/* * Cryptographic API. * * Support for DCP cryptographic accelerator. * * Copyright (c) 2013 * Author: Tobias Rauter * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Based on tegra-aes.c, dcp.c (from freescale SDK) and sahara.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* IOCTL for DCP OTP Key AES - taken from Freescale's SDK*/ #define DBS_IOCTL_BASE 'd' #define DBS_ENC _IOW(DBS_IOCTL_BASE, 0x00, uint8_t[16]) #define DBS_DEC _IOW(DBS_IOCTL_BASE, 0x01, uint8_t[16]) /* DCP channel used for AES */ #define USED_CHANNEL 1 /* Ring Buffers' maximum size */ #define DCP_MAX_PKG 20 /* Control Register */ #define DCP_REG_CTRL 0x000 #define DCP_CTRL_SFRST (1<<31) #define DCP_CTRL_CLKGATE (1<<30) #define DCP_CTRL_CRYPTO_PRESENT (1<<29) #define DCP_CTRL_SHA_PRESENT (1<<28) #define DCP_CTRL_GATHER_RES_WRITE (1<<23) #define DCP_CTRL_ENABLE_CONTEXT_CACHE (1<<22) #define DCP_CTRL_ENABLE_CONTEXT_SWITCH (1<<21) #define DCP_CTRL_CH_IRQ_E_0 0x01 #define DCP_CTRL_CH_IRQ_E_1 0x02 #define DCP_CTRL_CH_IRQ_E_2 0x04 #define DCP_CTRL_CH_IRQ_E_3 0x08 /* Status register */ #define DCP_REG_STAT 0x010 #define DCP_STAT_OTP_KEY_READY (1<<28) #define DCP_STAT_CUR_CHANNEL(stat) ((stat>>24)&0x0F) #define DCP_STAT_READY_CHANNEL(stat) ((stat>>16)&0x0F) #define DCP_STAT_IRQ(stat) (stat&0x0F) #define DCP_STAT_CHAN_0 (0x01) #define DCP_STAT_CHAN_1 (0x02) #define DCP_STAT_CHAN_2 (0x04) #define DCP_STAT_CHAN_3 (0x08) /* Channel Control Register */ #define DCP_REG_CHAN_CTRL 0x020 #define DCP_CHAN_CTRL_CH0_IRQ_MERGED (1<<16) #define DCP_CHAN_CTRL_HIGH_PRIO_0 (0x0100) #define DCP_CHAN_CTRL_HIGH_PRIO_1 (0x0200) #define DCP_CHAN_CTRL_HIGH_PRIO_2 (0x0400) #define DCP_CHAN_CTRL_HIGH_PRIO_3 (0x0800) #define DCP_CHAN_CTRL_ENABLE_0 (0x01) #define DCP_CHAN_CTRL_ENABLE_1 (0x02) #define DCP_CHAN_CTRL_ENABLE_2 (0x04) #define DCP_CHAN_CTRL_ENABLE_3 (0x08) /* * Channel Registers: * The DCP has 4 channels. Each of this channels * has 4 registers (command pointer, semaphore, status and options). * The address of register REG of channel CHAN is obtained by * dcp_chan_reg(REG, CHAN) */ #define DCP_REG_CHAN_PTR 0x00000100 #define DCP_REG_CHAN_SEMA 0x00000110 #define DCP_REG_CHAN_STAT 0x00000120 #define DCP_REG_CHAN_OPT 0x00000130 #define DCP_CHAN_STAT_NEXT_CHAIN_IS_0 0x010000 #define DCP_CHAN_STAT_NO_CHAIN 0x020000 #define DCP_CHAN_STAT_CONTEXT_ERROR 0x030000 #define DCP_CHAN_STAT_PAYLOAD_ERROR 0x040000 #define DCP_CHAN_STAT_INVALID_MODE 0x050000 #define DCP_CHAN_STAT_PAGEFAULT 0x40 #define DCP_CHAN_STAT_DST 0x20 #define DCP_CHAN_STAT_SRC 0x10 #define DCP_CHAN_STAT_PACKET 0x08 #define DCP_CHAN_STAT_SETUP 0x04 #define DCP_CHAN_STAT_MISMATCH 0x02 /* hw packet control*/ #define DCP_PKT_PAYLOAD_KEY (1<<11) #define DCP_PKT_OTP_KEY (1<<10) #define DCP_PKT_CIPHER_INIT (1<<9) #define DCP_PKG_CIPHER_ENCRYPT (1<<8) #define DCP_PKT_CIPHER_ENABLE (1<<5) #define DCP_PKT_DECR_SEM (1<<1) #define DCP_PKT_CHAIN (1<<2) #define DCP_PKT_IRQ 1 #define DCP_PKT_MODE_CBC (1<<4) #define DCP_PKT_KEYSELECT_OTP (0xFF<<8) /* cipher flags */ #define DCP_ENC 0x0001 #define DCP_DEC 0x0002 #define DCP_ECB 0x0004 #define DCP_CBC 0x0008 #define DCP_CBC_INIT 0x0010 #define DCP_NEW_KEY 0x0040 #define DCP_OTP_KEY 0x0080 #define DCP_AES 0x1000 /* DCP Flags */ #define DCP_FLAG_BUSY 0x01 #define DCP_FLAG_PRODUCING 0x02 /* clock defines */ #define CLOCK_ON 1 #define CLOCK_OFF 0 struct dcp_dev_req_ctx { int mode; }; struct dcp_op { unsigned int flags; u8 key[AES_KEYSIZE_128]; int keylen; struct ablkcipher_request *req; struct crypto_ablkcipher *fallback; uint32_t stat; uint32_t pkt1; uint32_t pkt2; struct ablkcipher_walk walk; }; struct dcp_dev { struct device *dev; void __iomem *dcp_regs_base; int dcp_vmi_irq; int dcp_irq; spinlock_t queue_lock; struct crypto_queue queue; uint32_t pkt_produced; uint32_t pkt_consumed; struct dcp_hw_packet *hw_pkg[DCP_MAX_PKG]; dma_addr_t hw_phys_pkg; /* [KEY][IV] Both with 16 Bytes */ u8 *payload_base; dma_addr_t payload_base_dma; struct tasklet_struct done_task; struct tasklet_struct queue_task; struct timer_list watchdog; unsigned long flags; struct dcp_op *ctx; struct miscdevice dcp_bootstream_misc; }; struct dcp_hw_packet { uint32_t next; uint32_t pkt1; uint32_t pkt2; uint32_t src; uint32_t dst; uint32_t size; uint32_t payload; uint32_t stat; }; struct dcp_dev *global_dev; static inline u32 dcp_chan_reg(u32 reg, int chan) { return reg + (chan) * 0x40; } static inline void dcp_write(struct dcp_dev *dev, u32 data, u32 reg) { writel(data, dev->dcp_regs_base + reg); } static inline void dcp_set(struct dcp_dev *dev, u32 data, u32 reg) { writel(data, dev->dcp_regs_base + (reg | 0x04)); } static inline void dcp_clear(struct dcp_dev *dev, u32 data, u32 reg) { writel(data, dev->dcp_regs_base + (reg | 0x08)); } static inline void dcp_toggle(struct dcp_dev *dev, u32 data, u32 reg) { writel(data, dev->dcp_regs_base + (reg | 0x0C)); } static inline unsigned int dcp_read(struct dcp_dev *dev, u32 reg) { return readl(dev->dcp_regs_base + reg); } void dcp_dma_unmap(struct dcp_dev *dev, struct dcp_hw_packet *pkt) { dma_unmap_page(dev->dev, pkt->src, pkt->size, DMA_TO_DEVICE); dma_unmap_page(dev->dev, pkt->dst, pkt->size, DMA_FROM_DEVICE); dev_dbg(dev->dev, "unmap packet %x", (unsigned int) pkt); } int dcp_dma_map(struct dcp_dev *dev, struct ablkcipher_walk *walk, struct dcp_hw_packet *pkt) { dev_dbg(dev->dev, "map packet %x", (unsigned int) pkt); /* align to length = 16 */ pkt->size = walk->nbytes - (walk->nbytes % 16); pkt->src = dma_map_page(dev->dev, walk->src.page, walk->src.offset, pkt->size, DMA_TO_DEVICE); if (pkt->src == 0) { dev_err(dev->dev, "Unable to map src"); return -ENOMEM; } pkt->dst = dma_map_page(dev->dev, walk->dst.page, walk->dst.offset, pkt->size, DMA_FROM_DEVICE); if (pkt->dst == 0) { dev_err(dev->dev, "Unable to map dst"); dma_unmap_page(dev->dev, pkt->src, pkt->size, DMA_TO_DEVICE); return -ENOMEM; } return 0; } static void dcp_op_one(struct dcp_dev *dev, struct dcp_hw_packet *pkt, uint8_t last) { struct dcp_op *ctx = dev->ctx; pkt->pkt1 = ctx->pkt1; pkt->pkt2 = ctx->pkt2; pkt->payload = (u32) dev->payload_base_dma; pkt->stat = 0; if (ctx->flags & DCP_CBC_INIT) { pkt->pkt1 |= DCP_PKT_CIPHER_INIT; ctx->flags &= ~DCP_CBC_INIT; } mod_timer(&dev->watchdog, jiffies + msecs_to_jiffies(500)); pkt->pkt1 |= DCP_PKT_IRQ; if (!last) pkt->pkt1 |= DCP_PKT_CHAIN; dev->pkt_produced++; dcp_write(dev, 1, dcp_chan_reg(DCP_REG_CHAN_SEMA, USED_CHANNEL)); } static void dcp_op_proceed(struct dcp_dev *dev) { struct dcp_op *ctx = dev->ctx; struct dcp_hw_packet *pkt; while (ctx->walk.nbytes) { int err = 0; pkt = dev->hw_pkg[dev->pkt_produced % DCP_MAX_PKG]; err = dcp_dma_map(dev, &ctx->walk, pkt); if (err) { dev->ctx->stat |= err; /* start timer to wait for already set up calls */ mod_timer(&dev->watchdog, jiffies + msecs_to_jiffies(500)); break; } err = ctx->walk.nbytes - pkt->size; ablkcipher_walk_done(dev->ctx->req, &dev->ctx->walk, err); dcp_op_one(dev, pkt, ctx->walk.nbytes == 0); /* we have to wait if no space is left in buffer */ if (dev->pkt_produced - dev->pkt_consumed == DCP_MAX_PKG) break; } clear_bit(DCP_FLAG_PRODUCING, &dev->flags); } static void dcp_op_start(struct dcp_dev *dev, uint8_t use_walk) { struct dcp_op *ctx = dev->ctx; if (ctx->flags & DCP_NEW_KEY) { memcpy(dev->payload_base, ctx->key, ctx->keylen); ctx->flags &= ~DCP_NEW_KEY; } ctx->pkt1 = 0; ctx->pkt1 |= DCP_PKT_CIPHER_ENABLE; ctx->pkt1 |= DCP_PKT_DECR_SEM; if (ctx->flags & DCP_OTP_KEY) ctx->pkt1 |= DCP_PKT_OTP_KEY; else ctx->pkt1 |= DCP_PKT_PAYLOAD_KEY; if (ctx->flags & DCP_ENC) ctx->pkt1 |= DCP_PKG_CIPHER_ENCRYPT; ctx->pkt2 = 0; if (ctx->flags & DCP_CBC) ctx->pkt2 |= DCP_PKT_MODE_CBC; dev->pkt_produced = 0; dev->pkt_consumed = 0; ctx->stat = 0; dcp_clear(dev, -1, dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL)); dcp_write(dev, (u32) dev->hw_phys_pkg, dcp_chan_reg(DCP_REG_CHAN_PTR, USED_CHANNEL)); set_bit(DCP_FLAG_PRODUCING, &dev->flags); if (use_walk) { ablkcipher_walk_init(&ctx->walk, ctx->req->dst, ctx->req->src, ctx->req->nbytes); ablkcipher_walk_phys(ctx->req, &ctx->walk); dcp_op_proceed(dev); } else { dcp_op_one(dev, dev->hw_pkg[0], 1); clear_bit(DCP_FLAG_PRODUCING, &dev->flags); } } static void dcp_done_task(unsigned long data) { struct dcp_dev *dev = (struct dcp_dev *)data; struct dcp_hw_packet *last_packet; int fin; fin = 0; for (last_packet = dev->hw_pkg[(dev->pkt_consumed) % DCP_MAX_PKG]; last_packet->stat == 1; last_packet = dev->hw_pkg[++(dev->pkt_consumed) % DCP_MAX_PKG]) { dcp_dma_unmap(dev, last_packet); last_packet->stat = 0; fin++; } /* the last call of this function already consumed this IRQ's packet */ if (fin == 0) return; dev_dbg(dev->dev, "Packet(s) done with status %x; finished: %d, produced:%d, complete consumed: %d", dev->ctx->stat, fin, dev->pkt_produced, dev->pkt_consumed); last_packet = dev->hw_pkg[(dev->pkt_consumed - 1) % DCP_MAX_PKG]; if (!dev->ctx->stat && last_packet->pkt1 & DCP_PKT_CHAIN) { if (!test_and_set_bit(DCP_FLAG_PRODUCING, &dev->flags)) dcp_op_proceed(dev); return; } while (unlikely(dev->pkt_consumed < dev->pkt_produced)) { dcp_dma_unmap(dev, dev->hw_pkg[dev->pkt_consumed++ % DCP_MAX_PKG]); } if (dev->ctx->flags & DCP_OTP_KEY) { /* we used the miscdevice, no walk to finish */ clear_bit(DCP_FLAG_BUSY, &dev->flags); return; } ablkcipher_walk_complete(&dev->ctx->walk); dev->ctx->req->base.complete(&dev->ctx->req->base, dev->ctx->stat); dev->ctx->req = 0; /* in case there are other requests in the queue */ tasklet_schedule(&dev->queue_task); } void dcp_watchdog(unsigned long data) { struct dcp_dev *dev = (struct dcp_dev *)data; dev->ctx->stat |= dcp_read(dev, dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL)); dev_err(dev->dev, "Timeout, Channel status: %x", dev->ctx->stat); if (!dev->ctx->stat) dev->ctx->stat = -ETIMEDOUT; dcp_done_task(data); } static irqreturn_t dcp_common_irq(int irq, void *context) { u32 msk; struct dcp_dev *dev = (struct dcp_dev *) context; del_timer(&dev->watchdog); msk = DCP_STAT_IRQ(dcp_read(dev, DCP_REG_STAT)); dcp_clear(dev, msk, DCP_REG_STAT); if (msk == 0) return IRQ_NONE; dev->ctx->stat |= dcp_read(dev, dcp_chan_reg(DCP_REG_CHAN_STAT, USED_CHANNEL)); if (msk & DCP_STAT_CHAN_1) tasklet_schedule(&dev->done_task); return IRQ_HANDLED; } static irqreturn_t dcp_vmi_irq(int irq, void *context) { return dcp_common_irq(irq, context); } static irqreturn_t dcp_irq(int irq, void *context) { return dcp_common_irq(irq, context); } static void dcp_crypt(struct dcp_dev *dev, struct dcp_op *ctx) { dev->ctx = ctx; if ((ctx->flags & DCP_CBC) && ctx->req->info) { ctx->flags |= DCP_CBC_INIT; memcpy(dev->payload_base + AES_KEYSIZE_128, ctx->req->info, AES_KEYSIZE_128); } dcp_op_start(dev, 1); } static void dcp_queue_task(unsigned long data) { struct dcp_dev *dev = (struct dcp_dev *) data; struct crypto_async_request *async_req, *backlog; struct crypto_ablkcipher *tfm; struct dcp_op *ctx; struct dcp_dev_req_ctx *rctx; struct ablkcipher_request *req; unsigned long flags; spin_lock_irqsave(&dev->queue_lock, flags); backlog = crypto_get_backlog(&dev->queue); async_req = crypto_dequeue_request(&dev->queue); spin_unlock_irqrestore(&dev->queue_lock, flags); if (!async_req) goto ret_nothing_done; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ablkcipher_request_cast(async_req); tfm = crypto_ablkcipher_reqtfm(req); rctx = ablkcipher_request_ctx(req); ctx = crypto_ablkcipher_ctx(tfm); if (!req->src || !req->dst) goto ret_nothing_done; ctx->flags |= rctx->mode; ctx->req = req; dcp_crypt(dev, ctx); return; ret_nothing_done: clear_bit(DCP_FLAG_BUSY, &dev->flags); } static int dcp_cra_init(struct crypto_tfm *tfm) { const char *name = tfm->__crt_alg->cra_name; struct dcp_op *ctx = crypto_tfm_ctx(tfm); tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_dev_req_ctx); ctx->fallback = crypto_alloc_ablkcipher(name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback)) { dev_err(global_dev->dev, "Error allocating fallback algo %s\n", name); return PTR_ERR(ctx->fallback); } return 0; } static void dcp_cra_exit(struct crypto_tfm *tfm) { struct dcp_op *ctx = crypto_tfm_ctx(tfm); if (ctx->fallback) crypto_free_ablkcipher(ctx->fallback); ctx->fallback = NULL; } /* async interface */ static int dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int len) { struct dcp_op *ctx = crypto_ablkcipher_ctx(tfm); unsigned int ret = 0; ctx->keylen = len; ctx->flags = 0; if (len == AES_KEYSIZE_128) { if (memcmp(ctx->key, key, AES_KEYSIZE_128)) { memcpy(ctx->key, key, len); ctx->flags |= DCP_NEW_KEY; } return 0; } ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; ctx->fallback->base.crt_flags |= (tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); ret = crypto_ablkcipher_setkey(ctx->fallback, key, len); if (ret) { struct crypto_tfm *tfm_aux = crypto_ablkcipher_tfm(tfm); tfm_aux->crt_flags &= ~CRYPTO_TFM_RES_MASK; tfm_aux->crt_flags |= (ctx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK); } return ret; } static int dcp_aes_cbc_crypt(struct ablkcipher_request *req, int mode) { struct dcp_dev_req_ctx *rctx = ablkcipher_request_ctx(req); struct dcp_dev *dev = global_dev; unsigned long flags; int err = 0; if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) return -EINVAL; rctx->mode = mode; spin_lock_irqsave(&dev->queue_lock, flags); err = ablkcipher_enqueue_request(&dev->queue, req); spin_unlock_irqrestore(&dev->queue_lock, flags); flags = test_and_set_bit(DCP_FLAG_BUSY, &dev->flags); if (!(flags & DCP_FLAG_BUSY)) tasklet_schedule(&dev->queue_task); return err; } static int dcp_aes_cbc_encrypt(struct ablkcipher_request *req) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); struct dcp_op *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); if (unlikely(ctx->keylen != AES_KEYSIZE_128)) { int err = 0; ablkcipher_request_set_tfm(req, ctx->fallback); err = crypto_ablkcipher_encrypt(req); ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm)); return err; } return dcp_aes_cbc_crypt(req, DCP_AES | DCP_ENC | DCP_CBC); } static int dcp_aes_cbc_decrypt(struct ablkcipher_request *req) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); struct dcp_op *ctx = crypto_ablkcipher_ctx( crypto_ablkcipher_reqtfm(req)); if (unlikely(ctx->keylen != AES_KEYSIZE_128)) { int err = 0; ablkcipher_request_set_tfm(req, ctx->fallback); err = crypto_ablkcipher_decrypt(req); ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm)); return err; } return dcp_aes_cbc_crypt(req, DCP_AES | DCP_DEC | DCP_CBC); } static struct crypto_alg algs[] = { { .cra_name = "cbc(aes)", .cra_driver_name = "dcp-cbc-aes", .cra_alignmask = 3, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = AES_KEYSIZE_128, .cra_type = &crypto_ablkcipher_type, .cra_priority = 300, .cra_u.ablkcipher = { .min_keysize = AES_KEYSIZE_128, .max_keysize = AES_KEYSIZE_128, .setkey = dcp_aes_setkey, .encrypt = dcp_aes_cbc_encrypt, .decrypt = dcp_aes_cbc_decrypt, .ivsize = AES_KEYSIZE_128, } }, }; /* DCP bootstream verification interface: uses OTP key for crypto */ static int dcp_bootstream_open(struct inode *inode, struct file *file) { file->private_data = container_of((file->private_data), struct dcp_dev, dcp_bootstream_misc); return 0; } static long dcp_bootstream_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct dcp_dev *dev = (struct dcp_dev *) file->private_data; void __user *argp = (void __user *)arg; int ret; if (dev == NULL) return -EBADF; if (cmd != DBS_ENC && cmd != DBS_DEC) return -EINVAL; if (copy_from_user(dev->payload_base, argp, 16)) return -EFAULT; if (test_and_set_bit(DCP_FLAG_BUSY, &dev->flags)) return -EAGAIN; dev->ctx = kzalloc(sizeof(struct dcp_op), GFP_KERNEL); if (!dev->ctx) { dev_err(dev->dev, "cannot allocate context for OTP crypto"); clear_bit(DCP_FLAG_BUSY, &dev->flags); return -ENOMEM; } dev->ctx->flags = DCP_AES | DCP_ECB | DCP_OTP_KEY | DCP_CBC_INIT; dev->ctx->flags |= (cmd == DBS_ENC) ? DCP_ENC : DCP_DEC; dev->hw_pkg[0]->src = dev->payload_base_dma; dev->hw_pkg[0]->dst = dev->payload_base_dma; dev->hw_pkg[0]->size = 16; dcp_op_start(dev, 0); while (test_bit(DCP_FLAG_BUSY, &dev->flags)) cpu_relax(); ret = dev->ctx->stat; if (!ret && copy_to_user(argp, dev->payload_base, 16)) ret = -EFAULT; kfree(dev->ctx); return ret; } static const struct file_operations dcp_bootstream_fops = { .owner = THIS_MODULE, .unlocked_ioctl = dcp_bootstream_ioctl, .open = dcp_bootstream_open, }; static int dcp_probe(struct platform_device *pdev) { struct dcp_dev *dev = NULL; struct resource *r; int i, ret, j; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (dev == NULL) { dev_err(&pdev->dev, "Failed to allocate structure\n"); ret = -ENOMEM; goto err; } global_dev = dev; dev->dev = &pdev->dev; platform_set_drvdata(pdev, dev); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "failed to get IORESOURCE_MEM\n"); ret = -ENXIO; goto err_dev; } dev->dcp_regs_base = ioremap(r->start, resource_size(r)); dcp_set(dev, DCP_CTRL_SFRST, DCP_REG_CTRL); udelay(10); dcp_clear(dev, DCP_CTRL_SFRST | DCP_CTRL_CLKGATE, DCP_REG_CTRL); dcp_write(dev, DCP_CTRL_GATHER_RES_WRITE | DCP_CTRL_ENABLE_CONTEXT_CACHE | DCP_CTRL_CH_IRQ_E_1, DCP_REG_CTRL); dcp_write(dev, DCP_CHAN_CTRL_ENABLE_1, DCP_REG_CHAN_CTRL); for (i = 0; i < 4; i++) dcp_clear(dev, -1, dcp_chan_reg(DCP_REG_CHAN_STAT, i)); dcp_clear(dev, -1, DCP_REG_STAT); r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!r) { dev_err(&pdev->dev, "can't get IRQ resource (0)\n"); ret = -EIO; goto err_unmap_mem; } dev->dcp_vmi_irq = r->start; ret = request_irq(dev->dcp_vmi_irq, dcp_vmi_irq, 0, "dcp", dev); if (ret != 0) { dev_err(&pdev->dev, "can't request_irq (0)\n"); ret = -EIO; goto err_unmap_mem; } r = platform_get_resource(pdev, IORESOURCE_IRQ, 1); if (!r) { dev_err(&pdev->dev, "can't get IRQ resource (1)\n"); ret = -EIO; goto err_free_irq0; } dev->dcp_irq = r->start; ret = request_irq(dev->dcp_irq, dcp_irq, 0, "dcp", dev); if (ret != 0) { dev_err(&pdev->dev, "can't request_irq (1)\n"); ret = -EIO; goto err_free_irq0; } dev->hw_pkg[0] = dma_alloc_coherent(&pdev->dev, DCP_MAX_PKG * sizeof(struct dcp_hw_packet), &dev->hw_phys_pkg, GFP_KERNEL); if (!dev->hw_pkg[0]) { dev_err(&pdev->dev, "Could not allocate hw descriptors\n"); ret = -ENOMEM; goto err_free_irq1; } for (i = 1; i < DCP_MAX_PKG; i++) { dev->hw_pkg[i - 1]->next = dev->hw_phys_pkg + i * sizeof(struct dcp_hw_packet); dev->hw_pkg[i] = dev->hw_pkg[i - 1] + 1; } dev->hw_pkg[i - 1]->next = dev->hw_phys_pkg; dev->payload_base = dma_alloc_coherent(&pdev->dev, 2 * AES_KEYSIZE_128, &dev->payload_base_dma, GFP_KERNEL); if (!dev->payload_base) { dev_err(&pdev->dev, "Could not allocate memory for key\n"); ret = -ENOMEM; goto err_free_hw_packet; } tasklet_init(&dev->queue_task, dcp_queue_task, (unsigned long) dev); tasklet_init(&dev->done_task, dcp_done_task, (unsigned long) dev); spin_lock_init(&dev->queue_lock); crypto_init_queue(&dev->queue, 10); init_timer(&dev->watchdog); dev->watchdog.function = &dcp_watchdog; dev->watchdog.data = (unsigned long)dev; dev->dcp_bootstream_misc.minor = MISC_DYNAMIC_MINOR, dev->dcp_bootstream_misc.name = "dcpboot", dev->dcp_bootstream_misc.fops = &dcp_bootstream_fops, ret = misc_register(&dev->dcp_bootstream_misc); if (ret != 0) { dev_err(dev->dev, "Unable to register misc device\n"); goto err_free_key_iv; } for (i = 0; i < ARRAY_SIZE(algs); i++) { algs[i].cra_priority = 300; algs[i].cra_ctxsize = sizeof(struct dcp_op); algs[i].cra_module = THIS_MODULE; algs[i].cra_init = dcp_cra_init; algs[i].cra_exit = dcp_cra_exit; if (crypto_register_alg(&algs[i])) { dev_err(&pdev->dev, "register algorithm failed\n"); ret = -ENOMEM; goto err_unregister; } } dev_notice(&pdev->dev, "DCP crypto enabled.!\n"); return 0; err_unregister: for (j = 0; j < i; j++) crypto_unregister_alg(&algs[j]); err_free_key_iv: dma_free_coherent(&pdev->dev, 2 * AES_KEYSIZE_128, dev->payload_base, dev->payload_base_dma); err_free_hw_packet: dma_free_coherent(&pdev->dev, DCP_MAX_PKG * sizeof(struct dcp_hw_packet), dev->hw_pkg[0], dev->hw_phys_pkg); err_free_irq1: free_irq(dev->dcp_irq, dev); err_free_irq0: free_irq(dev->dcp_vmi_irq, dev); err_unmap_mem: iounmap((void *) dev->dcp_regs_base); err_dev: kfree(dev); err: return ret; } static int dcp_remove(struct platform_device *pdev) { struct dcp_dev *dev; int j; dev = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); dma_free_coherent(&pdev->dev, DCP_MAX_PKG * sizeof(struct dcp_hw_packet), dev->hw_pkg[0], dev->hw_phys_pkg); dma_free_coherent(&pdev->dev, 2 * AES_KEYSIZE_128, dev->payload_base, dev->payload_base_dma); free_irq(dev->dcp_irq, dev); free_irq(dev->dcp_vmi_irq, dev); tasklet_kill(&dev->done_task); tasklet_kill(&dev->queue_task); iounmap((void *) dev->dcp_regs_base); for (j = 0; j < ARRAY_SIZE(algs); j++) crypto_unregister_alg(&algs[j]); misc_deregister(&dev->dcp_bootstream_misc); kfree(dev); return 0; } static struct of_device_id fs_dcp_of_match[] = { { .compatible = "fsl-dcp"}, {}, }; static struct platform_driver fs_dcp_driver = { .probe = dcp_probe, .remove = dcp_remove, .driver = { .name = "fsl-dcp", .owner = THIS_MODULE, .of_match_table = fs_dcp_of_match } }; module_platform_driver(fs_dcp_driver); MODULE_AUTHOR("Tobias Rauter "); MODULE_DESCRIPTION("Freescale DCP Crypto Driver"); MODULE_LICENSE("GPL");