_IP_BLOCK_TYPE_SDMA, AMD_IP_BLOCK_TYPE_UVD, AMD_IP_BLOCK_TYPE_VCE, AMD_IP_BLOCK_TYPE_VCN }; for (i = 0; i < ARRAY_SIZE(ip_order); i++) { int j; struct amdgpu_ip_block *block; for (j = 0; j < adev->num_ip_blocks; j++) { block = &adev->ip_blocks[j]; if (block->version->type != ip_order[i] || !block->status.valid || block->status.hw) continue; if (block->version->type == AMD_IP_BLOCK_TYPE_SMC) r = block->version->funcs->resume(adev); else r = block->version->funcs->hw_init(adev); DRM_INFO("RE-INIT-late: %s %s\n", block->version->funcs->name, r?"failed":"succeeded"); if (r) return r; block->status.hw = true; } } return 0; } /** * amdgpu_device_ip_resume_phase1 - run resume for hardware IPs * * @adev: amdgpu_device pointer * * First resume function for hardware IPs. The list of all the hardware * IPs that make up the asic is walked and the resume callbacks are run for * COMMON, GMC, and IH. resume puts the hardware into a functional state * after a suspend and updates the software state as necessary. This * function is also used for restoring the GPU after a GPU reset. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_resume_phase1(struct amdgpu_device *adev) { int i, r; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid || adev->ip_blocks[i].status.hw) continue; if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH) { r = adev->ip_blocks[i].version->funcs->resume(adev); if (r) { DRM_ERROR("resume of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } adev->ip_blocks[i].status.hw = true; } } return 0; } /** * amdgpu_device_ip_resume_phase2 - run resume for hardware IPs * * @adev: amdgpu_device pointer * * First resume function for hardware IPs. The list of all the hardware * IPs that make up the asic is walked and the resume callbacks are run for * all blocks except COMMON, GMC, and IH. resume puts the hardware into a * functional state after a suspend and updates the software state as * necessary. This function is also used for restoring the GPU after a GPU * reset. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_resume_phase2(struct amdgpu_device *adev) { int i, r; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid || adev->ip_blocks[i].status.hw) continue; if (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP) continue; r = adev->ip_blocks[i].version->funcs->resume(adev); if (r) { DRM_ERROR("resume of IP block <%s> failed %d\n", adev->ip_blocks[i].version->funcs->name, r); return r; } adev->ip_blocks[i].status.hw = true; } return 0; } /** * amdgpu_device_ip_resume - run resume for hardware IPs * * @adev: amdgpu_device pointer * * Main resume function for hardware IPs. The hardware IPs * are split into two resume functions because they are * are also used in in recovering from a GPU reset and some additional * steps need to be take between them. In this case (S3/S4) they are * run sequentially. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_resume(struct amdgpu_device *adev) { int r; r = amdgpu_amdkfd_resume_iommu(adev); if (r) return r; r = amdgpu_device_ip_resume_phase1(adev); if (r) return r; r = amdgpu_device_fw_loading(adev); if (r) return r; r = amdgpu_device_ip_resume_phase2(adev); return r; } /** * amdgpu_device_detect_sriov_bios - determine if the board supports SR-IOV * * @adev: amdgpu_device pointer * * Query the VBIOS data tables to determine if the board supports SR-IOV. */ static void amdgpu_device_detect_sriov_bios(struct amdgpu_device *adev) { if (amdgpu_sriov_vf(adev)) { if (adev->is_atom_fw) { if (amdgpu_atomfirmware_gpu_virtualization_supported(adev)) adev->virt.caps |= AMDGPU_SRIOV_CAPS_SRIOV_VBIOS; } else { if (amdgpu_atombios_has_gpu_virtualization_table(adev)) adev->virt.caps |= AMDGPU_SRIOV_CAPS_SRIOV_VBIOS; } if (!(adev->virt.caps & AMDGPU_SRIOV_CAPS_SRIOV_VBIOS)) amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_NO_VBIOS, 0, 0); } } /** * amdgpu_device_asic_has_dc_support - determine if DC supports the asic * * @asic_type: AMD asic type * * Check if there is DC (new modesetting infrastructre) support for an asic. * returns true if DC has support, false if not. */ bool amdgpu_device_asic_has_dc_support(enum amd_asic_type asic_type) { switch (asic_type) { #ifdef CONFIG_DRM_AMDGPU_SI case CHIP_HAINAN: #endif case CHIP_TOPAZ: /* chips with no display hardware */ return false; #if defined(CONFIG_DRM_AMD_DC) case CHIP_TAHITI: case CHIP_PITCAIRN: case CHIP_VERDE: case CHIP_OLAND: /* * We have systems in the wild with these ASICs that require * LVDS and VGA support which is not supported with DC. * * Fallback to the non-DC driver here by default so as not to * cause regressions. */ #if defined(CONFIG_DRM_AMD_DC_SI) return amdgpu_dc > 0; #else return false; #endif case CHIP_BONAIRE: case CHIP_KAVERI: case CHIP_KABINI: case CHIP_MULLINS: /* * We have systems in the wild with these ASICs that require * LVDS and VGA support which is not supported with DC. * * Fallback to the non-DC driver here by default so as not to * cause regressions. */ return amdgpu_dc > 0; case CHIP_HAWAII: case CHIP_CARRIZO: case CHIP_STONEY: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: case CHIP_TONGA: case CHIP_FIJI: case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: #if defined(CONFIG_DRM_AMD_DC_DCN) case CHIP_RAVEN: case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: case CHIP_RENOIR: case CHIP_CYAN_SKILLFISH: case CHIP_SIENNA_CICHLID: case CHIP_NAVY_FLOUNDER: case CHIP_DIMGREY_CAVEFISH: case CHIP_BEIGE_GOBY: case CHIP_VANGOGH: case CHIP_YELLOW_CARP: #endif default: return amdgpu_dc != 0; #else default: if (amdgpu_dc > 0) DRM_INFO_ONCE("Display Core has been requested via kernel parameter " "but isn't supported by ASIC, ignoring\n"); return false; #endif } } /** * amdgpu_device_has_dc_support - check if dc is supported * * @adev: amdgpu_device pointer * * Returns true for supported, false for not supported */ bool amdgpu_device_has_dc_support(struct amdgpu_device *adev) { if (amdgpu_sriov_vf(adev) || adev->enable_virtual_display || (adev->harvest_ip_mask & AMD_HARVEST_IP_DMU_MASK)) return false; return amdgpu_device_asic_has_dc_support(adev->asic_type); } static void amdgpu_device_xgmi_reset_func(struct work_struct *__work) { struct amdgpu_device *adev = container_of(__work, struct amdgpu_device, xgmi_reset_work); struct amdgpu_hive_info *hive = amdgpu_get_xgmi_hive(adev); /* It's a bug to not have a hive within this function */ if (WARN_ON(!hive)) return; /* * Use task barrier to synchronize all xgmi reset works across the * hive. task_barrier_enter and task_barrier_exit will block * until all the threads running the xgmi reset works reach * those points. task_barrier_full will do both blocks. */ if (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO) { task_barrier_enter(&hive->tb); adev->asic_reset_res = amdgpu_device_baco_enter(adev_to_drm(adev)); if (adev->asic_reset_res) goto fail; task_barrier_exit(&hive->tb); adev->asic_reset_res = amdgpu_device_baco_exit(adev_to_drm(adev)); if (adev->asic_reset_res) goto fail; if (adev->mmhub.ras_funcs && adev->mmhub.ras_funcs->reset_ras_error_count) adev->mmhub.ras_funcs->reset_ras_error_count(adev); } else { task_barrier_full(&hive->tb); adev->asic_reset_res = amdgpu_asic_reset(adev); } fail: if (adev->asic_reset_res) DRM_WARN("ASIC reset failed with error, %d for drm dev, %s", adev->asic_reset_res, adev_to_drm(adev)->unique); amdgpu_put_xgmi_hive(hive); } static int amdgpu_device_get_job_timeout_settings(struct amdgpu_device *adev) { char *input = amdgpu_lockup_timeout; char *timeout_setting = NULL; int index = 0; long timeout; int ret = 0; /* * By default timeout for non compute jobs is 10000 * and 60000 for compute jobs. * In SR-IOV or passthrough mode, timeout for compute * jobs are 60000 by default. */ adev->gfx_timeout = msecs_to_jiffies(10000); adev->sdma_timeout = adev->video_timeout = adev->gfx_timeout; if (amdgpu_sriov_vf(adev)) adev->compute_timeout = amdgpu_sriov_is_pp_one_vf(adev) ? msecs_to_jiffies(60000) : msecs_to_jiffies(10000); else adev->compute_timeout = msecs_to_jiffies(60000); if (strnlen(input, AMDGPU_MAX_TIMEOUT_PARAM_LENGTH)) { while ((timeout_setting = strsep(&input, ",")) && strnlen(timeout_setting, AMDGPU_MAX_TIMEOUT_PARAM_LENGTH)) { ret = kstrtol(timeout_setting, 0, &timeout); if (ret) return ret; if (timeout == 0) { index++; continue; } else if (timeout < 0) { timeout = MAX_SCHEDULE_TIMEOUT; dev_warn(adev->dev, "lockup timeout disabled"); add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK); } else { timeout = msecs_to_jiffies(timeout); } switch (index++) { case 0: adev->gfx_timeout = timeout; break; case 1: adev->compute_timeout = timeout; break; case 2: adev->sdma_timeout = timeout; break; case 3: adev->video_timeout = timeout; break; default: break; } } /* * There is only one value specified and * it should apply to all non-compute jobs. */ if (index == 1) { adev->sdma_timeout = adev->video_timeout = adev->gfx_timeout; if (amdgpu_sriov_vf(adev) || amdgpu_passthrough(adev)) adev->compute_timeout = adev->gfx_timeout; } } return ret; } /** * amdgpu_device_check_iommu_direct_map - check if RAM direct mapped to GPU * * @adev: amdgpu_device pointer * * RAM direct mapped to GPU if IOMMU is not enabled or is pass through mode */ static void amdgpu_device_check_iommu_direct_map(struct amdgpu_device *adev) { struct iommu_domain *domain; domain = iommu_get_domain_for_dev(adev->dev); if (!domain || domain->type == IOMMU_DOMAIN_IDENTITY) adev->ram_is_direct_mapped = true; } static const struct attribute *amdgpu_dev_attributes[] = { &dev_attr_product_name.attr, &dev_attr_product_number.attr, &dev_attr_serial_number.attr, &dev_attr_pcie_replay_count.attr, NULL }; /** * amdgpu_device_init - initialize the driver * * @adev: amdgpu_device pointer * @flags: driver flags * * Initializes the driver info and hw (all asics). * Returns 0 for success or an error on failure. * Called at driver startup. */ int amdgpu_device_init(struct amdgpu_device *adev, uint32_t flags) { struct drm_device *ddev = adev_to_drm(adev); struct pci_dev *pdev = adev->pdev; int r, i; bool px = false; u32 max_MBps; adev->shutdown = false; adev->flags = flags; if (amdgpu_force_asic_type >= 0 && amdgpu_force_asic_type < CHIP_LAST) adev->asic_type = amdgpu_force_asic_type; else adev->asic_type = flags & AMD_ASIC_MASK; adev->usec_timeout = AMDGPU_MAX_USEC_TIMEOUT; if (amdgpu_emu_mode == 1) adev->usec_timeout *= 10; adev->gmc.gart_size = 512 * 1024 * 1024; adev->accel_working = false; adev->num_rings = 0; adev->mman.buffer_funcs = NULL; adev->mman.buffer_funcs_ring = NULL; adev->vm_manager.vm_pte_funcs = NULL; adev->vm_manager.vm_pte_num_scheds = 0; adev->gmc.gmc_funcs = NULL; adev->harvest_ip_mask = 0x0; adev->fence_context = dma_fence_context_alloc(AMDGPU_MAX_RINGS); bitmap_zero(adev->gfx.pipe_reserve_bitmap, AMDGPU_MAX_COMPUTE_QUEUES); adev->smc_rreg = &amdgpu_invalid_rreg; adev->smc_wreg = &amdgpu_invalid_wreg; adev->pcie_rreg = &amdgpu_invalid_rreg; adev->pcie_wreg = &amdgpu_invalid_wreg; adev->pciep_rreg = &amdgpu_invalid_rreg; adev->pciep_wreg = &amdgpu_invalid_wreg; adev->pcie_rreg64 = &amdgpu_invalid_rreg64; adev->pcie_wreg64 = &amdgpu_invalid_wreg64; adev->uvd_ctx_rreg = &amdgpu_invalid_rreg; adev->uvd_ctx_wreg = &amdgpu_invalid_wreg; adev->didt_rreg = &amdgpu_invalid_rreg; adev->didt_wreg = &amdgpu_invalid_wreg; adev->gc_cac_rreg = &amdgpu_invalid_rreg; adev->gc_cac_wreg = &amdgpu_invalid_wreg; adev->audio_endpt_rreg = &amdgpu_block_invalid_rreg; adev->audio_endpt_wreg = &amdgpu_block_invalid_wreg; DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X 0x%04X:0x%04X 0x%02X).\n", amdgpu_asic_name[adev->asic_type], pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device, pdev->revision); /* mutex initialization are all done here so we * can recall function without having locking issues */ mutex_init(&adev->firmware.mutex); mutex_init(&adev->pm.mutex); mutex_init(&adev->gfx.gpu_clock_mutex); mutex_init(&adev->srbm_mutex); mutex_init(&adev->gfx.pipe_reserve_mutex); mutex_init(&adev->gfx.gfx_off_mutex); mutex_init(&adev->grbm_idx_mutex); mutex_init(&adev->mn_lock); mutex_init(&adev->virt.vf_errors.lock); hash_init(adev->mn_hash); atomic_set(&adev->in_gpu_reset, 0); init_rwsem(&adev->reset_sem); mutex_init(&adev->psp.mutex); mutex_init(&adev->notifier_lock); r = amdgpu_device_init_apu_flags(adev); if (r) return r; r = amdgpu_device_check_arguments(adev); if (r) return r; spin_lock_init(&adev->mmio_idx_lock); spin_lock_init(&adev->smc_idx_lock); spin_lock_init(&adev->pcie_idx_lock); spin_lock_init(&adev->uvd_ctx_idx_lock); spin_lock_init(&adev->didt_idx_lock); spin_lock_init(&adev->gc_cac_idx_lock); spin_lock_init(&adev->se_cac_idx_lock); spin_lock_init(&adev->audio_endpt_idx_lock); spin_lock_init(&adev->mm_stats.lock); INIT_LIST_HEAD(&adev->shadow_list); mutex_init(&adev->shadow_list_lock); INIT_LIST_HEAD(&adev->reset_list); INIT_DELAYED_WORK(&adev->delayed_init_work, amdgpu_device_delayed_init_work_handler); INIT_DELAYED_WORK(&adev->gfx.gfx_off_delay_work, amdgpu_device_delay_enable_gfx_off); INIT_WORK(&adev->xgmi_reset_work, amdgpu_device_xgmi_reset_func); adev->gfx.gfx_off_req_count = 1; adev->pm.ac_power = power_supply_is_system_supplied() > 0; atomic_set(&adev->throttling_logging_enabled, 1); /* * If throttling continues, logging will be performed every minute * to avoid log flooding. "-1" is subtracted since the thermal * throttling interrupt comes every second. Thus, the total logging * interval is 59 seconds(retelimited printk interval) + 1(waiting * for throttling interrupt) = 60 seconds. */ ratelimit_state_init(&adev->throttling_logging_rs, (60 - 1) * HZ, 1); ratelimit_set_flags(&adev->throttling_logging_rs, RATELIMIT_MSG_ON_RELEASE); /* Registers mapping */ /* TODO: block userspace mapping of io register */ if (adev->asic_type >= CHIP_BONAIRE) { adev->rmmio_base = pci_resource_start(adev->pdev, 5); adev->rmmio_size = pci_resource_len(adev->pdev, 5); } else { adev->rmmio_base = pci_resource_start(adev->pdev, 2); adev->rmmio_size = pci_resource_len(adev->pdev, 2); } for (i = 0; i < AMD_IP_BLOCK_TYPE_NUM; i++) atomic_set(&adev->pm.pwr_state[i], POWER_STATE_UNKNOWN); adev->rmmio = ioremap(adev->rmmio_base, adev->rmmio_size); if (adev->rmmio == NULL) { return -ENOMEM; } DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)adev->rmmio_base); DRM_INFO("register mmio size: %u\n", (unsigned)adev->rmmio_size); amdgpu_device_get_pcie_info(adev); if (amdgpu_mcbp) DRM_INFO("MCBP is enabled\n"); if (amdgpu_mes && adev->asic_type >= CHIP_NAVI10) adev->enable_mes = true; /* detect hw virtualization here */ amdgpu_detect_virtualization(adev); r = amdgpu_device_get_job_timeout_settings(adev); if (r) { dev_err(adev->dev, "invalid lockup_timeout parameter syntax\n"); return r; } /* early init functions */ r = amdgpu_device_ip_early_init(adev); if (r) return r; /* Need to get xgmi info early to decide the reset behavior*/ if (adev->gmc.xgmi.supported) { r = adev->gfxhub.funcs->get_xgmi_info(adev); if (r) return r; } /* enable PCIE atomic ops */ if (amdgpu_sriov_vf(adev)) adev->have_atomics_support = ((struct amd_sriov_msg_pf2vf_info *) adev->virt.fw_reserve.p_pf2vf)->pcie_atomic_ops_enabled_flags == (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | PCI_EXP_DEVCAP2_ATOMIC_COMP64); else adev->have_atomics_support = !pci_enable_atomic_ops_to_root(adev->pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32 | PCI_EXP_DEVCAP2_ATOMIC_COMP64); if (!adev->have_atomics_support) dev_info(adev->dev, "PCIE atomic ops is not supported\n"); /* doorbell bar mapping and doorbell index init*/ amdgpu_device_doorbell_init(adev); if (amdgpu_emu_mode == 1) { /* post the asic on emulation mode */ emu_soc_asic_init(adev); goto fence_driver_init; } amdgpu_reset_init(adev); /* detect if we are with an SRIOV vbios */ amdgpu_device_detect_sriov_bios(adev); /* check if we need to reset the asic * E.g., driver was not cleanly unloaded previously, etc. */ if (!amdgpu_sriov_vf(adev) && amdgpu_asic_need_reset_on_init(adev)) { if (adev->gmc.xgmi.num_physical_nodes) { dev_info(adev->dev, "Pending hive reset.\n"); adev->gmc.xgmi.pending_reset = true; /* Only need to init necessary block for SMU to handle the reset */ for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (!(adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_COMMON || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_IH || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC)) { DRM_DEBUG("IP %s disabled for hw_init.\n", adev->ip_blocks[i].version->funcs->name); adev->ip_blocks[i].status.hw = true; } } } else { r = amdgpu_asic_reset(adev); if (r) { dev_err(adev->dev, "asic reset on init failed\n"); goto failed; } } } pci_enable_pcie_error_reporting(adev->pdev); /* Post card if necessary */ if (amdgpu_device_need_post(adev)) { if (!adev->bios) { dev_err(adev->dev, "no vBIOS found\n"); r = -EINVAL; goto failed; } DRM_INFO("GPU posting now...\n"); r = amdgpu_device_asic_init(adev); if (r) { dev_err(adev->dev, "gpu post error!\n"); goto failed; } } if (adev->is_atom_fw) { /* Initialize clocks */ r = amdgpu_atomfirmware_get_clock_info(adev); if (r) { dev_err(adev->dev, "amdgpu_atomfirmware_get_clock_info failed\n"); amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_ATOMBIOS_GET_CLOCK_FAIL, 0, 0); goto failed; } } else { /* Initialize clocks */ r = amdgpu_atombios_get_clock_info(adev); if (r) { dev_err(adev->dev, "amdgpu_atombios_get_clock_info failed\n"); amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_ATOMBIOS_GET_CLOCK_FAIL, 0, 0); goto failed; } /* init i2c buses */ if (!amdgpu_device_has_dc_support(adev)) amdgpu_atombios_i2c_init(adev); } fence_driver_init: /* Fence driver */ r = amdgpu_fence_driver_sw_init(adev); if (r) { dev_err(adev->dev, "amdgpu_fence_driver_sw_init failed\n"); amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_FENCE_INIT_FAIL, 0, 0); goto failed; } /* init the mode config */ drm_mode_config_init(adev_to_drm(adev)); r = amdgpu_device_ip_init(adev); if (r) { /* failed in exclusive mode due to timeout */ if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_runtime(adev) && amdgpu_virt_mmio_blocked(adev) && !amdgpu_virt_wait_reset(adev)) { dev_err(adev->dev, "VF exclusive mode timeout\n"); /* Don't send request since VF is inactive. */ adev->virt.caps &= ~AMDGPU_SRIOV_CAPS_RUNTIME; adev->virt.ops = NULL; r = -EAGAIN; goto release_ras_con; } dev_err(adev->dev, "amdgpu_device_ip_init failed\n"); amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_AMDGPU_INIT_FAIL, 0, 0); goto release_ras_con; } amdgpu_fence_driver_hw_init(adev); dev_info(adev->dev, "SE %d, SH per SE %d, CU per SH %d, active_cu_number %d\n", adev->gfx.config.max_shader_engines, adev->gfx.config.max_sh_per_se, adev->gfx.config.max_cu_per_sh, adev->gfx.cu_info.number); adev->accel_working = true; amdgpu_vm_check_compute_bug(adev); /* Initialize the buffer migration limit. */ if (amdgpu_moverate >= 0) max_MBps = amdgpu_moverate; else max_MBps = 8; /* Allow 8 MB/s. */ /* Get a log2 for easy divisions. */ adev->mm_stats.log2_max_MBps = ilog2(max(1u, max_MBps)); r = amdgpu_pm_sysfs_init(adev); if (r) { adev->pm_sysfs_en = false; DRM_ERROR("registering pm debugfs failed (%d).\n", r); } else adev->pm_sysfs_en = true; r = amdgpu_ucode_sysfs_init(adev); if (r) { adev->ucode_sysfs_en = false; DRM_ERROR("Creating firmware sysfs failed (%d).\n", r); } else adev->ucode_sysfs_en = true; if ((amdgpu_testing & 1)) { if (adev->accel_working) amdgpu_test_moves(adev); else DRM_INFO("amdgpu: acceleration disabled, skipping move tests\n"); } if (amdgpu_benchmarking) { if (adev->accel_working) amdgpu_benchmark(adev, amdgpu_benchmarking); else DRM_INFO("amdgpu: acceleration disabled, skipping benchmarks\n"); } /* * Register gpu instance before amdgpu_device_enable_mgpu_fan_boost. * Otherwise the mgpu fan boost feature will be skipped due to the * gpu instance is counted less. */ amdgpu_register_gpu_instance(adev); /* enable clockgating, etc. after ib tests, etc. since some blocks require * explicit gating rather than handling it automatically. */ if (!adev->gmc.xgmi.pending_reset) { r = amdgpu_device_ip_late_init(adev); if (r) { dev_err(adev->dev, "amdgpu_device_ip_late_init failed\n"); amdgpu_vf_error_put(adev, AMDGIM_ERROR_VF_AMDGPU_LATE_INIT_FAIL, 0, r); goto release_ras_con; } /* must succeed. */ amdgpu_ras_resume(adev); queue_delayed_work(system_wq, &adev->delayed_init_work, msecs_to_jiffies(AMDGPU_RESUME_MS)); } if (amdgpu_sriov_vf(adev)) flush_delayed_work(&adev->delayed_init_work); r = sysfs_create_files(&adev->dev->kobj, amdgpu_dev_attributes); if (r) dev_err(adev->dev, "Could not create amdgpu device attr\n"); if (IS_ENABLED(CONFIG_PERF_EVENTS)) r = amdgpu_pmu_init(adev); if (r) dev_err(adev->dev, "amdgpu_pmu_init failed\n"); /* Have stored pci confspace at hand for restore in sudden PCI error */ if (amdgpu_device_cache_pci_state(adev->pdev)) pci_restore_state(pdev); /* if we have > 1 VGA cards, then disable the amdgpu VGA resources */ /* this will fail for cards that aren't VGA class devices, just * ignore it */ if ((adev->pdev->class >> 8) == PCI_CLASS_DISPLAY_VGA) vga_client_register(adev->pdev, amdgpu_device_vga_set_decode); if (amdgpu_device_supports_px(ddev)) { px = true; vga_switcheroo_register_client(adev->pdev, &amdgpu_switcheroo_ops, px); vga_switcheroo_init_domain_pm_ops(adev->dev, &adev->vga_pm_domain); } if (adev->gmc.xgmi.pending_reset) queue_delayed_work(system_wq, &mgpu_info.delayed_reset_work, msecs_to_jiffies(AMDGPU_RESUME_MS)); amdgpu_device_check_iommu_direct_map(adev); return 0; release_ras_con: amdgpu_release_ras_context(adev); failed: amdgpu_vf_error_trans_all(adev); return r; } static void amdgpu_device_unmap_mmio(struct amdgpu_device *adev) { /* Clear all CPU mappings pointing to this device */ unmap_mapping_range(adev->ddev.anon_inode->i_mapping, 0, 0, 1); /* Unmap all mapped bars - Doorbell, registers and VRAM */ amdgpu_device_doorbell_fini(adev); iounmap(adev->rmmio); adev->rmmio = NULL; if (adev->mman.aper_base_kaddr) iounmap(adev->mman.aper_base_kaddr); adev->mman.aper_base_kaddr = NULL; /* Memory manager related */ if (!adev->gmc.xgmi.connected_to_cpu) { arch_phys_wc_del(adev->gmc.vram_mtrr); arch_io_free_memtype_wc(adev->gmc.aper_base, adev->gmc.aper_size); } } /** * amdgpu_device_fini_hw - tear down the driver * * @adev: amdgpu_device pointer * * Tear down the driver info (all asics). * Called at driver shutdown. */ void amdgpu_device_fini_hw(struct amdgpu_device *adev) { dev_info(adev->dev, "amdgpu: finishing device.\n"); flush_delayed_work(&adev->delayed_init_work); if (adev->mman.initialized) { flush_delayed_work(&adev->mman.bdev.wq); ttm_bo_lock_delayed_workqueue(&adev->mman.bdev); } adev->shutdown = true; /* make sure IB test finished before entering exclusive mode * to avoid preemption on IB test * */ if (amdgpu_sriov_vf(adev)) { amdgpu_virt_request_full_gpu(adev, false); amdgpu_virt_fini_data_exchange(adev); } /* disable all interrupts */ amdgpu_irq_disable_all(adev); if (adev->mode_info.mode_config_initialized){ if (!drm_drv_uses_atomic_modeset(adev_to_drm(adev))) drm_helper_force_disable_all(adev_to_drm(adev)); else drm_atomic_helper_shutdown(adev_to_drm(adev)); } amdgpu_fence_driver_hw_fini(adev); if (adev->pm_sysfs_en) amdgpu_pm_sysfs_fini(adev); if (adev->ucode_sysfs_en) amdgpu_ucode_sysfs_fini(adev); sysfs_remove_files(&adev->dev->kobj, amdgpu_dev_attributes); /* disable ras feature must before hw fini */ amdgpu_ras_pre_fini(adev); amdgpu_device_ip_fini_early(adev); amdgpu_irq_fini_hw(adev); if (adev->mman.initialized) ttm_device_clear_dma_mappings(&adev->mman.bdev); amdgpu_gart_dummy_page_fini(adev); if (drm_dev_is_unplugged(adev_to_drm(adev))) amdgpu_device_unmap_mmio(adev); } void amdgpu_device_fini_sw(struct amdgpu_device *adev) { amdgpu_fence_driver_sw_fini(adev); amdgpu_device_ip_fini(adev); release_firmware(adev->firmware.gpu_info_fw); adev->firmware.gpu_info_fw = NULL; adev->accel_working = false; amdgpu_reset_fini(adev); /* free i2c buses */ if (!amdgpu_device_has_dc_support(adev)) amdgpu_i2c_fini(adev); if (amdgpu_emu_mode != 1) amdgpu_atombios_fini(adev); kfree(adev->bios); adev->bios = NULL; if (amdgpu_device_supports_px(adev_to_drm(adev))) { vga_switcheroo_unregister_client(adev->pdev); vga_switcheroo_fini_domain_pm_ops(adev->dev); } if ((adev->pdev->class >> 8) == PCI_CLASS_DISPLAY_VGA) vga_client_unregister(adev->pdev); if (IS_ENABLED(CONFIG_PERF_EVENTS)) amdgpu_pmu_fini(adev); if (adev->mman.discovery_bin) amdgpu_discovery_fini(adev); kfree(adev->pci_state); } /** * amdgpu_device_evict_resources - evict device resources * @adev: amdgpu device object * * Evicts all ttm device resources(vram BOs, gart table) from the lru list * of the vram memory type. Mainly used for evicting device resources * at suspend time. * */ static void amdgpu_device_evict_resources(struct amdgpu_device *adev) { /* No need to evict vram on APUs for suspend to ram */ if (adev->in_s3 && (adev->flags & AMD_IS_APU)) return; if (amdgpu_ttm_evict_resources(adev, TTM_PL_VRAM)) DRM_WARN("evicting device resources failed\n"); } /* * Suspend & resume. */ /** * amdgpu_device_suspend - initiate device suspend * * @dev: drm dev pointer * @fbcon : notify the fbdev of suspend * * Puts the hw in the suspend state (all asics). * Returns 0 for success or an error on failure. * Called at driver suspend. */ int amdgpu_device_suspend(struct drm_device *dev, bool fbcon) { struct amdgpu_device *adev = drm_to_adev(dev); if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; adev->in_suspend = true; if (amdgpu_acpi_smart_shift_update(dev, AMDGPU_SS_DEV_D3)) DRM_WARN("smart shift update failed\n"); drm_kms_helper_poll_disable(dev); if (fbcon) drm_fb_helper_set_suspend_unlocked(adev_to_drm(adev)->fb_helper, true); cancel_delayed_work_sync(&adev->delayed_init_work); amdgpu_ras_suspend(adev); amdgpu_device_ip_suspend_phase1(adev); if (!adev->in_s0ix) amdgpu_amdkfd_suspend(adev, adev->in_runpm); /* First evict vram memory */ amdgpu_device_evict_resources(adev); amdgpu_fence_driver_hw_fini(adev); amdgpu_device_ip_suspend_phase2(adev); /* This second call to evict device resources is to evict * the gart page table using the CPU. */ amdgpu_device_evict_resources(adev); return 0; } /** * amdgpu_device_resume - initiate device resume * * @dev: drm dev pointer * @fbcon : notify the fbdev of resume * * Bring the hw back to operating state (all asics). * Returns 0 for success or an error on failure. * Called at driver resume. */ int amdgpu_device_resume(struct drm_device *dev, bool fbcon) { struct amdgpu_device *adev = drm_to_adev(dev); int r = 0; if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; if (adev->in_s0ix) amdgpu_gfx_state_change_set(adev, sGpuChangeState_D0Entry); /* post card */ if (amdgpu_device_need_post(adev)) { r = amdgpu_device_asic_init(adev); if (r) dev_err(adev->dev, "amdgpu asic init failed\n"); } r = amdgpu_device_ip_resume(adev); if (r) { dev_err(adev->dev, "amdgpu_device_ip_resume failed (%d).\n", r); return r; } amdgpu_fence_driver_hw_init(adev); r = amdgpu_device_ip_late_init(adev); if (r) return r; queue_delayed_work(system_wq, &adev->delayed_init_work, msecs_to_jiffies(AMDGPU_RESUME_MS)); if (!adev->in_s0ix) { r = amdgpu_amdkfd_resume(adev, adev->in_runpm); if (r) return r; } /* Make sure IB tests flushed */ flush_delayed_work(&adev->delayed_init_work); if (fbcon) drm_fb_helper_set_suspend_unlocked(adev_to_drm(adev)->fb_helper, false); drm_kms_helper_poll_enable(dev); amdgpu_ras_resume(adev); /* * Most of the connector probing functions try to acquire runtime pm * refs to ensure that the GPU is powered on when connector polling is * performed. Since we're calling this from a runtime PM callback, * trying to acquire rpm refs will cause us to deadlock. * * Since we're guaranteed to be holding the rpm lock, it's safe to * temporarily disable the rpm helpers so this doesn't deadlock us. */ #ifdef CONFIG_PM dev->dev->power.disable_depth++; #endif if (!amdgpu_device_has_dc_support(adev)) drm_helper_hpd_irq_event(dev); else drm_kms_helper_hotplug_event(dev); #ifdef CONFIG_PM dev->dev->power.disable_depth--; #endif adev->in_suspend = false; if (amdgpu_acpi_smart_shift_update(dev, AMDGPU_SS_DEV_D0)) DRM_WARN("smart shift update failed\n"); return 0; } /** * amdgpu_device_ip_check_soft_reset - did soft reset succeed * * @adev: amdgpu_device pointer * * The list of all the hardware IPs that make up the asic is walked and * the check_soft_reset callbacks are run. check_soft_reset determines * if the asic is still hung or not. * Returns true if any of the IPs are still in a hung state, false if not. */ static bool amdgpu_device_ip_check_soft_reset(struct amdgpu_device *adev) { int i; bool asic_hang = false; if (amdgpu_sriov_vf(adev)) return true; if (amdgpu_asic_need_full_reset(adev)) return true; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].version->funcs->check_soft_reset) adev->ip_blocks[i].status.hang = adev->ip_blocks[i].version->funcs->check_soft_reset(adev); if (adev->ip_blocks[i].status.hang) { dev_info(adev->dev, "IP block:%s is hung!\n", adev->ip_blocks[i].version->funcs->name); asic_hang = true; } } return asic_hang; } /** * amdgpu_device_ip_pre_soft_reset - prepare for soft reset * * @adev: amdgpu_device pointer * * The list of all the hardware IPs that make up the asic is walked and the * pre_soft_reset callbacks are run if the block is hung. pre_soft_reset * handles any IP specific hardware or software state changes that are * necessary for a soft reset to succeed. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_pre_soft_reset(struct amdgpu_device *adev) { int i, r = 0; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].status.hang && adev->ip_blocks[i].version->funcs->pre_soft_reset) { r = adev->ip_blocks[i].version->funcs->pre_soft_reset(adev); if (r) return r; } } return 0; } /** * amdgpu_device_ip_need_full_reset - check if a full asic reset is needed * * @adev: amdgpu_device pointer * * Some hardware IPs cannot be soft reset. If they are hung, a full gpu * reset is necessary to recover. * Returns true if a full asic reset is required, false if not. */ static bool amdgpu_device_ip_need_full_reset(struct amdgpu_device *adev) { int i; if (amdgpu_asic_need_full_reset(adev)) return true; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if ((adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_GMC) || (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_SMC) || (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_ACP) || (adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_DCE) || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_PSP) { if (adev->ip_blocks[i].status.hang) { dev_info(adev->dev, "Some block need full reset!\n"); return true; } } } return false; } /** * amdgpu_device_ip_soft_reset - do a soft reset * * @adev: amdgpu_device pointer * * The list of all the hardware IPs that make up the asic is walked and the * soft_reset callbacks are run if the block is hung. soft_reset handles any * IP specific hardware or software state changes that are necessary to soft * reset the IP. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_soft_reset(struct amdgpu_device *adev) { int i, r = 0; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].status.hang && adev->ip_blocks[i].version->funcs->soft_reset) { r = adev->ip_blocks[i].version->funcs->soft_reset(adev); if (r) return r; } } return 0; } /** * amdgpu_device_ip_post_soft_reset - clean up from soft reset * * @adev: amdgpu_device pointer * * The list of all the hardware IPs that make up the asic is walked and the * post_soft_reset callbacks are run if the asic was hung. post_soft_reset * handles any IP specific hardware or software state changes that are * necessary after the IP has been soft reset. * Returns 0 on success, negative error code on failure. */ static int amdgpu_device_ip_post_soft_reset(struct amdgpu_device *adev) { int i, r = 0; for (i = 0; i < adev->num_ip_blocks; i++) { if (!adev->ip_blocks[i].status.valid) continue; if (adev->ip_blocks[i].status.hang && adev->ip_blocks[i].version->funcs->post_soft_reset) r = adev->ip_blocks[i].version->funcs->post_soft_reset(adev); if (r) return r; } return 0; } /** * amdgpu_device_recover_vram - Recover some VRAM contents * * @adev: amdgpu_device pointer * * Restores the contents of VRAM buffers from the shadows in GTT. Used to * restore things like GPUVM page tables after a GPU reset where * the contents of VRAM might be lost. * * Returns: * 0 on success, negative error code on failure. */ static int amdgpu_device_recover_vram(struct amdgpu_device *adev) { struct dma_fence *fence = NULL, *next = NULL; struct amdgpu_bo *shadow; struct amdgpu_bo_vm *vmbo; long r = 1, tmo; if (amdgpu_sriov_runtime(adev)) tmo = msecs_to_jiffies(8000); else tmo = msecs_to_jiffies(100); dev_info(adev->dev, "recover vram bo from shadow start\n"); mutex_lock(&adev->shadow_list_lock); list_for_each_entry(vmbo, &adev->shadow_list, shadow_list) { shadow = &vmbo->bo; /* No need to recover an evicted BO */ if (shadow->tbo.resource->mem_type != TTM_PL_TT || shadow->tbo.resource->start == AMDGPU_BO_INVALID_OFFSET || shadow->parent->tbo.resource->mem_type != TTM_PL_VRAM) continue; r = amdgpu_bo_restore_shadow(shadow, &next); if (r) break; if (fence) { tmo = dma_fence_wait_timeout(fence, false, tmo); dma_fence_put(fence); fence = next; if (tmo == 0) { r = -ETIMEDOUT; break; } else if (tmo < 0) { r = tmo; break; } } else { fence = next; } } mutex_unlock(&adev->shadow_list_lock); if (fence) tmo = dma_fence_wait_timeout(fence, false, tmo); dma_fence_put(fence); if (r < 0 || tmo <= 0) { dev_err(adev->dev, "recover vram bo from shadow failed, r is %ld, tmo is %ld\n", r, tmo); return -EIO; } dev_info(adev->dev, "recover vram bo from shadow done\n"); return 0; } /** * amdgpu_device_reset_sriov - reset ASIC for SR-IOV vf * * @adev: amdgpu_device pointer * @from_hypervisor: request from hypervisor * * do VF FLR and reinitialize Asic * return 0 means succeeded otherwise failed */ static int amdgpu_device_reset_sriov(struct amdgpu_device *adev, bool from_hypervisor) { int r; struct amdgpu_hive_info *hive = NULL; amdgpu_amdkfd_pre_reset(adev); if (from_hypervisor) r = amdgpu_virt_request_full_gpu(adev, true); else r = amdgpu_virt_reset_gpu(adev); if (r) return r; /* Resume IP prior to SMC */ r = amdgpu_device_ip_reinit_early_sriov(adev); if (r) goto error; amdgpu_virt_init_data_exchange(adev); /* we need recover gart prior to run SMC/CP/SDMA resume */ amdgpu_gtt_mgr_recover(ttm_manager_type(&adev->mman.bdev, TTM_PL_TT)); r = amdgpu_device_fw_loading(adev); if (r) return r; /* now we are okay to resume SMC/CP/SDMA */ r = amdgpu_device_ip_reinit_late_sriov(adev); if (r) goto error; hive = amdgpu_get_xgmi_hive(adev); /* Update PSP FW topology after reset */ if (hive && adev->gmc.xgmi.num_physical_nodes > 1) r = amdgpu_xgmi_update_topology(hive, adev); if (hive) amdgpu_put_xgmi_hive(hive); if (!r) { amdgpu_irq_gpu_reset_resume_helper(adev); r = amdgpu_ib_ring_tests(adev); amdgpu_amdkfd_post_reset(adev); } error: if (!r && adev->virt.gim_feature & AMDGIM_FEATURE_GIM_FLR_VRAMLOST) { amdgpu_inc_vram_lost(adev); r = amdgpu_device_recover_vram(adev); } amdgpu_virt_release_full_gpu(adev, true); return r; } /** * amdgpu_device_has_job_running - check if there is any job in mirror list * * @adev: amdgpu_device pointer * * check if there is any job in mirror list */ bool amdgpu_device_has_job_running(struct amdgpu_device *adev) { int i; struct drm_sched_job *job; for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; spin_lock(&ring->sched.job_list_lock); job = list_first_entry_or_null(&ring->sched.pending_list, struct drm_sched_job, list); spin_unlock(&ring->sched.job_list_lock); if (job) return true; } return false; } /** * amdgpu_device_should_recover_gpu - check if we should try GPU recovery * * @adev: amdgpu_device pointer * * Check amdgpu_gpu_recovery and SRIOV status to see if we should try to recover * a hung GPU. */ bool amdgpu_device_should_recover_gpu(struct amdgpu_device *adev) { if (!amdgpu_device_ip_check_soft_reset(adev)) { dev_info(adev->dev, "Timeout, but no hardware hang detected.\n"); return false; } if (amdgpu_gpu_recovery == 0) goto disabled; if (amdgpu_sriov_vf(adev)) return true; if (amdgpu_gpu_recovery == -1) { switch (adev->asic_type) { case CHIP_BONAIRE: case CHIP_HAWAII: case CHIP_TOPAZ: case CHIP_TONGA: case CHIP_FIJI: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: case CHIP_VEGA20: case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_RAVEN: case CHIP_ARCTURUS: case CHIP_RENOIR: case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: case CHIP_SIENNA_CICHLID: case CHIP_NAVY_FLOUNDER: case CHIP_DIMGREY_CAVEFISH: case CHIP_BEIGE_GOBY: case CHIP_VANGOGH: case CHIP_ALDEBARAN: break; default: goto disabled; } } return true; disabled: dev_info(adev->dev, "GPU recovery disabled.\n"); return false; } int amdgpu_device_mode1_reset(struct amdgpu_device *adev) { u32 i; int ret = 0; amdgpu_atombios_scratch_regs_engine_hung(adev, true); dev_info(adev->dev, "GPU mode1 reset\n"); /* disable BM */ pci_clear_master(adev->pdev); amdgpu_device_cache_pci_state(adev->pdev); if (amdgpu_dpm_is_mode1_reset_supported(adev)) { dev_info(adev->dev, "GPU smu mode1 reset\n"); ret = amdgpu_dpm_mode1_reset(adev); } else { dev_info(adev->dev, "GPU psp mode1 reset\n"); ret = psp_gpu_reset(adev); } if (ret) dev_err(adev->dev, "GPU mode1 reset failed\n"); amdgpu_device_load_pci_state(adev->pdev); /* wait for asic to come out of reset */ for (i = 0; i < adev->usec_timeout; i++) { u32 memsize = adev->nbio.funcs->get_memsize(adev); if (memsize != 0xffffffff) break; udelay(1); } amdgpu_atombios_scratch_regs_engine_hung(adev, false); return ret; } int amdgpu_device_pre_asic_reset(struct amdgpu_device *adev, struct amdgpu_reset_context *reset_context) { int i, r = 0; struct amdgpu_job *job = NULL; bool need_full_reset = test_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags); if (reset_context->reset_req_dev == adev) job = reset_context->job; if (amdgpu_sriov_vf(adev)) { /* stop the data exchange thread */ amdgpu_virt_fini_data_exchange(adev); } /* block all schedulers and reset given job's ring */ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; /*clear job fence from fence drv to avoid force_completion *leave NULL and vm flush fence in fence drv */ amdgpu_fence_driver_clear_job_fences(ring); /* after all hw jobs are reset, hw fence is meaningless, so force_completion */ amdgpu_fence_driver_force_completion(ring); } if (job && job->vm) drm_sched_increase_karma(&job->base); r = amdgpu_reset_prepare_hwcontext(adev, reset_context); /* If reset handler not implemented, continue; otherwise return */ if (r == -ENOSYS) r = 0; else return r; /* Don't suspend on bare metal if we are not going to HW reset the ASIC */ if (!amdgpu_sriov_vf(adev)) { if (!need_full_reset) need_full_reset = amdgpu_device_ip_need_full_reset(adev); if (!need_full_reset) { amdgpu_device_ip_pre_soft_reset(adev); r = amdgpu_device_ip_soft_reset(adev); amdgpu_device_ip_post_soft_reset(adev); if (r || amdgpu_device_ip_check_soft_reset(adev)) { dev_info(adev->dev, "soft reset failed, will fallback to full reset!\n"); need_full_reset = true; } } if (need_full_reset) r = amdgpu_device_ip_suspend(adev); if (need_full_reset) set_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags); else clear_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags); } return r; } int amdgpu_do_asic_reset(struct list_head *device_list_handle, struct amdgpu_reset_context *reset_context) { struct amdgpu_device *tmp_adev = NULL; bool need_full_reset, skip_hw_reset, vram_lost = false; int r = 0; /* Try reset handler method first */ tmp_adev = list_first_entry(device_list_handle, struct amdgpu_device, reset_list); r = amdgpu_reset_perform_reset(tmp_adev, reset_context); /* If reset handler not implemented, continue; otherwise return */ if (r == -ENOSYS) r = 0; else return r; /* Reset handler not implemented, use the default method */ need_full_reset = test_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags); skip_hw_reset = test_bit(AMDGPU_SKIP_HW_RESET, &reset_context->flags); /* * ASIC reset has to be done on all XGMI hive nodes ASAP * to allow proper links negotiation in FW (within 1 sec) */ if (!skip_hw_reset && need_full_reset) { list_for_each_entry(tmp_adev, device_list_handle, reset_list) { /* For XGMI run all resets in parallel to speed up the process */ if (tmp_adev->gmc.xgmi.num_physical_nodes > 1) { tmp_adev->gmc.xgmi.pending_reset = false; if (!queue_work(system_unbound_wq, &tmp_adev->xgmi_reset_work)) r = -EALREADY; } else r = amdgpu_asic_reset(tmp_adev); if (r) { dev_err(tmp_adev->dev, "ASIC reset failed with error, %d for drm dev, %s", r, adev_to_drm(tmp_adev)->unique); break; } } /* For XGMI wait for all resets to complete before proceed */ if (!r) { list_for_each_entry(tmp_adev, device_list_handle, reset_list) { if (tmp_adev->gmc.xgmi.num_physical_nodes > 1) { flush_work(&tmp_adev->xgmi_reset_work); r = tmp_adev->asic_reset_res; if (r) break; } } } } if (!r && amdgpu_ras_intr_triggered()) { list_for_each_entry(tmp_adev, device_list_handle, reset_list) { if (tmp_adev->mmhub.ras_funcs && tmp_adev->mmhub.ras_funcs->reset_ras_error_count) tmp_adev->mmhub.ras_funcs->reset_ras_error_count(tmp_adev); } amdgpu_ras_intr_cleared(); } list_for_each_entry(tmp_adev, device_list_handle, reset_list) { if (need_full_reset) { /* post card */ r = amdgpu_device_asic_init(tmp_adev); if (r) { dev_warn(tmp_adev->dev, "asic atom init failed!"); } else { dev_info(tmp_adev->dev, "GPU reset succeeded, trying to resume\n"); r = amdgpu_amdkfd_resume_iommu(tmp_adev); if (r) goto out; r = amdgpu_device_ip_resume_phase1(tmp_adev); if (r) goto out; vram_lost = amdgpu_device_check_vram_lost(tmp_adev); if (vram_lost) { DRM_INFO("VRAM is lost due to GPU reset!\n"); amdgpu_inc_vram_lost(tmp_adev); } r = amdgpu_gtt_mgr_recover(ttm_manager_type(&tmp_adev->mman.bdev, TTM_PL_TT)); if (r) goto out; r = amdgpu_device_fw_loading(tmp_adev); if (r) return r; r = amdgpu_device_ip_resume_phase2(tmp_adev); if (r) goto out; if (vram_lost) amdgpu_device_fill_reset_magic(tmp_adev); /* * Add this ASIC as tracked as reset was already * complete successfully. */ amdgpu_register_gpu_instance(tmp_adev); if (!reset_context->hive && tmp_adev->gmc.xgmi.num_physical_nodes > 1) amdgpu_xgmi_add_device(tmp_adev); r = amdgpu_device_ip_late_init(tmp_adev); if (r) goto out; drm_fb_helper_set_suspend_unlocked(adev_to_drm(tmp_adev)->fb_helper, false); /* * The GPU enters bad state once faulty pages * by ECC has reached the threshold, and ras * recovery is scheduled next. So add one check * here to break recovery if it indeed exceeds * bad page threshold, and remind user to * retire this GPU or setting one bigger * bad_page_threshold value to fix this once * probing driver again. */ if (!amdgpu_ras_eeprom_check_err_threshold(tmp_adev)) { /* must succeed. */ amdgpu_ras_resume(tmp_adev); } else { r = -EINVAL; goto out; } /* Update PSP FW topology after reset */ if (reset_context->hive && tmp_adev->gmc.xgmi.num_physical_nodes > 1) r = amdgpu_xgmi_update_topology( reset_context->hive, tmp_adev); } } out: if (!r) { amdgpu_irq_gpu_reset_resume_helper(tmp_adev); r = amdgpu_ib_ring_tests(tmp_adev); if (r) { dev_err(tmp_adev->dev, "ib ring test failed (%d).\n", r); need_full_reset = true; r = -EAGAIN; goto end; } } if (!r) r = amdgpu_device_recover_vram(tmp_adev); else tmp_adev->asic_reset_res = r; } end: if (need_full_reset) set_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags); else clear_bit(AMDGPU_NEED_FULL_RESET, &reset_context->flags); return r; } static bool amdgpu_device_lock_adev(struct amdgpu_device *adev, struct amdgpu_hive_info *hive) { if (atomic_cmpxchg(&adev->in_gpu_reset, 0, 1) != 0) return false; if (hive) { down_write_nest_lock(&adev->reset_sem, &hive->hive_lock); } else { down_write(&adev->reset_sem); } switch (amdgpu_asic_reset_method(adev)) { case AMD_RESET_METHOD_MODE1: adev->mp1_state = PP_MP1_STATE_SHUTDOWN; break; case AMD_RESET_METHOD_MODE2: adev->mp1_state = PP_MP1_STATE_RESET; break; default: adev->mp1_state = PP_MP1_STATE_NONE; break; } return true; } static void amdgpu_device_unlock_adev(struct amdgpu_device *adev) { amdgpu_vf_error_trans_all(adev); adev->mp1_state = PP_MP1_STATE_NONE; atomic_set(&adev->in_gpu_reset, 0); up_write(&adev->reset_sem); } /* * to lockup a list of amdgpu devices in a hive safely, if not a hive * with multiple nodes, it will be similar as amdgpu_device_lock_adev. * * unlock won't require roll back. */ static int amdgpu_device_lock_hive_adev(struct amdgpu_device *adev, struct amdgpu_hive_info *hive) { struct amdgpu_device *tmp_adev = NULL; if (!amdgpu_sriov_vf(adev) && (adev->gmc.xgmi.num_physical_nodes > 1)) { if (!hive) { dev_err(adev->dev, "Hive is NULL while device has multiple xgmi nodes"); return -ENODEV; } list_for_each_entry(tmp_adev, &hive->device_list, gmc.xgmi.head) { if (!amdgpu_device_lock_adev(tmp_adev, hive)) goto roll_back; } } else if (!amdgpu_device_lock_adev(adev, hive)) return -EAGAIN; return 0; roll_back: if (!list_is_first(&tmp_adev->gmc.xgmi.head, &hive->device_list)) { /* * if the lockup iteration break in the middle of a hive, * it may means there may has a race issue, * or a hive device locked up independently. * we may be in trouble and may not, so will try to roll back * the lock and give out a warnning. */ dev_warn(tmp_adev->dev, "Hive lock iteration broke in the middle. Rolling back to unlock"); list_for_each_entry_continue_reverse(tmp_adev, &hive->device_list, gmc.xgmi.head) { amdgpu_device_unlock_adev(tmp_adev); } } return -EAGAIN; } static void amdgpu_device_resume_display_audio(struct amdgpu_device *adev) { struct pci_dev *p = NULL; p = pci_get_domain_bus_and_slot(pci_domain_nr(adev->pdev->bus), adev->pdev->bus->number, 1); if (p) { pm_runtime_enable(&(p->dev)); pm_runtime_resume(&(p->dev)); } } static int amdgpu_device_suspend_display_audio(struct amdgpu_device *adev) { enum amd_reset_method reset_method; struct pci_dev *p = NULL; u64 expires; /* * For now, only BACO and mode1 reset are confirmed * to suffer the audio issue without proper suspended. */ reset_method = amdgpu_asic_reset_method(adev); if ((reset_method != AMD_RESET_METHOD_BACO) && (reset_method != AMD_RESET_METHOD_MODE1)) return -EINVAL; p = pci_get_domain_bus_and_slot(pci_domain_nr(adev->pdev->bus), adev->pdev->bus->number, 1); if (!p) return -ENODEV; expires = pm_runtime_autosuspend_expiration(&(p->dev)); if (!expires) /* * If we cannot get the audio device autosuspend delay, * a fixed 4S interval will be used. Considering 3S is * the audio controller default autosuspend delay setting. * 4S used here is guaranteed to cover that. */ expires = ktime_get_mono_fast_ns() + NSEC_PER_SEC * 4ULL; while (!pm_runtime_status_suspended(&(p->dev))) { if (!pm_runtime_suspend(&(p->dev))) break; if (expires < ktime_get_mono_fast_ns()) { dev_warn(adev->dev, "failed to suspend display audio\n"); /* TODO: abort the succeeding gpu reset? */ return -ETIMEDOUT; } } pm_runtime_disable(&(p->dev)); return 0; } static void amdgpu_device_recheck_guilty_jobs( struct amdgpu_device *adev, struct list_head *device_list_handle, struct amdgpu_reset_context *reset_context) { int i, r = 0; for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; int ret = 0; struct drm_sched_job *s_job; if (!ring || !ring->sched.thread) continue; s_job = list_first_entry_or_null(&ring->sched.pending_list, struct drm_sched_job, list); if (s_job == NULL) continue; /* clear job's guilty and depend the folowing step to decide the real one */ drm_sched_reset_karma(s_job); /* for the real bad job, it will be resubmitted twice, adding a dma_fence_get * to make sure fence is balanced */ dma_fence_get(s_job->s_fence->parent); drm_sched_resubmit_jobs_ext(&ring->sched, 1); ret = dma_fence_wait_timeout(s_job->s_fence->parent, false, ring->sched.timeout); if (ret == 0) { /* timeout */ DRM_ERROR("Found the real bad job! ring:%s, job_id:%llx\n", ring->sched.name, s_job->id); /* set guilty */ drm_sched_increase_karma(s_job); retry: /* do hw reset */ if (amdgpu_sriov_vf(adev)) { amdgpu_virt_fini_data_exchange(adev); r = amdgpu_device_reset_sriov(adev, false); if (r) adev->asic_reset_res = r; } else { clear_bit(AMDGPU_SKIP_HW_RESET, &reset_context->flags); r = amdgpu_do_asic_reset(device_list_handle, reset_context); if (r && r == -EAGAIN) goto retry; } /* * add reset counter so that the following * resubmitted job could flush vmid */ atomic_inc(&adev->gpu_reset_counter); continue; } /* got the hw fence, signal finished fence */ atomic_dec(ring->sched.score); dma_fence_put(s_job->s_fence->parent); dma_fence_get(&s_job->s_fence->finished); dma_fence_signal(&s_job->s_fence->finished); dma_fence_put(&s_job->s_fence->finished); /* remove node from list and free the job */ spin_lock(&ring->sched.job_list_lock); list_del_init(&s_job->list); spin_unlock(&ring->sched.job_list_lock); ring->sched.ops->free_job(s_job); } } /** * amdgpu_device_gpu_recover - reset the asic and recover scheduler * * @adev: amdgpu_device pointer * @job: which job trigger hang * * Attempt to reset the GPU if it has hung (all asics). * Attempt to do soft-reset or full-reset and reinitialize Asic * Returns 0 for success or an error on failure. */ int amdgpu_device_gpu_recover(struct amdgpu_device *adev, struct amdgpu_job *job) { struct list_head device_list, *device_list_handle = NULL; bool job_signaled = false; struct amdgpu_hive_info *hive = NULL; struct amdgpu_device *tmp_adev = NULL; int i, r = 0; bool need_emergency_restart = false; bool audio_suspended = false; int tmp_vram_lost_counter; struct amdgpu_reset_context reset_context; memset(&reset_context, 0, sizeof(reset_context)); /* * Special case: RAS triggered and full reset isn't supported */ need_emergency_restart = amdgpu_ras_need_emergency_restart(adev); /* * Flush RAM to disk so that after reboot * the user can read log and see why the system rebooted. */ if (need_emergency_restart && amdgpu_ras_get_context(adev)->reboot) { DRM_WARN("Emergency reboot."); ksys_sync_helper(); emergency_restart(); } dev_info(adev->dev, "GPU %s begin!\n", need_emergency_restart ? "jobs stop":"reset"); /* * Here we trylock to avoid chain of resets executing from * either trigger by jobs on different adevs in XGMI hive or jobs on * different schedulers for same device while this TO handler is running. * We always reset all schedulers for device and all devices for XGMI * hive so that should take care of them too. */ if (!amdgpu_sriov_vf(adev)) hive = amdgpu_get_xgmi_hive(adev); if (hive) { if (atomic_cmpxchg(&hive->in_reset, 0, 1) != 0) { DRM_INFO("Bailing on TDR for s_job:%llx, hive: %llx as another already in progress", job ? job->base.id : -1, hive->hive_id); amdgpu_put_xgmi_hive(hive); if (job && job->vm) drm_sched_increase_karma(&job->base); return 0; } mutex_lock(&hive->hive_lock); } reset_context.method = AMD_RESET_METHOD_NONE; reset_context.reset_req_dev = adev; reset_context.job = job; reset_context.hive = hive; clear_bit(AMDGPU_NEED_FULL_RESET, &reset_context.flags); /* * lock the device before we try to operate the linked list * if didn't get the device lock, don't touch the linked list since * others may iterating it. */ r = amdgpu_device_lock_hive_adev(adev, hive); if (r) { dev_info(adev->dev, "Bailing on TDR for s_job:%llx, as another already in progress", job ? job->base.id : -1); /* even we skipped this reset, still need to set the job to guilty */ if (job && job->vm) drm_sched_increase_karma(&job->base); goto skip_recovery; } /* * Build list of devices to reset. * In case we are in XGMI hive mode, resort the device list * to put adev in the 1st position. */ INIT_LIST_HEAD(&device_list); if (!amdgpu_sriov_vf(adev) && (adev->gmc.xgmi.num_physical_nodes > 1)) { list_for_each_entry(tmp_adev, &hive->device_list, gmc.xgmi.head) list_add_tail(&tmp_adev->reset_list, &device_list); if (!list_is_first(&adev->reset_list, &device_list)) list_rotate_to_front(&adev->reset_list, &device_list); device_list_handle = &device_list; } else { list_add_tail(&adev->reset_list, &device_list); device_list_handle = &device_list; } /* block all schedulers and reset given job's ring */ list_for_each_entry(tmp_adev, device_list_handle, reset_list) { /* * Try to put the audio codec into suspend state * before gpu reset started. * * Due to the power domain of the graphics device * is shared with AZ power domain. Without this, * we may change the audio hardware from behind * the audio driver's back. That will trigger * some audio codec errors. */ if (!amdgpu_device_suspend_display_audio(tmp_adev)) audio_suspended = true; amdgpu_ras_set_error_query_ready(tmp_adev, false); cancel_delayed_work_sync(&tmp_adev->delayed_init_work); if (!amdgpu_sriov_vf(tmp_adev)) amdgpu_amdkfd_pre_reset(tmp_adev); /* * Mark these ASICs to be reseted as untracked first * And add them back after reset completed */ amdgpu_unregister_gpu_instance(tmp_adev); drm_fb_helper_set_suspend_unlocked(adev_to_drm(adev)->fb_helper, true); /* disable ras on ALL IPs */ if (!need_emergency_restart && amdgpu_device_ip_need_full_reset(tmp_adev)) amdgpu_ras_suspend(tmp_adev); for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = tmp_adev->rings[i]; if (!ring || !ring->sched.thread) continue; drm_sched_stop(&ring->sched, job ? &job->base : NULL); if (need_emergency_restart) amdgpu_job_stop_all_jobs_on_sched(&ring->sched); } atomic_inc(&tmp_adev->gpu_reset_counter); } if (need_emergency_restart) goto skip_sched_resume; /* * Must check guilty signal here since after this point all old * HW fences are force signaled. * * job->base holds a reference to parent fence */ if (job && job->base.s_fence->parent && dma_fence_is_signaled(job->base.s_fence->parent)) { job_signaled = true; dev_info(adev->dev, "Guilty job already signaled, skipping HW reset"); goto skip_hw_reset; } retry: /* Rest of adevs pre asic reset from XGMI hive. */ list_for_each_entry(tmp_adev, device_list_handle, reset_list) { r = amdgpu_device_pre_asic_reset(tmp_adev, &reset_context); /*TODO Should we stop ?*/ if (r) { dev_err(tmp_adev->dev, "GPU pre asic reset failed with err, %d for drm dev, %s ", r, adev_to_drm(tmp_adev)->unique); tmp_adev->asic_reset_res = r; } } tmp_vram_lost_counter = atomic_read(&((adev)->vram_lost_counter)); /* Actual ASIC resets if needed.*/ /* Host driver will handle XGMI hive reset for SRIOV */ if (amdgpu_sriov_vf(adev)) { r = amdgpu_device_reset_sriov(adev, job ? false : true); if (r) adev->asic_reset_res = r; } else { r = amdgpu_do_asic_reset(device_list_handle, &reset_context); if (r && r == -EAGAIN) goto retry; } skip_hw_reset: /* Post ASIC reset for all devs .*/ list_for_each_entry(tmp_adev, device_list_handle, reset_list) { /* * Sometimes a later bad compute job can block a good gfx job as gfx * and compute ring share internal GC HW mutually. We add an additional * guilty jobs recheck step to find the real guilty job, it synchronously * submits and pends for the first job being signaled. If it gets timeout, * we identify it as a real guilty job. */ if (amdgpu_gpu_recovery == 2 && !(tmp_vram_lost_counter < atomic_read(&adev->vram_lost_counter))) amdgpu_device_recheck_guilty_jobs( tmp_adev, device_list_handle, &reset_context); for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = tmp_adev->rings[i]; if (!ring || !ring->sched.thread) continue; /* No point to resubmit jobs if we didn't HW reset*/ if (!tmp_adev->asic_reset_res && !job_signaled) drm_sched_resubmit_jobs(&ring->sched); drm_sched_start(&ring->sched, !tmp_adev->asic_reset_res); } if (!drm_drv_uses_atomic_modeset(adev_to_drm(tmp_adev)) && !job_signaled) { drm_helper_resume_force_mode(adev_to_drm(tmp_adev)); } tmp_adev->asic_reset_res = 0; if (r) { /* bad news, how to tell it to userspace ? */ dev_info(tmp_adev->dev, "GPU reset(%d) failed\n", atomic_read(&tmp_adev->gpu_reset_counter)); amdgpu_vf_error_put(tmp_adev, AMDGIM_ERROR_VF_GPU_RESET_FAIL, 0, r); } else { dev_info(tmp_adev->dev, "GPU reset(%d) succeeded!\n", atomic_read(&tmp_adev->gpu_reset_counter)); if (amdgpu_acpi_smart_shift_update(adev_to_drm(tmp_adev), AMDGPU_SS_DEV_D0)) DRM_WARN("smart shift update failed\n"); } } skip_sched_resume: list_for_each_entry(tmp_adev, device_list_handle, reset_list) { /* unlock kfd: SRIOV would do it separately */ if (!need_emergency_restart && !amdgpu_sriov_vf(tmp_adev)) amdgpu_amdkfd_post_reset(tmp_adev); /* kfd_post_reset will do nothing if kfd device is not initialized, * need to bring up kfd here if it's not be initialized before */ if (!adev->kfd.init_complete) amdgpu_amdkfd_device_init(adev); if (audio_suspended) amdgpu_device_resume_display_audio(tmp_adev); amdgpu_device_unlock_adev(tmp_adev); } skip_recovery: if (hive) { atomic_set(&hive->in_reset, 0); mutex_unlock(&hive->hive_lock); amdgpu_put_xgmi_hive(hive); } if (r && r != -EAGAIN) dev_info(adev->dev, "GPU reset end with ret = %d\n", r); return r; } /** * amdgpu_device_get_pcie_info - fence pcie info about the PCIE slot * * @adev: amdgpu_device pointer * * Fetchs and stores in the driver the PCIE capabilities (gen speed * and lanes) of the slot the device is in. Handles APUs and * virtualized environments where PCIE config space may not be available. */ static void amdgpu_device_get_pcie_info(struct amdgpu_device *adev) { struct pci_dev *pdev; enum pci_bus_speed speed_cap, platform_speed_cap; enum pcie_link_width platform_link_width; if (amdgpu_pcie_gen_cap) adev->pm.pcie_gen_mask = amdgpu_pcie_gen_cap; if (amdgpu_pcie_lane_cap) adev->pm.pcie_mlw_mask = amdgpu_pcie_lane_cap; /* covers APUs as well */ if (pci_is_root_bus(adev->pdev->bus)) { if (adev->pm.pcie_gen_mask == 0) adev->pm.pcie_gen_mask = AMDGPU_DEFAULT_PCIE_GEN_MASK; if (adev->pm.pcie_mlw_mask == 0) adev->pm.pcie_mlw_mask = AMDGPU_DEFAULT_PCIE_MLW_MASK; return; } if (adev->pm.pcie_gen_mask && adev->pm.pcie_mlw_mask) return; pcie_bandwidth_available(adev->pdev, NULL, &platform_speed_cap, &platform_link_width); if (adev->pm.pcie_gen_mask == 0) { /* asic caps */ pdev = adev->pdev; speed_cap = pcie_get_speed_cap(pdev); if (speed_cap == PCI_SPEED_UNKNOWN) { adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3); } else { if (speed_cap == PCIE_SPEED_32_0GT) adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN5); else if (speed_cap == PCIE_SPEED_16_0GT) adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4); else if (speed_cap == PCIE_SPEED_8_0GT) adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3); else if (speed_cap == PCIE_SPEED_5_0GT) adev->pm.pcie_gen_mask |= (CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2); else adev->pm.pcie_gen_mask |= CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1; } /* platform caps */ if (platform_speed_cap == PCI_SPEED_UNKNOWN) { adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2); } else { if (platform_speed_cap == PCIE_SPEED_32_0GT) adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN5); else if (platform_speed_cap == PCIE_SPEED_16_0GT) adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4); else if (platform_speed_cap == PCIE_SPEED_8_0GT) adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3); else if (platform_speed_cap == PCIE_SPEED_5_0GT) adev->pm.pcie_gen_mask |= (CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 | CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2); else adev->pm.pcie_gen_mask |= CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1; } } if (adev->pm.pcie_mlw_mask == 0) { if (platform_link_width == PCIE_LNK_WIDTH_UNKNOWN) { adev->pm.pcie_mlw_mask |= AMDGPU_DEFAULT_PCIE_MLW_MASK; } else { switch (platform_link_width) { case PCIE_LNK_X32: adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X32 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X16 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X1); break; case PCIE_LNK_X16: adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X16 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X1); break; case PCIE_LNK_X12: adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X12 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X1); break; case PCIE_LNK_X8: adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X8 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X1); break; case PCIE_LNK_X4: adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X4 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X1); break; case PCIE_LNK_X2: adev->pm.pcie_mlw_mask = (CAIL_PCIE_LINK_WIDTH_SUPPORT_X2 | CAIL_PCIE_LINK_WIDTH_SUPPORT_X1); break; case PCIE_LNK_X1: adev->pm.pcie_mlw_mask = CAIL_PCIE_LINK_WIDTH_SUPPORT_X1; break; default: break; } } } } int amdgpu_device_baco_enter(struct drm_device *dev) { struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); if (!amdgpu_device_supports_baco(adev_to_drm(adev))) return -ENOTSUPP; if (ras && adev->ras_enabled && adev->nbio.funcs->enable_doorbell_interrupt) adev->nbio.funcs->enable_doorbell_interrupt(adev, false); return amdgpu_dpm_baco_enter(adev); } int amdgpu_device_baco_exit(struct drm_device *dev) { struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); int ret = 0; if (!amdgpu_device_supports_baco(adev_to_drm(adev))) return -ENOTSUPP; ret = amdgpu_dpm_baco_exit(adev); if (ret) return ret; if (ras && adev->ras_enabled && adev->nbio.funcs->enable_doorbell_interrupt) adev->nbio.funcs->enable_doorbell_interrupt(adev, true); if (amdgpu_passthrough(adev) && adev->nbio.funcs->clear_doorbell_interrupt) adev->nbio.funcs->clear_doorbell_interrupt(adev); return 0; } static void amdgpu_cancel_all_tdr(struct amdgpu_device *adev) { int i; for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; cancel_delayed_work_sync(&ring->sched.work_tdr); } } /** * amdgpu_pci_error_detected - Called when a PCI error is detected. * @pdev: PCI device struct * @state: PCI channel state * * Description: Called when a PCI error is detected. * * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT. */ pci_ers_result_t amdgpu_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct drm_device *dev = pci_get_drvdata(pdev); struct amdgpu_device *adev = drm_to_adev(dev); int i; DRM_INFO("PCI error: detected callback, state(%d)!!\n", state); if (adev->gmc.xgmi.num_physical_nodes > 1) { DRM_WARN("No support for XGMI hive yet..."); return PCI_ERS_RESULT_DISCONNECT; } adev->pci_channel_state = state; switch (state) { case pci_channel_io_normal: return PCI_ERS_RESULT_CAN_RECOVER; /* Fatal error, prepare for slot reset */ case pci_channel_io_frozen: /* * Cancel and wait for all TDRs in progress if failing to * set adev->in_gpu_reset in amdgpu_device_lock_adev * * Locking adev->reset_sem will prevent any external access * to GPU during PCI error recovery */ while (!amdgpu_device_lock_adev(adev, NULL)) amdgpu_cancel_all_tdr(adev); /* * Block any work scheduling as we do for regular GPU reset * for the duration of the recovery */ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; drm_sched_stop(&ring->sched, NULL); } atomic_inc(&adev->gpu_reset_counter); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: /* Permanent error, prepare for device removal */ return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_NEED_RESET; } /** * amdgpu_pci_mmio_enabled - Enable MMIO and dump debug registers * @pdev: pointer to PCI device */ pci_ers_result_t amdgpu_pci_mmio_enabled(struct pci_dev *pdev) { DRM_INFO("PCI error: mmio enabled callback!!\n"); /* TODO - dump whatever for debugging purposes */ /* This called only if amdgpu_pci_error_detected returns * PCI_ERS_RESULT_CAN_RECOVER. Read/write to the device still * works, no need to reset slot. */ return PCI_ERS_RESULT_RECOVERED; } /** * amdgpu_pci_slot_reset - Called when PCI slot has been reset. * @pdev: PCI device struct * * Description: This routine is called by the pci error recovery * code after the PCI slot has been reset, just before we * should resume normal operations. */ pci_ers_result_t amdgpu_pci_slot_reset(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); struct amdgpu_device *adev = drm_to_adev(dev); int r, i; struct amdgpu_reset_context reset_context; u32 memsize; struct list_head device_list; DRM_INFO("PCI error: slot reset callback!!\n"); memset(&reset_context, 0, sizeof(reset_context)); INIT_LIST_HEAD(&device_list); list_add_tail(&adev->reset_list, &device_list); /* wait for asic to come out of reset */ msleep(500); /* Restore PCI confspace */ amdgpu_device_load_pci_state(pdev); /* confirm ASIC came out of reset */ for (i = 0; i < adev->usec_timeout; i++) { memsize = amdgpu_asic_get_config_memsize(adev); if (memsize != 0xffffffff) break; udelay(1); } if (memsize == 0xffffffff) { r = -ETIME; goto out; } reset_context.method = AMD_RESET_METHOD_NONE; reset_context.reset_req_dev = adev; set_bit(AMDGPU_NEED_FULL_RESET, &reset_context.flags); set_bit(AMDGPU_SKIP_HW_RESET, &reset_context.flags); adev->no_hw_access = true; r = amdgpu_device_pre_asic_reset(adev, &reset_context); adev->no_hw_access = false; if (r) goto out; r = amdgpu_do_asic_reset(&device_list, &reset_context); out: if (!r) { if (amdgpu_device_cache_pci_state(adev->pdev)) pci_restore_state(adev->pdev); DRM_INFO("PCIe error recovery succeeded\n"); } else { DRM_ERROR("PCIe error recovery failed, err:%d", r); amdgpu_device_unlock_adev(adev); } return r ? PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_RECOVERED; } /** * amdgpu_pci_resume() - resume normal ops after PCI reset * @pdev: pointer to PCI device * * Called when the error recovery driver tells us that its * OK to resume normal operation. */ void amdgpu_pci_resume(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); struct amdgpu_device *adev = drm_to_adev(dev); int i; DRM_INFO("PCI error: resume callback!!\n"); /* Only continue execution for the case of pci_channel_io_frozen */ if (adev->pci_channel_state != pci_channel_io_frozen) return; for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; drm_sched_resubmit_jobs(&ring->sched); drm_sched_start(&ring->sched, true); } amdgpu_device_unlock_adev(adev); } bool amdgpu_device_cache_pci_state(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); struct amdgpu_device *adev = drm_to_adev(dev); int r; r = pci_save_state(pdev); if (!r) { kfree(adev->pci_state); adev->pci_state = pci_store_saved_state(pdev); if (!adev->pci_state) { DRM_ERROR("Failed to store PCI saved state"); return false; } } else { DRM_WARN("Failed to save PCI state, err:%d\n", r); return false; } return true; } bool amdgpu_device_load_pci_state(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); struct amdgpu_device *adev = drm_to_adev(dev); int r; if (!adev->pci_state) return false; r = pci_load_saved_state(pdev, adev->pci_state); if (!r) { pci_restore_state(pdev); } else { DRM_WARN("Failed to load PCI state, err:%d\n", r); return false; } return true; } void amdgpu_device_flush_hdp(struct amdgpu_device *adev, struct amdgpu_ring *ring) { #ifdef CONFIG_X86_64 if (adev->flags & AMD_IS_APU) return; #endif if (adev->gmc.xgmi.connected_to_cpu) return; if (ring && ring->funcs->emit_hdp_flush) amdgpu_ring_emit_hdp_flush(ring); else amdgpu_asic_flush_hdp(adev, ring); } void amdgpu_device_invalidate_hdp(struct amdgpu_device *adev, struct amdgpu_ring *ring) { #ifdef CONFIG_X86_64 if (adev->flags & AMD_IS_APU) return; #endif if (adev->gmc.xgmi.connected_to_cpu) return; amdgpu_asic_invalidate_hdp(adev, ring); } /** * amdgpu_device_halt() - bring hardware to some kind of halt state * * @adev: amdgpu_device pointer * * Bring hardware to some kind of halt state so that no one can touch it * any more. It will help to maintain error context when error occurred. * Compare to a simple hang, the system will keep stable at least for SSH * access. Then it should be trivial to inspect the hardware state and * see what's going on. Implemented as following: * * 1. drm_dev_unplug() makes device inaccessible to user space(IOCTLs, etc), * clears all CPU mappings to device, disallows remappings through page faults * 2. amdgpu_irq_disable_all() disables all interrupts * 3. amdgpu_fence_driver_hw_fini() signals all HW fences * 4. set adev->no_hw_access to avoid potential crashes after setp 5 * 5. amdgpu_device_unmap_mmio() clears all MMIO mappings * 6. pci_disable_device() and pci_wait_for_pending_transaction() * flush any in flight DMA operations */ void amdgpu_device_halt(struct amdgpu_device *adev) { struct pci_dev *pdev = adev->pdev; struct drm_device *ddev = adev_to_drm(adev); drm_dev_unplug(ddev); amdgpu_irq_disable_all(adev); amdgpu_fence_driver_hw_fini(adev); adev->no_hw_access = true; amdgpu_device_unmap_mmio(adev); pci_disable_device(pdev); pci_wait_for_pending_transaction(pdev); }