/* * Texas Instruments' Bluetooth HCILL UART protocol * * HCILL (HCI Low Level) is a Texas Instruments' power management * protocol extension to H4. * * Copyright (C) 2007 Texas Instruments, Inc. * * Written by Ohad Ben-Cohen * * Acknowledgements: * This file is based on hci_h4.c, which was written * by Maxim Krasnyansky and Marcel Holtmann. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hci_uart.h" /* Vendor-specific HCI commands */ #define HCI_VS_WRITE_BD_ADDR 0xfc06 #define HCI_VS_UPDATE_UART_HCI_BAUDRATE 0xff36 /* HCILL commands */ #define HCILL_GO_TO_SLEEP_IND 0x30 #define HCILL_GO_TO_SLEEP_ACK 0x31 #define HCILL_WAKE_UP_IND 0x32 #define HCILL_WAKE_UP_ACK 0x33 /* HCILL receiver States */ #define HCILL_W4_PACKET_TYPE 0 #define HCILL_W4_EVENT_HDR 1 #define HCILL_W4_ACL_HDR 2 #define HCILL_W4_SCO_HDR 3 #define HCILL_W4_DATA 4 /* HCILL states */ enum hcill_states_e { HCILL_ASLEEP, HCILL_ASLEEP_TO_AWAKE, HCILL_AWAKE, HCILL_AWAKE_TO_ASLEEP }; struct ll_device { struct hci_uart hu; struct serdev_device *serdev; struct gpio_desc *enable_gpio; struct clk *ext_clk; bdaddr_t bdaddr; }; struct ll_struct { unsigned long rx_state; unsigned long rx_count; struct sk_buff *rx_skb; struct sk_buff_head txq; spinlock_t hcill_lock; /* HCILL state lock */ unsigned long hcill_state; /* HCILL power state */ struct sk_buff_head tx_wait_q; /* HCILL wait queue */ }; /* * Builds and sends an HCILL command packet. * These are very simple packets with only 1 cmd byte */ static int send_hcill_cmd(u8 cmd, struct hci_uart *hu) { int err = 0; struct sk_buff *skb = NULL; struct ll_struct *ll = hu->priv; BT_DBG("hu %p cmd 0x%x", hu, cmd); /* allocate packet */ skb = bt_skb_alloc(1, GFP_ATOMIC); if (!skb) { BT_ERR("cannot allocate memory for HCILL packet"); err = -ENOMEM; goto out; } /* prepare packet */ skb_put_u8(skb, cmd); /* send packet */ skb_queue_tail(&ll->txq, skb); out: return err; } /* Initialize protocol */ static int ll_open(struct hci_uart *hu) { struct ll_struct *ll; BT_DBG("hu %p", hu); ll = kzalloc(sizeof(*ll), GFP_KERNEL); if (!ll) return -ENOMEM; skb_queue_head_init(&ll->txq); skb_queue_head_init(&ll->tx_wait_q); spin_lock_init(&ll->hcill_lock); ll->hcill_state = HCILL_AWAKE; hu->priv = ll; if (hu->serdev) { struct ll_device *lldev = serdev_device_get_drvdata(hu->serdev); serdev_device_open(hu->serdev); if (!IS_ERR(lldev->ext_clk)) clk_prepare_enable(lldev->ext_clk); } return 0; } /* Flush protocol data */ static int ll_flush(struct hci_uart *hu) { struct ll_struct *ll = hu->priv; BT_DBG("hu %p", hu); skb_queue_purge(&ll->tx_wait_q); skb_queue_purge(&ll->txq); return 0; } /* Close protocol */ static int ll_close(struct hci_uart *hu) { struct ll_struct *ll = hu->priv; BT_DBG("hu %p", hu); skb_queue_purge(&ll->tx_wait_q); skb_queue_purge(&ll->txq); kfree_skb(ll->rx_skb); if (hu->serdev) { struct ll_device *lldev = serdev_device_get_drvdata(hu->serdev); gpiod_set_value_cansleep(lldev->enable_gpio, 0); clk_disable_unprepare(lldev->ext_clk); serdev_device_close(hu->serdev); } hu->priv = NULL; kfree(ll); return 0; } /* * internal function, which does common work of the device wake up process: * 1. places all pending packets (waiting in tx_wait_q list) in txq list. * 2. changes internal state to HCILL_AWAKE. * Note: assumes that hcill_lock spinlock is taken, * shouldn't be called otherwise! */ static void __ll_do_awake(struct ll_struct *ll) { struct sk_buff *skb = NULL; while ((skb = skb_dequeue(&ll->tx_wait_q))) skb_queue_tail(&ll->txq, skb); ll->hcill_state = HCILL_AWAKE; } /* * Called upon a wake-up-indication from the device */ static void ll_device_want_to_wakeup(struct hci_uart *hu) { unsigned long flags; struct ll_struct *ll = hu->priv; BT_DBG("hu %p", hu); /* lock hcill state */ spin_lock_irqsave(&ll->hcill_lock, flags); switch (ll->hcill_state) { case HCILL_ASLEEP_TO_AWAKE: /* * This state means that both the host and the BRF chip * have simultaneously sent a wake-up-indication packet. * Traditionally, in this case, receiving a wake-up-indication * was enough and an additional wake-up-ack wasn't needed. * This has changed with the BRF6350, which does require an * explicit wake-up-ack. Other BRF versions, which do not * require an explicit ack here, do accept it, thus it is * perfectly safe to always send one. */ BT_DBG("dual wake-up-indication"); /* fall through */ case HCILL_ASLEEP: /* acknowledge device wake up */ if (send_hcill_cmd(HCILL_WAKE_UP_ACK, hu) < 0) { BT_ERR("cannot acknowledge device wake up"); goto out; } break; default: /* any other state is illegal */ BT_ERR("received HCILL_WAKE_UP_IND in state %ld", ll->hcill_state); break; } /* send pending packets and change state to HCILL_AWAKE */ __ll_do_awake(ll); out: spin_unlock_irqrestore(&ll->hcill_lock, flags); /* actually send the packets */ hci_uart_tx_wakeup(hu); } /* * Called upon a sleep-indication from the device */ static void ll_device_want_to_sleep(struct hci_uart *hu) { unsigned long flags; struct ll_struct *ll = hu->priv; BT_DBG("hu %p", hu); /* lock hcill state */ spin_lock_irqsave(&ll->hcill_lock, flags); /* sanity check */ if (ll->hcill_state != HCILL_AWAKE) BT_ERR("ERR: HCILL_GO_TO_SLEEP_IND in state %ld", ll->hcill_state); /* acknowledge device sleep */ if (send_hcill_cmd(HCILL_GO_TO_SLEEP_ACK, hu) < 0) { BT_ERR("cannot acknowledge device sleep"); goto out; } /* update state */ ll->hcill_state = HCILL_ASLEEP; out: spin_unlock_irqrestore(&ll->hcill_lock, flags); /* actually send the sleep ack packet */ hci_uart_tx_wakeup(hu); } /* * Called upon wake-up-acknowledgement from the device */ static void ll_device_woke_up(struct hci_uart *hu) { unsigned long flags; struct ll_struct *ll = hu->priv; BT_DBG("hu %p", hu); /* lock hcill state */ spin_lock_irqsave(&ll->hcill_lock, flags); /* sanity check */ if (ll->hcill_state != HCILL_ASLEEP_TO_AWAKE) BT_ERR("received HCILL_WAKE_UP_ACK in state %ld", ll->hcill_state); /* send pending packets and change state to HCILL_AWAKE */ __ll_do_awake(ll); spin_unlock_irqrestore(&ll->hcill_lock, flags); /* actually send the packets */ hci_uart_tx_wakeup(hu); } /* Enqueue frame for transmittion (padding, crc, etc) */ /* may be called from two simultaneous tasklets */ static int ll_enqueue(struct hci_uart *hu, struct sk_buff *skb) { unsigned long flags = 0; struct ll_struct *ll = hu->priv; BT_DBG("hu %p skb %p", hu, skb); /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); /* lock hcill state */ spin_lock_irqsave(&ll->hcill_lock, flags); /* act according to current state */ switch (ll->hcill_state) { case HCILL_AWAKE: BT_DBG("device awake, sending normally"); skb_queue_tail(&ll->txq, skb); break; case HCILL_ASLEEP: BT_DBG("device asleep, waking up and queueing packet"); /* save packet for later */ skb_queue_tail(&ll->tx_wait_q, skb); /* awake device */ if (send_hcill_cmd(HCILL_WAKE_UP_IND, hu) < 0) { BT_ERR("cannot wake up device"); break; } ll->hcill_state = HCILL_ASLEEP_TO_AWAKE; break; case HCILL_ASLEEP_TO_AWAKE: BT_DBG("device waking up, queueing packet"); /* transient state; just keep packet for later */ skb_queue_tail(&ll->tx_wait_q, skb); break; default: BT_ERR("illegal hcill state: %ld (losing packet)", ll->hcill_state); kfree_skb(skb); break; } spin_unlock_irqrestore(&ll->hcill_lock, flags); return 0; } static inline int ll_check_data_len(struct hci_dev *hdev, struct ll_struct *ll, int len) { int room = skb_tailroom(ll->rx_skb); BT_DBG("len %d room %d", len, room); if (!len) { hci_recv_frame(hdev, ll->rx_skb); } else if (len > room) { BT_ERR("Data length is too large"); kfree_skb(ll->rx_skb); } else { ll->rx_state = HCILL_W4_DATA; ll->rx_count = len; return len; } ll->rx_state = HCILL_W4_PACKET_TYPE; ll->rx_skb = NULL; ll->rx_count = 0; return 0; } /* Recv data */ static int ll_recv(struct hci_uart *hu, const void *data, int count) { struct ll_struct *ll = hu->priv; const char *ptr; struct hci_event_hdr *eh; struct hci_acl_hdr *ah; struct hci_sco_hdr *sh; int len, type, dlen; BT_DBG("hu %p count %d rx_state %ld rx_count %ld", hu, count, ll->rx_state, ll->rx_count); ptr = data; while (count) { if (ll->rx_count) { len = min_t(unsigned int, ll->rx_count, count); skb_put_data(ll->rx_skb, ptr, len); ll->rx_count -= len; count -= len; ptr += len; if (ll->rx_count) continue; switch (ll->rx_state) { case HCILL_W4_DATA: BT_DBG("Complete data"); hci_recv_frame(hu->hdev, ll->rx_skb); ll->rx_state = HCILL_W4_PACKET_TYPE; ll->rx_skb = NULL; continue; case HCILL_W4_EVENT_HDR: eh = hci_event_hdr(ll->rx_skb); BT_DBG("Event header: evt 0x%2.2x plen %d", eh->evt, eh->plen); ll_check_data_len(hu->hdev, ll, eh->plen); continue; case HCILL_W4_ACL_HDR: ah = hci_acl_hdr(ll->rx_skb); dlen = __le16_to_cpu(ah->dlen); BT_DBG("ACL header: dlen %d", dlen); ll_check_data_len(hu->hdev, ll, dlen); continue; case HCILL_W4_SCO_HDR: sh = hci_sco_hdr(ll->rx_skb); BT_DBG("SCO header: dlen %d", sh->dlen); ll_check_data_len(hu->hdev, ll, sh->dlen); continue; } } /* HCILL_W4_PACKET_TYPE */ switch (*ptr) { case HCI_EVENT_PKT: BT_DBG("Event packet"); ll->rx_state = HCILL_W4_EVENT_HDR; ll->rx_count = HCI_EVENT_HDR_SIZE; type = HCI_EVENT_PKT; break; case HCI_ACLDATA_PKT: BT_DBG("ACL packet"); ll->rx_state = HCILL_W4_ACL_HDR; ll->rx_count = HCI_ACL_HDR_SIZE; type = HCI_ACLDATA_PKT; break; case HCI_SCODATA_PKT: BT_DBG("SCO packet"); ll->rx_state = HCILL_W4_SCO_HDR; ll->rx_count = HCI_SCO_HDR_SIZE; type = HCI_SCODATA_PKT; break; /* HCILL signals */ case HCILL_GO_TO_SLEEP_IND: BT_DBG("HCILL_GO_TO_SLEEP_IND packet"); ll_device_want_to_sleep(hu); ptr++; count--; continue; case HCILL_GO_TO_SLEEP_ACK: /* shouldn't happen */ BT_ERR("received HCILL_GO_TO_SLEEP_ACK (in state %ld)", ll->hcill_state); ptr++; count--; continue; case HCILL_WAKE_UP_IND: BT_DBG("HCILL_WAKE_UP_IND packet"); ll_device_want_to_wakeup(hu); ptr++; count--; continue; case HCILL_WAKE_UP_ACK: BT_DBG("HCILL_WAKE_UP_ACK packet"); ll_device_woke_up(hu); ptr++; count--; continue; default: BT_ERR("Unknown HCI packet type %2.2x", (__u8)*ptr); hu->hdev->stat.err_rx++; ptr++; count--; continue; } ptr++; count--; /* Allocate packet */ ll->rx_skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC); if (!ll->rx_skb) { BT_ERR("Can't allocate mem for new packet"); ll->rx_state = HCILL_W4_PACKET_TYPE; ll->rx_count = 0; return -ENOMEM; } hci_skb_pkt_type(ll->rx_skb) = type; } return count; } static struct sk_buff *ll_dequeue(struct hci_uart *hu) { struct ll_struct *ll = hu->priv; return skb_dequeue(&ll->txq); } #if IS_ENABLED(CONFIG_SERIAL_DEV_BUS) static int read_local_version(struct hci_dev *hdev) { int err = 0; unsigned short version = 0; struct sk_buff *skb; struct hci_rp_read_local_version *ver; skb = __hci_cmd_sync(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading TI version information failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } if (skb->len != sizeof(*ver)) { err = -EILSEQ; goto out; } ver = (struct hci_rp_read_local_version *)skb->data; if (le16_to_cpu(ver->manufacturer) != 13) { err = -ENODEV; goto out; } version = le16_to_cpu(ver->lmp_subver); out: if (err) bt_dev_err(hdev, "Failed to read TI version info: %d", err); kfree_skb(skb); return err ? err : version; } /** * download_firmware - * internal function which parses through the .bts firmware * script file intreprets SEND, DELAY actions only as of now */ static int download_firmware(struct ll_device *lldev) { unsigned short chip, min_ver, maj_ver; int version, err, len; unsigned char *ptr, *action_ptr; unsigned char bts_scr_name[40]; /* 40 char long bts scr name? */ const struct firmware *fw; struct sk_buff *skb; struct hci_command *cmd; version = read_local_version(lldev->hu.hdev); if (version < 0) return version; chip = (version & 0x7C00) >> 10; min_ver = (version & 0x007F); maj_ver = (version & 0x0380) >> 7; if (version & 0x8000) maj_ver |= 0x0008; snprintf(bts_scr_name, sizeof(bts_scr_name), "ti-connectivity/TIInit_%d.%d.%d.bts", chip, maj_ver, min_ver); err = request_firmware(&fw, bts_scr_name, &lldev->serdev->dev); if (err || !fw->data || !fw->size) { bt_dev_err(lldev->hu.hdev, "request_firmware failed(errno %d) for %s", err, bts_scr_name); return -EINVAL; } ptr = (void *)fw->data; len = fw->size; /* bts_header to remove out magic number and * version */ ptr += sizeof(struct bts_header); len -= sizeof(struct bts_header); while (len > 0 && ptr) { bt_dev_dbg(lldev->hu.hdev, " action size %d, type %d ", ((struct bts_action *)ptr)->size, ((struct bts_action *)ptr)->type); action_ptr = &(((struct bts_action *)ptr)->data[0]); switch (((struct bts_action *)ptr)->type) { case ACTION_SEND_COMMAND: /* action send */ bt_dev_dbg(lldev->hu.hdev, "S"); cmd = (struct hci_command *)action_ptr; if (cmd->opcode == HCI_VS_UPDATE_UART_HCI_BAUDRATE) { /* ignore remote change * baud rate HCI VS command */ bt_dev_warn(lldev->hu.hdev, "change remote baud rate command in firmware"); break; } if (cmd->prefix != 1) bt_dev_dbg(lldev->hu.hdev, "command type %d", cmd->prefix); skb = __hci_cmd_sync(lldev->hu.hdev, cmd->opcode, cmd->plen, &cmd->speed, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(lldev->hu.hdev, "send command failed"); err = PTR_ERR(skb); goto out_rel_fw; } kfree_skb(skb); break; case ACTION_WAIT_EVENT: /* wait */ /* no need to wait as command was synchronous */ bt_dev_dbg(lldev->hu.hdev, "W"); break; case ACTION_DELAY: /* sleep */ bt_dev_info(lldev->hu.hdev, "sleep command in scr"); msleep(((struct bts_action_delay *)action_ptr)->msec); break; } len -= (sizeof(struct bts_action) + ((struct bts_action *)ptr)->size); ptr += sizeof(struct bts_action) + ((struct bts_action *)ptr)->size; } out_rel_fw: /* fw download complete */ release_firmware(fw); return err; } static int ll_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) { bdaddr_t bdaddr_swapped; struct sk_buff *skb; /* HCI_VS_WRITE_BD_ADDR (at least on a CC2560A chip) expects the BD * address to be MSB first, but bdaddr_t has the convention of being * LSB first. */ baswap(&bdaddr_swapped, bdaddr); skb = __hci_cmd_sync(hdev, HCI_VS_WRITE_BD_ADDR, sizeof(bdaddr_t), &bdaddr_swapped, HCI_INIT_TIMEOUT); if (!IS_ERR(skb)) kfree_skb(skb); return PTR_ERR_OR_ZERO(skb); } static int ll_setup(struct hci_uart *hu) { int err, retry = 3; struct ll_device *lldev; struct serdev_device *serdev = hu->serdev; u32 speed; if (!serdev) return 0; lldev = serdev_device_get_drvdata(serdev); hu->hdev->set_bdaddr = ll_set_bdaddr; serdev_device_set_flow_control(serdev, true); do { /* Reset the Bluetooth device */ gpiod_set_value_cansleep(lldev->enable_gpio, 0); msleep(5); gpiod_set_value_cansleep(lldev->enable_gpio, 1); err = serdev_device_wait_for_cts(serdev, true, 200); if (err) { bt_dev_err(hu->hdev, "Failed to get CTS"); return err; } err = download_firmware(lldev); if (!err) break; /* Toggle BT_EN and retry */ bt_dev_err(hu->hdev, "download firmware failed, retrying..."); } while (retry--); if (err) return err; /* Set BD address if one was specified at probe */ if (!bacmp(&lldev->bdaddr, BDADDR_NONE)) { /* This means that there was an error getting the BD address * during probe, so mark the device as having a bad address. */ set_bit(HCI_QUIRK_INVALID_BDADDR, &hu->hdev->quirks); } else if (bacmp(&lldev->bdaddr, BDADDR_ANY)) { err = ll_set_bdaddr(hu->hdev, &lldev->bdaddr); if (err) set_bit(HCI_QUIRK_INVALID_BDADDR, &hu->hdev->quirks); } /* Operational speed if any */ if (hu->oper_speed) speed = hu->oper_speed; else if (hu->proto->oper_speed) speed = hu->proto->oper_speed; else speed = 0; if (speed) { __le32 speed_le = cpu_to_le32(speed); struct sk_buff *skb; skb = __hci_cmd_sync(hu->hdev, HCI_VS_UPDATE_UART_HCI_BAUDRATE, sizeof(speed_le), &speed_le, HCI_INIT_TIMEOUT); if (!IS_ERR(skb)) { kfree_skb(skb); serdev_device_set_baudrate(serdev, speed); } } return 0; } static const struct hci_uart_proto llp; static int hci_ti_probe(struct serdev_device *serdev) { struct hci_uart *hu; struct ll_device *lldev; struct nvmem_cell *bdaddr_cell; u32 max_speed = 3000000; lldev = devm_kzalloc(&serdev->dev, sizeof(struct ll_device), GFP_KERNEL); if (!lldev) return -ENOMEM; hu = &lldev->hu; serdev_device_set_drvdata(serdev, lldev); lldev->serdev = hu->serdev = serdev; lldev->enable_gpio = devm_gpiod_get_optional(&serdev->dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(lldev->enable_gpio)) return PTR_ERR(lldev->enable_gpio); lldev->ext_clk = devm_clk_get(&serdev->dev, "ext_clock"); if (IS_ERR(lldev->ext_clk) && PTR_ERR(lldev->ext_clk) != -ENOENT) return PTR_ERR(lldev->ext_clk); of_property_read_u32(serdev->dev.of_node, "max-speed", &max_speed); hci_uart_set_speeds(hu, 115200, max_speed); /* optional BD address from nvram */ bdaddr_cell = nvmem_cell_get(&serdev->dev, "bd-address"); if (IS_ERR(bdaddr_cell)) { int err = PTR_ERR(bdaddr_cell); if (err == -EPROBE_DEFER) return err; /* ENOENT means there is no matching nvmem cell and ENOSYS * means that nvmem is not enabled in the kernel configuration. */ if (err != -ENOENT && err != -ENOSYS) { /* If there was some other error, give userspace a * chance to fix the problem instead of failing to load * the driver. Using BDADDR_NONE as a flag that is * tested later in the setup function. */ dev_warn(&serdev->dev, "Failed to get \"bd-address\" nvmem cell (%d)\n", err); bacpy(&lldev->bdaddr, BDADDR_NONE); } } else { bdaddr_t *bdaddr; size_t len; bdaddr = nvmem_cell_read(bdaddr_cell, &len); nvmem_cell_put(bdaddr_cell); if (IS_ERR(bdaddr)) { dev_err(&serdev->dev, "Failed to read nvmem bd-address\n"); return PTR_ERR(bdaddr); } if (len != sizeof(bdaddr_t)) { dev_err(&serdev->dev, "Invalid nvmem bd-address length\n"); kfree(bdaddr); return -EINVAL; } /* As per the device tree bindings, the value from nvmem is * expected to be MSB first, but in the kernel it is expected * that bdaddr_t is LSB first. */ baswap(&lldev->bdaddr, bdaddr); kfree(bdaddr); } return hci_uart_register_device(hu, &llp); } static void hci_ti_remove(struct serdev_device *serdev) { struct ll_device *lldev = serdev_device_get_drvdata(serdev); hci_uart_unregister_device(&lldev->hu); } static const struct of_device_id hci_ti_of_match[] = { { .compatible = "ti,cc2560" }, { .compatible = "ti,wl1271-st" }, { .compatible = "ti,wl1273-st" }, { .compatible = "ti,wl1281-st" }, { .compatible = "ti,wl1283-st" }, { .compatible = "ti,wl1285-st" }, { .compatible = "ti,wl1801-st" }, { .compatible = "ti,wl1805-st" }, { .compatible = "ti,wl1807-st" }, { .compatible = "ti,wl1831-st" }, { .compatible = "ti,wl1835-st" }, { .compatible = "ti,wl1837-st" }, {}, }; MODULE_DEVICE_TABLE(of, hci_ti_of_match); static struct serdev_device_driver hci_ti_drv = { .driver = { .name = "hci-ti", .of_match_table = of_match_ptr(hci_ti_of_match), }, .probe = hci_ti_probe, .remove = hci_ti_remove, }; #else #define ll_setup NULL #endif static const struct hci_uart_proto llp = { .id = HCI_UART_LL, .name = "LL", .setup = ll_setup, .open = ll_open, .close = ll_close, .recv = ll_recv, .enqueue = ll_enqueue, .dequeue = ll_dequeue, .flush = ll_flush, }; int __init ll_init(void) { serdev_device_driver_register(&hci_ti_drv); return hci_uart_register_proto(&llp); } int __exit ll_deinit(void) { serdev_device_driver_unregister(&hci_ti_drv); return hci_uart_unregister_proto(&llp); }