/* * drivers/cpufreq/cpufreq_conservative.c * * Copyright (C) 2001 Russell King * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. * Jun Nakajima <jun.nakajima@intel.com> * (C) 2009 Alexander Clouter <alex@digriz.org.uk> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/cpufreq.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/kobject.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/notifier.h> #include <linux/percpu-defs.h> #include <linux/sysfs.h> #include <linux/types.h> #include "cpufreq_governor.h" /* Conservative governor macors */ #define DEF_FREQUENCY_UP_THRESHOLD (80) #define DEF_FREQUENCY_DOWN_THRESHOLD (20) #define DEF_SAMPLING_DOWN_FACTOR (1) #define MAX_SAMPLING_DOWN_FACTOR (10) static struct dbs_data cs_dbs_data; static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info); static struct cs_dbs_tuners cs_tuners = { .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, .ignore_nice = 0, .freq_step = 5, }; /* * Every sampling_rate, we check, if current idle time is less than 20% * (default), then we try to increase frequency Every sampling_rate * * sampling_down_factor, we check, if current idle time is more than 80%, then * we try to decrease frequency * * Any frequency increase takes it to the maximum frequency. Frequency reduction * happens at minimum steps of 5% (default) of maximum frequency */ static void cs_check_cpu(int cpu, unsigned int load) { struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu); struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy; unsigned int freq_target; /* * break out if we 'cannot' reduce the speed as the user might * want freq_step to be zero */ if (cs_tuners.freq_step == 0) return; /* Check for frequency increase */ if (load > cs_tuners.up_threshold) { dbs_info->down_skip = 0; /* if we are already at full speed then break out early */ if (dbs_info->requested_freq == policy->max) return; freq_target = (cs_tuners.freq_step * policy->max) / 100; /* max freq cannot be less than 100. But who knows.... */ if (unlikely(freq_target == 0)) freq_target = 5; dbs_info->requested_freq += freq_target; if (dbs_info->requested_freq > policy->max) dbs_info->requested_freq = policy->max; __cpufreq_driver_target(policy, dbs_info->requested_freq, CPUFREQ_RELATION_H); return; } /* * The optimal frequency is the frequency that is the lowest that can * support the current CPU usage without triggering the up policy. To be * safe, we focus 10 points under the threshold. */ if (load < (cs_tuners.down_threshold - 10)) { freq_target = (cs_tuners.freq_step * policy->max) / 100; dbs_info->requested_freq -= freq_target; if (dbs_info->requested_freq < policy->min) dbs_info->requested_freq = policy->min; /* * if we cannot reduce the frequency anymore, break out early */ if (policy->cur == policy->min) return; __cpufreq_driver_target(policy, dbs_info->requested_freq, CPUFREQ_RELATION_H); return; } } static void cs_dbs_timer(struct work_struct *work) { struct cs_cpu_dbs_info_s *dbs_info = container_of(work, struct cs_cpu_dbs_info_s, cdbs.work.work); unsigned int cpu = dbs_info->cdbs.cpu; int delay = delay_for_sampling_rate(cs_tuners.sampling_rate); mutex_lock(&dbs_info->cdbs.timer_mutex); dbs_check_cpu(&cs_dbs_data, cpu); schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay); mutex_unlock(&dbs_info->cdbs.timer_mutex); } static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, freq->cpu); struct cpufreq_policy *policy; if (!dbs_info->enable) return 0; policy = dbs_info->cdbs.cur_policy; /* * we only care if our internally tracked freq moves outside the 'valid' * ranges of freqency available to us otherwise we do not change it */ if (dbs_info->requested_freq > policy->max || dbs_info->requested_freq < policy->min) dbs_info->requested_freq = freq->new; return 0; } /************************** sysfs interface ************************/ static ssize_t show_sampling_rate_min(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate); } static ssize_t store_sampling_down_factor(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) return -EINVAL; cs_tuners.sampling_down_factor = input; return count; } static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate); return count; } static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold) return -EINVAL; cs_tuners.up_threshold = input; return count; } static ssize_t store_down_threshold(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); /* cannot be lower than 11 otherwise freq will not fall */ if (ret != 1 || input < 11 || input > 100 || input >= cs_tuners.up_threshold) return -EINVAL; cs_tuners.down_threshold = input; return count; } static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input, j; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; if (input > 1) input = 1; if (input == cs_tuners.ignore_nice) /* nothing to do */ return count; cs_tuners.ignore_nice = input; /* we need to re-evaluate prev_cpu_idle */ for_each_online_cpu(j) { struct cs_cpu_dbs_info_s *dbs_info; dbs_info = &per_cpu(cs_cpu_dbs_info, j); dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, &dbs_info->cdbs.prev_cpu_wall); if (cs_tuners.ignore_nice) dbs_info->cdbs.prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; } return count; } static ssize_t store_freq_step(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; if (input > 100) input = 100; /* * no need to test here if freq_step is zero as the user might actually * want this, they would be crazy though :) */ cs_tuners.freq_step = input; return count; } show_one(cs, sampling_rate, sampling_rate); show_one(cs, sampling_down_factor, sampling_down_factor); show_one(cs, up_threshold, up_threshold); show_one(cs, down_threshold, down_threshold); show_one(cs, ignore_nice_load, ignore_nice); show_one(cs, freq_step, freq_step); define_one_global_rw(sampling_rate); define_one_global_rw(sampling_down_factor); define_one_global_rw(up_threshold); define_one_global_rw(down_threshold); define_one_global_rw(ignore_nice_load); define_one_global_rw(freq_step); define_one_global_ro(sampling_rate_min); static struct attribute *dbs_attributes[] = { &sampling_rate_min.attr, &sampling_rate.attr, &sampling_down_factor.attr, &up_threshold.attr, &down_threshold.attr, &ignore_nice_load.attr, &freq_step.attr, NULL }; static struct attribute_group cs_attr_group = { .attrs = dbs_attributes, .name = "conservative", }; /************************** sysfs end ************************/ define_get_cpu_dbs_routines(cs_cpu_dbs_info); static struct notifier_block cs_cpufreq_notifier_block = { .notifier_call = dbs_cpufreq_notifier, }; static struct cs_ops cs_ops = { .notifier_block = &cs_cpufreq_notifier_block, }; static struct dbs_data cs_dbs_data = { .governor = GOV_CONSERVATIVE, .attr_group = &cs_attr_group, .tuners = &cs_tuners, .get_cpu_cdbs = get_cpu_cdbs, .get_cpu_dbs_info_s = get_cpu_dbs_info_s, .gov_dbs_timer = cs_dbs_timer, .gov_check_cpu = cs_check_cpu, .gov_ops = &cs_ops, }; static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event) { return cpufreq_governor_dbs(&cs_dbs_data, policy, event); } #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE static #endif struct cpufreq_governor cpufreq_gov_conservative = { .name = "conservative", .governor = cs_cpufreq_governor_dbs, .max_transition_latency = TRANSITION_LATENCY_LIMIT, .owner = THIS_MODULE, }; static int __init cpufreq_gov_dbs_init(void) { mutex_init(&cs_dbs_data.mutex); return cpufreq_register_governor(&cpufreq_gov_conservative); } static void __exit cpufreq_gov_dbs_exit(void) { cpufreq_unregister_governor(&cpufreq_gov_conservative); } MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>"); MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for " "Low Latency Frequency Transition capable processors " "optimised for use in a battery environment"); MODULE_LICENSE("GPL"); #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE fs_initcall(cpufreq_gov_dbs_init); #else module_init(cpufreq_gov_dbs_init); #endif module_exit(cpufreq_gov_dbs_exit);