/* * Intel IXP4xx NPE-C crypto driver * * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. * */ #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/rtnetlink.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/gfp.h> #include <crypto/ctr.h> #include <crypto/des.h> #include <crypto/aes.h> #include <crypto/sha.h> #include <crypto/algapi.h> #include <crypto/aead.h> #include <crypto/authenc.h> #include <crypto/scatterwalk.h> #include <mach/npe.h> #include <mach/qmgr.h> #define MAX_KEYLEN 32 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */ #define NPE_CTX_LEN 80 #define AES_BLOCK128 16 #define NPE_OP_HASH_VERIFY 0x01 #define NPE_OP_CCM_ENABLE 0x04 #define NPE_OP_CRYPT_ENABLE 0x08 #define NPE_OP_HASH_ENABLE 0x10 #define NPE_OP_NOT_IN_PLACE 0x20 #define NPE_OP_HMAC_DISABLE 0x40 #define NPE_OP_CRYPT_ENCRYPT 0x80 #define NPE_OP_CCM_GEN_MIC 0xcc #define NPE_OP_HASH_GEN_ICV 0x50 #define NPE_OP_ENC_GEN_KEY 0xc9 #define MOD_ECB 0x0000 #define MOD_CTR 0x1000 #define MOD_CBC_ENC 0x2000 #define MOD_CBC_DEC 0x3000 #define MOD_CCM_ENC 0x4000 #define MOD_CCM_DEC 0x5000 #define KEYLEN_128 4 #define KEYLEN_192 6 #define KEYLEN_256 8 #define CIPH_DECR 0x0000 #define CIPH_ENCR 0x0400 #define MOD_DES 0x0000 #define MOD_TDEA2 0x0100 #define MOD_3DES 0x0200 #define MOD_AES 0x0800 #define MOD_AES128 (0x0800 | KEYLEN_128) #define MOD_AES192 (0x0900 | KEYLEN_192) #define MOD_AES256 (0x0a00 | KEYLEN_256) #define MAX_IVLEN 16 #define NPE_ID 2 /* NPE C */ #define NPE_QLEN 16 /* Space for registering when the first * NPE_QLEN crypt_ctl are busy */ #define NPE_QLEN_TOTAL 64 #define SEND_QID 29 #define RECV_QID 30 #define CTL_FLAG_UNUSED 0x0000 #define CTL_FLAG_USED 0x1000 #define CTL_FLAG_PERFORM_ABLK 0x0001 #define CTL_FLAG_GEN_ICV 0x0002 #define CTL_FLAG_GEN_REVAES 0x0004 #define CTL_FLAG_PERFORM_AEAD 0x0008 #define CTL_FLAG_MASK 0x000f #define HMAC_IPAD_VALUE 0x36 #define HMAC_OPAD_VALUE 0x5C #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE #define MD5_DIGEST_SIZE 16 struct buffer_desc { u32 phys_next; #ifdef __ARMEB__ u16 buf_len; u16 pkt_len; #else u16 pkt_len; u16 buf_len; #endif u32 phys_addr; u32 __reserved[4]; struct buffer_desc *next; enum dma_data_direction dir; }; struct crypt_ctl { #ifdef __ARMEB__ u8 mode; /* NPE_OP_* operation mode */ u8 init_len; u16 reserved; #else u16 reserved; u8 init_len; u8 mode; /* NPE_OP_* operation mode */ #endif u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */ u32 icv_rev_aes; /* icv or rev aes */ u32 src_buf; u32 dst_buf; #ifdef __ARMEB__ u16 auth_offs; /* Authentication start offset */ u16 auth_len; /* Authentication data length */ u16 crypt_offs; /* Cryption start offset */ u16 crypt_len; /* Cryption data length */ #else u16 auth_len; /* Authentication data length */ u16 auth_offs; /* Authentication start offset */ u16 crypt_len; /* Cryption data length */ u16 crypt_offs; /* Cryption start offset */ #endif u32 aadAddr; /* Additional Auth Data Addr for CCM mode */ u32 crypto_ctx; /* NPE Crypto Param structure address */ /* Used by Host: 4*4 bytes*/ unsigned ctl_flags; union { struct ablkcipher_request *ablk_req; struct aead_request *aead_req; struct crypto_tfm *tfm; } data; struct buffer_desc *regist_buf; u8 *regist_ptr; }; struct ablk_ctx { struct buffer_desc *src; struct buffer_desc *dst; }; struct aead_ctx { struct buffer_desc *buffer; struct scatterlist ivlist; /* used when the hmac is not on one sg entry */ u8 *hmac_virt; int encrypt; }; struct ix_hash_algo { u32 cfgword; unsigned char *icv; }; struct ix_sa_dir { unsigned char *npe_ctx; dma_addr_t npe_ctx_phys; int npe_ctx_idx; u8 npe_mode; }; struct ixp_ctx { struct ix_sa_dir encrypt; struct ix_sa_dir decrypt; int authkey_len; u8 authkey[MAX_KEYLEN]; int enckey_len; u8 enckey[MAX_KEYLEN]; u8 salt[MAX_IVLEN]; u8 nonce[CTR_RFC3686_NONCE_SIZE]; unsigned salted; atomic_t configuring; struct completion completion; }; struct ixp_alg { struct crypto_alg crypto; const struct ix_hash_algo *hash; u32 cfg_enc; u32 cfg_dec; int registered; }; static const struct ix_hash_algo hash_alg_md5 = { .cfgword = 0xAA010004, .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF" "\xFE\xDC\xBA\x98\x76\x54\x32\x10", }; static const struct ix_hash_algo hash_alg_sha1 = { .cfgword = 0x00000005, .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA" "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0", }; static struct npe *npe_c; static struct dma_pool *buffer_pool = NULL; static struct dma_pool *ctx_pool = NULL; static struct crypt_ctl *crypt_virt = NULL; static dma_addr_t crypt_phys; static int support_aes = 1; static void dev_release(struct device *dev) { return; } #define DRIVER_NAME "ixp4xx_crypto" static struct platform_device pseudo_dev = { .name = DRIVER_NAME, .id = 0, .num_resources = 0, .dev = { .coherent_dma_mask = DMA_BIT_MASK(32), .release = dev_release, } }; static struct device *dev = &pseudo_dev.dev; static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt) { return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl); } static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys) { return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl); } static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc; } static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec; } static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash; } static int setup_crypt_desc(void) { BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64); crypt_virt = dma_alloc_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl), &crypt_phys, GFP_ATOMIC); if (!crypt_virt) return -ENOMEM; memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl)); return 0; } static spinlock_t desc_lock; static struct crypt_ctl *get_crypt_desc(void) { int i; static int idx = 0; unsigned long flags; spin_lock_irqsave(&desc_lock, flags); if (unlikely(!crypt_virt)) setup_crypt_desc(); if (unlikely(!crypt_virt)) { spin_unlock_irqrestore(&desc_lock, flags); return NULL; } i = idx; if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { if (++idx >= NPE_QLEN) idx = 0; crypt_virt[i].ctl_flags = CTL_FLAG_USED; spin_unlock_irqrestore(&desc_lock, flags); return crypt_virt +i; } else { spin_unlock_irqrestore(&desc_lock, flags); return NULL; } } static spinlock_t emerg_lock; static struct crypt_ctl *get_crypt_desc_emerg(void) { int i; static int idx = NPE_QLEN; struct crypt_ctl *desc; unsigned long flags; desc = get_crypt_desc(); if (desc) return desc; if (unlikely(!crypt_virt)) return NULL; spin_lock_irqsave(&emerg_lock, flags); i = idx; if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { if (++idx >= NPE_QLEN_TOTAL) idx = NPE_QLEN; crypt_virt[i].ctl_flags = CTL_FLAG_USED; spin_unlock_irqrestore(&emerg_lock, flags); return crypt_virt +i; } else { spin_unlock_irqrestore(&emerg_lock, flags); return NULL; } } static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys) { while (buf) { struct buffer_desc *buf1; u32 phys1; buf1 = buf->next; phys1 = buf->phys_next; dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir); dma_pool_free(buffer_pool, buf, phys); buf = buf1; phys = phys1; } } static struct tasklet_struct crypto_done_tasklet; static void finish_scattered_hmac(struct crypt_ctl *crypt) { struct aead_request *req = crypt->data.aead_req; struct aead_ctx *req_ctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); int authsize = crypto_aead_authsize(tfm); int decryptlen = req->cryptlen - authsize; if (req_ctx->encrypt) { scatterwalk_map_and_copy(req_ctx->hmac_virt, req->src, decryptlen, authsize, 1); } dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes); } static void one_packet(dma_addr_t phys) { struct crypt_ctl *crypt; struct ixp_ctx *ctx; int failed; failed = phys & 0x1 ? -EBADMSG : 0; phys &= ~0x3; crypt = crypt_phys2virt(phys); switch (crypt->ctl_flags & CTL_FLAG_MASK) { case CTL_FLAG_PERFORM_AEAD: { struct aead_request *req = crypt->data.aead_req; struct aead_ctx *req_ctx = aead_request_ctx(req); free_buf_chain(dev, req_ctx->buffer, crypt->src_buf); if (req_ctx->hmac_virt) { finish_scattered_hmac(crypt); } req->base.complete(&req->base, failed); break; } case CTL_FLAG_PERFORM_ABLK: { struct ablkcipher_request *req = crypt->data.ablk_req; struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); if (req_ctx->dst) { free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); } free_buf_chain(dev, req_ctx->src, crypt->src_buf); req->base.complete(&req->base, failed); break; } case CTL_FLAG_GEN_ICV: ctx = crypto_tfm_ctx(crypt->data.tfm); dma_pool_free(ctx_pool, crypt->regist_ptr, crypt->regist_buf->phys_addr); dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf); if (atomic_dec_and_test(&ctx->configuring)) complete(&ctx->completion); break; case CTL_FLAG_GEN_REVAES: ctx = crypto_tfm_ctx(crypt->data.tfm); *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR); if (atomic_dec_and_test(&ctx->configuring)) complete(&ctx->completion); break; default: BUG(); } crypt->ctl_flags = CTL_FLAG_UNUSED; } static void irqhandler(void *_unused) { tasklet_schedule(&crypto_done_tasklet); } static void crypto_done_action(unsigned long arg) { int i; for(i=0; i<4; i++) { dma_addr_t phys = qmgr_get_entry(RECV_QID); if (!phys) return; one_packet(phys); } tasklet_schedule(&crypto_done_tasklet); } static int init_ixp_crypto(void) { int ret = -ENODEV; u32 msg[2] = { 0, 0 }; if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH | IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) { printk(KERN_ERR "ixp_crypto: No HW crypto available\n"); return ret; } npe_c = npe_request(NPE_ID); if (!npe_c) return ret; if (!npe_running(npe_c)) { ret = npe_load_firmware(npe_c, npe_name(npe_c), dev); if (ret) { return ret; } if (npe_recv_message(npe_c, msg, "STATUS_MSG")) goto npe_error; } else { if (npe_send_message(npe_c, msg, "STATUS_MSG")) goto npe_error; if (npe_recv_message(npe_c, msg, "STATUS_MSG")) goto npe_error; } switch ((msg[1]>>16) & 0xff) { case 3: printk(KERN_WARNING "Firmware of %s lacks AES support\n", npe_name(npe_c)); support_aes = 0; break; case 4: case 5: support_aes = 1; break; default: printk(KERN_ERR "Firmware of %s lacks crypto support\n", npe_name(npe_c)); return -ENODEV; } /* buffer_pool will also be used to sometimes store the hmac, * so assure it is large enough */ BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc)); buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc), 32, 0); ret = -ENOMEM; if (!buffer_pool) { goto err; } ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0); if (!ctx_pool) { goto err; } ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0, "ixp_crypto:out", NULL); if (ret) goto err; ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0, "ixp_crypto:in", NULL); if (ret) { qmgr_release_queue(SEND_QID); goto err; } qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL); tasklet_init(&crypto_done_tasklet, crypto_done_action, 0); qmgr_enable_irq(RECV_QID); return 0; npe_error: printk(KERN_ERR "%s not responding\n", npe_name(npe_c)); ret = -EIO; err: if (ctx_pool) dma_pool_destroy(ctx_pool); if (buffer_pool) dma_pool_destroy(buffer_pool); npe_release(npe_c); return ret; } static void release_ixp_crypto(void) { qmgr_disable_irq(RECV_QID); tasklet_kill(&crypto_done_tasklet); qmgr_release_queue(SEND_QID); qmgr_release_queue(RECV_QID); dma_pool_destroy(ctx_pool); dma_pool_destroy(buffer_pool); npe_release(npe_c); if (crypt_virt) { dma_free_coherent(dev, NPE_QLEN_TOTAL * sizeof( struct crypt_ctl), crypt_virt, crypt_phys); } return; } static void reset_sa_dir(struct ix_sa_dir *dir) { memset(dir->npe_ctx, 0, NPE_CTX_LEN); dir->npe_ctx_idx = 0; dir->npe_mode = 0; } static int init_sa_dir(struct ix_sa_dir *dir) { dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys); if (!dir->npe_ctx) { return -ENOMEM; } reset_sa_dir(dir); return 0; } static void free_sa_dir(struct ix_sa_dir *dir) { memset(dir->npe_ctx, 0, NPE_CTX_LEN); dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys); } static int init_tfm(struct crypto_tfm *tfm) { struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); int ret; atomic_set(&ctx->configuring, 0); ret = init_sa_dir(&ctx->encrypt); if (ret) return ret; ret = init_sa_dir(&ctx->decrypt); if (ret) { free_sa_dir(&ctx->encrypt); } return ret; } static int init_tfm_ablk(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx); return init_tfm(tfm); } static int init_tfm_aead(struct crypto_tfm *tfm) { tfm->crt_aead.reqsize = sizeof(struct aead_ctx); return init_tfm(tfm); } static void exit_tfm(struct crypto_tfm *tfm) { struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); free_sa_dir(&ctx->encrypt); free_sa_dir(&ctx->decrypt); } static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target, int init_len, u32 ctx_addr, const u8 *key, int key_len) { struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); struct crypt_ctl *crypt; struct buffer_desc *buf; int i; u8 *pad; u32 pad_phys, buf_phys; BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN); pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys); if (!pad) return -ENOMEM; buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys); if (!buf) { dma_pool_free(ctx_pool, pad, pad_phys); return -ENOMEM; } crypt = get_crypt_desc_emerg(); if (!crypt) { dma_pool_free(ctx_pool, pad, pad_phys); dma_pool_free(buffer_pool, buf, buf_phys); return -EAGAIN; } memcpy(pad, key, key_len); memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len); for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) { pad[i] ^= xpad; } crypt->data.tfm = tfm; crypt->regist_ptr = pad; crypt->regist_buf = buf; crypt->auth_offs = 0; crypt->auth_len = HMAC_PAD_BLOCKLEN; crypt->crypto_ctx = ctx_addr; crypt->src_buf = buf_phys; crypt->icv_rev_aes = target; crypt->mode = NPE_OP_HASH_GEN_ICV; crypt->init_len = init_len; crypt->ctl_flags |= CTL_FLAG_GEN_ICV; buf->next = 0; buf->buf_len = HMAC_PAD_BLOCKLEN; buf->pkt_len = 0; buf->phys_addr = pad_phys; atomic_inc(&ctx->configuring); qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); BUG_ON(qmgr_stat_overflow(SEND_QID)); return 0; } static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize, const u8 *key, int key_len, unsigned digest_len) { u32 itarget, otarget, npe_ctx_addr; unsigned char *cinfo; int init_len, ret = 0; u32 cfgword; struct ix_sa_dir *dir; struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); const struct ix_hash_algo *algo; dir = encrypt ? &ctx->encrypt : &ctx->decrypt; cinfo = dir->npe_ctx + dir->npe_ctx_idx; algo = ix_hash(tfm); /* write cfg word to cryptinfo */ cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */ #ifndef __ARMEB__ cfgword ^= 0xAA000000; /* change the "byte swap" flags */ #endif *(u32*)cinfo = cpu_to_be32(cfgword); cinfo += sizeof(cfgword); /* write ICV to cryptinfo */ memcpy(cinfo, algo->icv, digest_len); cinfo += digest_len; itarget = dir->npe_ctx_phys + dir->npe_ctx_idx + sizeof(algo->cfgword); otarget = itarget + digest_len; init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx); npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx; dir->npe_ctx_idx += init_len; dir->npe_mode |= NPE_OP_HASH_ENABLE; if (!encrypt) dir->npe_mode |= NPE_OP_HASH_VERIFY; ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget, init_len, npe_ctx_addr, key, key_len); if (ret) return ret; return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget, init_len, npe_ctx_addr, key, key_len); } static int gen_rev_aes_key(struct crypto_tfm *tfm) { struct crypt_ctl *crypt; struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); struct ix_sa_dir *dir = &ctx->decrypt; crypt = get_crypt_desc_emerg(); if (!crypt) { return -EAGAIN; } *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR); crypt->data.tfm = tfm; crypt->crypt_offs = 0; crypt->crypt_len = AES_BLOCK128; crypt->src_buf = 0; crypt->crypto_ctx = dir->npe_ctx_phys; crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32); crypt->mode = NPE_OP_ENC_GEN_KEY; crypt->init_len = dir->npe_ctx_idx; crypt->ctl_flags |= CTL_FLAG_GEN_REVAES; atomic_inc(&ctx->configuring); qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); BUG_ON(qmgr_stat_overflow(SEND_QID)); return 0; } static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key, int key_len) { u8 *cinfo; u32 cipher_cfg; u32 keylen_cfg = 0; struct ix_sa_dir *dir; struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); u32 *flags = &tfm->crt_flags; dir = encrypt ? &ctx->encrypt : &ctx->decrypt; cinfo = dir->npe_ctx; if (encrypt) { cipher_cfg = cipher_cfg_enc(tfm); dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT; } else { cipher_cfg = cipher_cfg_dec(tfm); } if (cipher_cfg & MOD_AES) { switch (key_len) { case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break; case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break; case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break; default: *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } cipher_cfg |= keylen_cfg; } else if (cipher_cfg & MOD_3DES) { const u32 *K = (const u32 *)key; if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) || !((K[2] ^ K[4]) | (K[3] ^ K[5])))) { *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED; return -EINVAL; } } else { u32 tmp[DES_EXPKEY_WORDS]; if (des_ekey(tmp, key) == 0) { *flags |= CRYPTO_TFM_RES_WEAK_KEY; } } /* write cfg word to cryptinfo */ *(u32*)cinfo = cpu_to_be32(cipher_cfg); cinfo += sizeof(cipher_cfg); /* write cipher key to cryptinfo */ memcpy(cinfo, key, key_len); /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */ if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) { memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len); key_len = DES3_EDE_KEY_SIZE; } dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len; dir->npe_mode |= NPE_OP_CRYPT_ENABLE; if ((cipher_cfg & MOD_AES) && !encrypt) { return gen_rev_aes_key(tfm); } return 0; } static struct buffer_desc *chainup_buffers(struct device *dev, struct scatterlist *sg, unsigned nbytes, struct buffer_desc *buf, gfp_t flags, enum dma_data_direction dir) { for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) { unsigned len = min(nbytes, sg->length); struct buffer_desc *next_buf; u32 next_buf_phys; void *ptr; nbytes -= len; ptr = page_address(sg_page(sg)) + sg->offset; next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys); if (!next_buf) { buf = NULL; break; } sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir); buf->next = next_buf; buf->phys_next = next_buf_phys; buf = next_buf; buf->phys_addr = sg_dma_address(sg); buf->buf_len = len; buf->dir = dir; } buf->next = NULL; buf->phys_next = 0; return buf; } static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int key_len) { struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); u32 *flags = &tfm->base.crt_flags; int ret; init_completion(&ctx->completion); atomic_inc(&ctx->configuring); reset_sa_dir(&ctx->encrypt); reset_sa_dir(&ctx->decrypt); ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE; ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE; ret = setup_cipher(&tfm->base, 0, key, key_len); if (ret) goto out; ret = setup_cipher(&tfm->base, 1, key, key_len); if (ret) goto out; if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { ret = -EINVAL; } else { *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; } } out: if (!atomic_dec_and_test(&ctx->configuring)) wait_for_completion(&ctx->completion); return ret; } static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int key_len) { struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); /* the nonce is stored in bytes at end of key */ if (key_len < CTR_RFC3686_NONCE_SIZE) return -EINVAL; memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE), CTR_RFC3686_NONCE_SIZE); key_len -= CTR_RFC3686_NONCE_SIZE; return ablk_setkey(tfm, key, key_len); } static int ablk_perform(struct ablkcipher_request *req, int encrypt) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); unsigned ivsize = crypto_ablkcipher_ivsize(tfm); struct ix_sa_dir *dir; struct crypt_ctl *crypt; unsigned int nbytes = req->nbytes; enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); struct buffer_desc src_hook; gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; if (qmgr_stat_full(SEND_QID)) return -EAGAIN; if (atomic_read(&ctx->configuring)) return -EAGAIN; dir = encrypt ? &ctx->encrypt : &ctx->decrypt; crypt = get_crypt_desc(); if (!crypt) return -ENOMEM; crypt->data.ablk_req = req; crypt->crypto_ctx = dir->npe_ctx_phys; crypt->mode = dir->npe_mode; crypt->init_len = dir->npe_ctx_idx; crypt->crypt_offs = 0; crypt->crypt_len = nbytes; BUG_ON(ivsize && !req->info); memcpy(crypt->iv, req->info, ivsize); if (req->src != req->dst) { struct buffer_desc dst_hook; crypt->mode |= NPE_OP_NOT_IN_PLACE; /* This was never tested by Intel * for more than one dst buffer, I think. */ BUG_ON(req->dst->length < nbytes); req_ctx->dst = NULL; if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook, flags, DMA_FROM_DEVICE)) goto free_buf_dest; src_direction = DMA_TO_DEVICE; req_ctx->dst = dst_hook.next; crypt->dst_buf = dst_hook.phys_next; } else { req_ctx->dst = NULL; } req_ctx->src = NULL; if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags, src_direction)) goto free_buf_src; req_ctx->src = src_hook.next; crypt->src_buf = src_hook.phys_next; crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK; qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); BUG_ON(qmgr_stat_overflow(SEND_QID)); return -EINPROGRESS; free_buf_src: free_buf_chain(dev, req_ctx->src, crypt->src_buf); free_buf_dest: if (req->src != req->dst) { free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); } crypt->ctl_flags = CTL_FLAG_UNUSED; return -ENOMEM; } static int ablk_encrypt(struct ablkcipher_request *req) { return ablk_perform(req, 1); } static int ablk_decrypt(struct ablkcipher_request *req) { return ablk_perform(req, 0); } static int ablk_rfc3686_crypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); u8 iv[CTR_RFC3686_BLOCK_SIZE]; u8 *info = req->info; int ret; /* set up counter block */ memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE); /* initialize counter portion of counter block */ *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = cpu_to_be32(1); req->info = iv; ret = ablk_perform(req, 1); req->info = info; return ret; } static int hmac_inconsistent(struct scatterlist *sg, unsigned start, unsigned int nbytes) { int offset = 0; if (!nbytes) return 0; for (;;) { if (start < offset + sg->length) break; offset += sg->length; sg = scatterwalk_sg_next(sg); } return (start + nbytes > offset + sg->length); } static int aead_perform(struct aead_request *req, int encrypt, int cryptoffset, int eff_cryptlen, u8 *iv) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct ixp_ctx *ctx = crypto_aead_ctx(tfm); unsigned ivsize = crypto_aead_ivsize(tfm); unsigned authsize = crypto_aead_authsize(tfm); struct ix_sa_dir *dir; struct crypt_ctl *crypt; unsigned int cryptlen; struct buffer_desc *buf, src_hook; struct aead_ctx *req_ctx = aead_request_ctx(req); gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC; if (qmgr_stat_full(SEND_QID)) return -EAGAIN; if (atomic_read(&ctx->configuring)) return -EAGAIN; if (encrypt) { dir = &ctx->encrypt; cryptlen = req->cryptlen; } else { dir = &ctx->decrypt; /* req->cryptlen includes the authsize when decrypting */ cryptlen = req->cryptlen -authsize; eff_cryptlen -= authsize; } crypt = get_crypt_desc(); if (!crypt) return -ENOMEM; crypt->data.aead_req = req; crypt->crypto_ctx = dir->npe_ctx_phys; crypt->mode = dir->npe_mode; crypt->init_len = dir->npe_ctx_idx; crypt->crypt_offs = cryptoffset; crypt->crypt_len = eff_cryptlen; crypt->auth_offs = 0; crypt->auth_len = req->assoclen + ivsize + cryptlen; BUG_ON(ivsize && !req->iv); memcpy(crypt->iv, req->iv, ivsize); if (req->src != req->dst) { BUG(); /* -ENOTSUP because of my laziness */ } /* ASSOC data */ buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook, flags, DMA_TO_DEVICE); req_ctx->buffer = src_hook.next; crypt->src_buf = src_hook.phys_next; if (!buf) goto out; /* IV */ sg_init_table(&req_ctx->ivlist, 1); sg_set_buf(&req_ctx->ivlist, iv, ivsize); buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags, DMA_BIDIRECTIONAL); if (!buf) goto free_chain; if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) { /* The 12 hmac bytes are scattered, * we need to copy them into a safe buffer */ req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, &crypt->icv_rev_aes); if (unlikely(!req_ctx->hmac_virt)) goto free_chain; if (!encrypt) { scatterwalk_map_and_copy(req_ctx->hmac_virt, req->src, cryptlen, authsize, 0); } req_ctx->encrypt = encrypt; } else { req_ctx->hmac_virt = NULL; } /* Crypt */ buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags, DMA_BIDIRECTIONAL); if (!buf) goto free_hmac_virt; if (!req_ctx->hmac_virt) { crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize; } crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD; qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); BUG_ON(qmgr_stat_overflow(SEND_QID)); return -EINPROGRESS; free_hmac_virt: if (req_ctx->hmac_virt) { dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes); } free_chain: free_buf_chain(dev, req_ctx->buffer, crypt->src_buf); out: crypt->ctl_flags = CTL_FLAG_UNUSED; return -ENOMEM; } static int aead_setup(struct crypto_aead *tfm, unsigned int authsize) { struct ixp_ctx *ctx = crypto_aead_ctx(tfm); u32 *flags = &tfm->base.crt_flags; unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize; int ret; if (!ctx->enckey_len && !ctx->authkey_len) return 0; init_completion(&ctx->completion); atomic_inc(&ctx->configuring); reset_sa_dir(&ctx->encrypt); reset_sa_dir(&ctx->decrypt); ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len); if (ret) goto out; ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len); if (ret) goto out; ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey, ctx->authkey_len, digest_len); if (ret) goto out; ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey, ctx->authkey_len, digest_len); if (ret) goto out; if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { ret = -EINVAL; goto out; } else { *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; } } out: if (!atomic_dec_and_test(&ctx->configuring)) wait_for_completion(&ctx->completion); return ret; } static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { int max = crypto_aead_alg(tfm)->maxauthsize >> 2; if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3)) return -EINVAL; return aead_setup(tfm, authsize); } static int aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct ixp_ctx *ctx = crypto_aead_ctx(tfm); struct rtattr *rta = (struct rtattr *)key; struct crypto_authenc_key_param *param; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); ctx->enckey_len = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < ctx->enckey_len) goto badkey; ctx->authkey_len = keylen - ctx->enckey_len; memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len); memcpy(ctx->authkey, key, ctx->authkey_len); return aead_setup(tfm, crypto_aead_authsize(tfm)); badkey: ctx->enckey_len = 0; crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int aead_encrypt(struct aead_request *req) { unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); return aead_perform(req, 1, req->assoclen + ivsize, req->cryptlen, req->iv); } static int aead_decrypt(struct aead_request *req) { unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); return aead_perform(req, 0, req->assoclen + ivsize, req->cryptlen, req->iv); } static int aead_givencrypt(struct aead_givcrypt_request *req) { struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); struct ixp_ctx *ctx = crypto_aead_ctx(tfm); unsigned len, ivsize = crypto_aead_ivsize(tfm); __be64 seq; /* copied from eseqiv.c */ if (!ctx->salted) { get_random_bytes(ctx->salt, ivsize); ctx->salted = 1; } memcpy(req->areq.iv, ctx->salt, ivsize); len = ivsize; if (ivsize > sizeof(u64)) { memset(req->giv, 0, ivsize - sizeof(u64)); len = sizeof(u64); } seq = cpu_to_be64(req->seq); memcpy(req->giv + ivsize - len, &seq, len); return aead_perform(&req->areq, 1, req->areq.assoclen, req->areq.cryptlen +ivsize, req->giv); } static struct ixp_alg ixp4xx_algos[] = { { .crypto = { .cra_name = "cbc(des)", .cra_blocksize = DES_BLOCK_SIZE, .cra_u = { .ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .geniv = "eseqiv", } } }, .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .cra_name = "ecb(des)", .cra_blocksize = DES_BLOCK_SIZE, .cra_u = { .ablkcipher = { .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, } } }, .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192, }, { .crypto = { .cra_name = "cbc(des3_ede)", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_u = { .ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .geniv = "eseqiv", } } }, .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .cra_name = "ecb(des3_ede)", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_u = { .ablkcipher = { .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, } } }, .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192, }, { .crypto = { .cra_name = "cbc(aes)", .cra_blocksize = AES_BLOCK_SIZE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .geniv = "eseqiv", } } }, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, }, { .crypto = { .cra_name = "ecb(aes)", .cra_blocksize = AES_BLOCK_SIZE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, } } }, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB, .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB, }, { .crypto = { .cra_name = "ctr(aes)", .cra_blocksize = AES_BLOCK_SIZE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .geniv = "eseqiv", } } }, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, }, { .crypto = { .cra_name = "rfc3686(ctr(aes))", .cra_blocksize = AES_BLOCK_SIZE, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .geniv = "eseqiv", .setkey = ablk_rfc3686_setkey, .encrypt = ablk_rfc3686_crypt, .decrypt = ablk_rfc3686_crypt } } }, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, }, { .crypto = { .cra_name = "authenc(hmac(md5),cbc(des))", .cra_blocksize = DES_BLOCK_SIZE, .cra_u = { .aead = { .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, } } }, .hash = &hash_alg_md5, .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_u = { .aead = { .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, } } }, .hash = &hash_alg_md5, .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_blocksize = DES_BLOCK_SIZE, .cra_u = { .aead = { .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, } } }, .hash = &hash_alg_sha1, .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_u = { .aead = { .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, } } }, .hash = &hash_alg_sha1, .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, }, { .crypto = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_blocksize = AES_BLOCK_SIZE, .cra_u = { .aead = { .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, } } }, .hash = &hash_alg_md5, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, }, { .crypto = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_blocksize = AES_BLOCK_SIZE, .cra_u = { .aead = { .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, } } }, .hash = &hash_alg_sha1, .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, } }; #define IXP_POSTFIX "-ixp4xx" static int __init ixp_module_init(void) { int num = ARRAY_SIZE(ixp4xx_algos); int i,err ; if (platform_device_register(&pseudo_dev)) return -ENODEV; spin_lock_init(&desc_lock); spin_lock_init(&emerg_lock); err = init_ixp_crypto(); if (err) { platform_device_unregister(&pseudo_dev); return err; } for (i=0; i< num; i++) { struct crypto_alg *cra = &ixp4xx_algos[i].crypto; if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s"IXP_POSTFIX, cra->cra_name) >= CRYPTO_MAX_ALG_NAME) { continue; } if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) { continue; } if (!ixp4xx_algos[i].hash) { /* block ciphers */ cra->cra_type = &crypto_ablkcipher_type; cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; if (!cra->cra_ablkcipher.setkey) cra->cra_ablkcipher.setkey = ablk_setkey; if (!cra->cra_ablkcipher.encrypt) cra->cra_ablkcipher.encrypt = ablk_encrypt; if (!cra->cra_ablkcipher.decrypt) cra->cra_ablkcipher.decrypt = ablk_decrypt; cra->cra_init = init_tfm_ablk; } else { /* authenc */ cra->cra_type = &crypto_aead_type; cra->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; cra->cra_aead.setkey = aead_setkey; cra->cra_aead.setauthsize = aead_setauthsize; cra->cra_aead.encrypt = aead_encrypt; cra->cra_aead.decrypt = aead_decrypt; cra->cra_aead.givencrypt = aead_givencrypt; cra->cra_init = init_tfm_aead; } cra->cra_ctxsize = sizeof(struct ixp_ctx); cra->cra_module = THIS_MODULE; cra->cra_alignmask = 3; cra->cra_priority = 300; cra->cra_exit = exit_tfm; if (crypto_register_alg(cra)) printk(KERN_ERR "Failed to register '%s'\n", cra->cra_name); else ixp4xx_algos[i].registered = 1; } return 0; } static void __exit ixp_module_exit(void) { int num = ARRAY_SIZE(ixp4xx_algos); int i; for (i=0; i< num; i++) { if (ixp4xx_algos[i].registered) crypto_unregister_alg(&ixp4xx_algos[i].crypto); } release_ixp_crypto(); platform_device_unregister(&pseudo_dev); } module_init(ixp_module_init); module_exit(ixp_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>"); MODULE_DESCRIPTION("IXP4xx hardware crypto");