/* * * AicSemi Bluetooth USB driver * * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include / #include #include #include #include #include #include #include #include #include #include #include #include #include #include "aic_btusb.h" #ifdef CONFIG_USE_FW_REQUEST #include #endif #define AICBT_RELEASE_NAME "202012_ANDROID" #define VERSION "2.1.0" #define SUSPNED_DW_FW 0 static spinlock_t queue_lock; static spinlock_t dlfw_lock; static volatile uint16_t dlfw_dis_state = 0; /* USB Device ID */ #define USB_VENDOR_ID_AIC 0xA69C #define USB_PRODUCT_ID_AIC8801 0x8801 #define USB_PRODUCT_ID_AIC8800DC 0x88dc #define USB_PRODUCT_ID_AIC8800D80 0x8d81 enum AICWF_IC{ PRODUCT_ID_AIC8801 = 0, PRODUCT_ID_AIC8800DC, PRODUCT_ID_AIC8800DW, PRODUCT_ID_AIC8800D80 }; u16 g_chipid = PRODUCT_ID_AIC8801; u8 chip_id = 0; u8 sub_chip_id = 0; struct btusb_data { struct hci_dev *hdev; struct usb_device *udev; struct usb_interface *intf; struct usb_interface *isoc; spinlock_t lock; unsigned long flags; struct work_struct work; struct work_struct waker; struct usb_anchor tx_anchor; struct usb_anchor intr_anchor; struct usb_anchor bulk_anchor; struct usb_anchor isoc_anchor; struct usb_anchor deferred; int tx_in_flight; spinlock_t txlock; #if (CONFIG_BLUEDROID == 0) #if HCI_VERSION_CODE >= KERNEL_VERSION(3, 18, 0) spinlock_t rxlock; struct sk_buff *evt_skb; struct sk_buff *acl_skb; struct sk_buff *sco_skb; #endif #endif struct usb_endpoint_descriptor *intr_ep; struct usb_endpoint_descriptor *bulk_tx_ep; struct usb_endpoint_descriptor *bulk_rx_ep; struct usb_endpoint_descriptor *isoc_tx_ep; struct usb_endpoint_descriptor *isoc_rx_ep; __u8 cmdreq_type; unsigned int sco_num; int isoc_altsetting; int suspend_count; uint16_t sco_handle; #if (CONFIG_BLUEDROID == 0) #if HCI_VERSION_CODE >= KERNEL_VERSION(3, 18, 0) int (*recv_bulk) (struct btusb_data * data, void *buffer, int count); #endif #endif //#ifdef CONFIG_HAS_EARLYSUSPEND #if 0 struct early_suspend early_suspend; #else struct notifier_block pm_notifier; struct notifier_block reboot_notifier; #endif firmware_info *fw_info; #ifdef CONFIG_SCO_OVER_HCI AIC_sco_card_t *pSCOSnd; #endif }; #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 1) static bool reset_on_close = 0; #endif #ifdef CONFIG_SCO_OVER_HCI struct snd_sco_cap_timer { struct timer_list cap_timer; struct timer_list play_timer; struct btusb_data snd_usb_data; int snd_sco_length; }; static struct snd_sco_cap_timer snd_cap_timer; #endif int bt_support = 0; module_param(bt_support, int, 0660); #ifdef CONFIG_SUPPORT_VENDOR_APCF int vendor_apcf_sent_done = 0; #endif static inline int check_set_dlfw_state_value(uint16_t change_value) { spin_lock(&dlfw_lock); if(!dlfw_dis_state) { dlfw_dis_state = change_value; } spin_unlock(&dlfw_lock); return dlfw_dis_state; } static inline void set_dlfw_state_value(uint16_t change_value) { spin_lock(&dlfw_lock); dlfw_dis_state = change_value; spin_unlock(&dlfw_lock); } static void aic_free( struct btusb_data *data) { #if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 1) kfree(data); #endif return; } static struct btusb_data *aic_alloc(struct usb_interface *intf) { struct btusb_data *data; #if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 1) data = kzalloc(sizeof(*data), GFP_KERNEL); #else data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL); #endif return data; } static void print_acl(struct sk_buff *skb, int direction) { #if PRINT_ACL_DATA //uint wlength = skb->len; u16 *handle = (u16 *)(skb->data); u16 len = *(handle+1); //u8 *acl_data = (u8 *)(skb->data); AICBT_INFO("aic %s: direction %d, handle %04x, len %d", __func__, direction, *handle, len); #endif } static void print_sco(struct sk_buff *skb, int direction) { #if PRINT_SCO_DATA uint wlength = skb->len; u16 *handle = (u16 *)(skb->data); u8 len = *(u8 *)(handle+1); //u8 *sco_data =(u8 *)(skb->data); AICBT_INFO("aic %s: direction %d, handle %04x, len %d,wlength %d", __func__, direction, *handle, len,wlength); #endif } static void print_error_command(struct sk_buff *skb) { u16 *opcode = (u16*)(skb->data); u8 *cmd_data = (u8*)(skb->data); u8 len = *(cmd_data+2); printk(" 0x%04x,len:%d,", *opcode, len); #if CONFIG_BLUEDROID switch (*opcode) { case HCI_OP_INQUIRY: printk("HCI_OP_INQUIRY"); break; case HCI_OP_INQUIRY_CANCEL: printk("HCI_OP_INQUIRY_CANCEL"); break; case HCI_OP_EXIT_PERIODIC_INQ: printk("HCI_OP_EXIT_PERIODIC_INQ"); break; case HCI_OP_CREATE_CONN: printk("HCI_OP_CREATE_CONN"); break; case HCI_OP_DISCONNECT: printk("HCI_OP_DISCONNECT"); break; case HCI_OP_CREATE_CONN_CANCEL: printk("HCI_OP_CREATE_CONN_CANCEL"); break; case HCI_OP_ACCEPT_CONN_REQ: printk("HCI_OP_ACCEPT_CONN_REQ"); break; case HCI_OP_REJECT_CONN_REQ: printk("HCI_OP_REJECT_CONN_REQ"); break; case HCI_OP_AUTH_REQUESTED: printk("HCI_OP_AUTH_REQUESTED"); break; case HCI_OP_SET_CONN_ENCRYPT: printk("HCI_OP_SET_CONN_ENCRYPT"); break; case HCI_OP_REMOTE_NAME_REQ: printk("HCI_OP_REMOTE_NAME_REQ"); break; case HCI_OP_READ_REMOTE_FEATURES: printk("HCI_OP_READ_REMOTE_FEATURES"); break; case HCI_OP_SNIFF_MODE: printk("HCI_OP_SNIFF_MODE"); break; case HCI_OP_EXIT_SNIFF_MODE: printk("HCI_OP_EXIT_SNIFF_MODE"); break; case HCI_OP_SWITCH_ROLE: printk("HCI_OP_SWITCH_ROLE"); break; case HCI_OP_SNIFF_SUBRATE: printk("HCI_OP_SNIFF_SUBRATE"); break; case HCI_OP_RESET: printk("HCI_OP_RESET"); break; case HCI_OP_Write_Extended_Inquiry_Response: printk("HCI_Write_Extended_Inquiry_Response"); break; case HCI_OP_Write_Simple_Pairing_Mode: printk("HCI_OP_Write_Simple_Pairing_Mode"); break; case HCI_OP_Read_Buffer_Size: printk("HCI_OP_Read_Buffer_Size"); break; case HCI_OP_Host_Buffer_Size: printk("HCI_OP_Host_Buffer_Size"); break; case HCI_OP_Read_Local_Version_Information: printk("HCI_OP_Read_Local_Version_Information"); break; case HCI_OP_Read_BD_ADDR: printk("HCI_OP_Read_BD_ADDR"); break; case HCI_OP_Read_Local_Supported_Commands: printk("HCI_OP_Read_Local_Supported_Commands"); break; case HCI_OP_Write_Scan_Enable: printk("HCI_OP_Write_Scan_Enable"); break; case HCI_OP_Write_Current_IAC_LAP: printk("HCI_OP_Write_Current_IAC_LAP"); break; case HCI_OP_Write_Inquiry_Scan_Activity: printk("HCI_OP_Write_Inquiry_Scan_Activity"); break; case HCI_OP_Write_Class_of_Device: printk("HCI_OP_Write_Class_of_Device"); break; case HCI_OP_LE_Rand: printk("HCI_OP_LE_Rand"); break; case HCI_OP_LE_Set_Random_Address: printk("HCI_OP_LE_Set_Random_Address"); break; case HCI_OP_LE_Set_Extended_Scan_Enable: printk("HCI_OP_LE_Set_Extended_Scan_Enable"); break; case HCI_OP_LE_Set_Extended_Scan_Parameters: printk("HCI_OP_LE_Set_Extended_Scan_Parameters"); break; case HCI_OP_Set_Event_Filter: printk("HCI_OP_Set_Event_Filter"); break; case HCI_OP_Write_Voice_Setting: printk("HCI_OP_Write_Voice_Setting"); break; case HCI_OP_Change_Local_Name: printk("HCI_OP_Change_Local_Name"); break; case HCI_OP_Read_Local_Name: printk("HCI_OP_Read_Local_Name"); break; case HCI_OP_Wirte_Page_Timeout: printk("HCI_OP_Wirte_Page_Timeout"); break; case HCI_OP_LE_Clear_Resolving_List: printk("HCI_OP_LE_Clear_Resolving_List"); break; case HCI_OP_LE_Set_Addres_Resolution_Enable_Command: printk("HCI_OP_LE_Set_Addres_Resolution_Enable_Command"); break; case HCI_OP_Write_Inquiry_mode: printk("HCI_OP_Write_Inquiry_mode"); break; case HCI_OP_Write_Page_Scan_Type: printk("HCI_OP_Write_Page_Scan_Type"); break; case HCI_OP_Write_Inquiry_Scan_Type: printk("HCI_OP_Write_Inquiry_Scan_Type"); break; case HCI_OP_Delete_Stored_Link_Key: printk("HCI_OP_Delete_Stored_Link_Key"); break; case HCI_OP_LE_Read_Local_Resolvable_Address: printk("HCI_OP_LE_Read_Local_Resolvable_Address"); break; case HCI_OP_LE_Extended_Create_Connection: printk("HCI_OP_LE_Extended_Create_Connection"); break; case HCI_OP_Read_Remote_Version_Information: printk("HCI_OP_Read_Remote_Version_Information"); break; case HCI_OP_LE_Start_Encryption: printk("HCI_OP_LE_Start_Encryption"); break; case HCI_OP_LE_Add_Device_to_Resolving_List: printk("HCI_OP_LE_Add_Device_to_Resolving_List"); break; case HCI_OP_LE_Set_Privacy_Mode: printk("HCI_OP_LE_Set_Privacy_Mode"); break; case HCI_OP_LE_Connection_Update: printk("HCI_OP_LE_Connection_Update"); break; default: printk("UNKNOW_HCI_COMMAND"); break; } #endif //CONFIG_BLUEDROID } static void print_command(struct sk_buff *skb) { #if PRINT_CMD_EVENT print_error_command(skb); #endif } enum CODEC_TYPE{ CODEC_CVSD, CODEC_MSBC, }; static enum CODEC_TYPE codec_type = CODEC_CVSD; static void set_select_msbc(enum CODEC_TYPE type); static enum CODEC_TYPE check_select_msbc(void); #if CONFIG_BLUEDROID /* Global parameters for bt usb char driver */ #define BT_CHAR_DEVICE_NAME "aicbt_dev" struct mutex btchr_mutex; static struct sk_buff_head btchr_readq; static wait_queue_head_t btchr_read_wait; static wait_queue_head_t bt_dlfw_wait; static int bt_char_dev_registered; static dev_t bt_devid; /* bt char device number */ static struct cdev bt_char_dev; /* bt character device structure */ static struct class *bt_char_class; /* device class for usb char driver */ static int bt_reset = 0; /* HCI device & lock */ DEFINE_RWLOCK(hci_dev_lock); struct hci_dev *ghdev = NULL; #ifdef CONFIG_SUPPORT_VENDOR_APCF static int bypass_event(struct sk_buff *skb) { int ret = 0; u8 *opcode = (u8*)(skb->data); //u8 len = *(opcode+1); u16 sub_opcpde; switch(*opcode) { case HCI_EV_CMD_COMPLETE: sub_opcpde = ((u16)opcode[3]|(u16)(opcode[4])<<8); if(sub_opcpde == 0xfd57){ if(vendor_apcf_sent_done){ vendor_apcf_sent_done--; printk("apcf bypass\r\n"); ret = 1; } } break; default: break; } return ret; } #endif//CONFIG_SUPPORT_VENDOR_APCF static void print_event(struct sk_buff *skb) { #if PRINT_CMD_EVENT //uint wlength = skb->len; //uint icount = 0; u8 *opcode = (u8*)(skb->data); //u8 len = *(opcode+1); printk("aic %s ", __func__); switch (*opcode) { case HCI_EV_INQUIRY_COMPLETE: printk("HCI_EV_INQUIRY_COMPLETE"); break; case HCI_EV_INQUIRY_RESULT: printk("HCI_EV_INQUIRY_RESULT"); break; case HCI_EV_CONN_COMPLETE: printk("HCI_EV_CONN_COMPLETE"); break; case HCI_EV_CONN_REQUEST: printk("HCI_EV_CONN_REQUEST"); break; case HCI_EV_DISCONN_COMPLETE: printk("HCI_EV_DISCONN_COMPLETE"); break; case HCI_EV_AUTH_COMPLETE: printk("HCI_EV_AUTH_COMPLETE"); break; case HCI_EV_REMOTE_NAME: printk("HCI_EV_REMOTE_NAME"); break; case HCI_EV_ENCRYPT_CHANGE: printk("HCI_EV_ENCRYPT_CHANGE"); break; case HCI_EV_CHANGE_LINK_KEY_COMPLETE: printk("HCI_EV_CHANGE_LINK_KEY_COMPLETE"); break; case HCI_EV_REMOTE_FEATURES: printk("HCI_EV_REMOTE_FEATURES"); break; case HCI_EV_REMOTE_VERSION: printk("HCI_EV_REMOTE_VERSION"); break; case HCI_EV_QOS_SETUP_COMPLETE: printk("HCI_EV_QOS_SETUP_COMPLETE"); break; case HCI_EV_CMD_COMPLETE: printk("HCI_EV_CMD_COMPLETE"); break; case HCI_EV_CMD_STATUS: printk("HCI_EV_CMD_STATUS"); break; case HCI_EV_ROLE_CHANGE: printk("HCI_EV_ROLE_CHANGE"); break; case HCI_EV_NUM_COMP_PKTS: printk("HCI_EV_NUM_COMP_PKTS"); break; case HCI_EV_MODE_CHANGE: printk("HCI_EV_MODE_CHANGE"); break; case HCI_EV_PIN_CODE_REQ: printk("HCI_EV_PIN_CODE_REQ"); break; case HCI_EV_LINK_KEY_REQ: printk("HCI_EV_LINK_KEY_REQ"); break; case HCI_EV_LINK_KEY_NOTIFY: printk("HCI_EV_LINK_KEY_NOTIFY"); break; case HCI_EV_CLOCK_OFFSET: printk("HCI_EV_CLOCK_OFFSET"); break; case HCI_EV_PKT_TYPE_CHANGE: printk("HCI_EV_PKT_TYPE_CHANGE"); break; case HCI_EV_PSCAN_REP_MODE: printk("HCI_EV_PSCAN_REP_MODE"); break; case HCI_EV_INQUIRY_RESULT_WITH_RSSI: printk("HCI_EV_INQUIRY_RESULT_WITH_RSSI"); break; case HCI_EV_REMOTE_EXT_FEATURES: printk("HCI_EV_REMOTE_EXT_FEATURES"); break; case HCI_EV_SYNC_CONN_COMPLETE: printk("HCI_EV_SYNC_CONN_COMPLETE"); break; case HCI_EV_SYNC_CONN_CHANGED: printk("HCI_EV_SYNC_CONN_CHANGED"); break; case HCI_EV_SNIFF_SUBRATE: printk("HCI_EV_SNIFF_SUBRATE"); break; case HCI_EV_EXTENDED_INQUIRY_RESULT: printk("HCI_EV_EXTENDED_INQUIRY_RESULT"); break; case HCI_EV_IO_CAPA_REQUEST: printk("HCI_EV_IO_CAPA_REQUEST"); break; case HCI_EV_SIMPLE_PAIR_COMPLETE: printk("HCI_EV_SIMPLE_PAIR_COMPLETE"); break; case HCI_EV_REMOTE_HOST_FEATURES: printk("HCI_EV_REMOTE_HOST_FEATURES"); break; default: printk("unknow event"); break; } printk("\n"); #if 0 printk("%02x,len:%d,", *opcode,len); for (icount = 2; (icount < wlength) && (icount < 24); icount++) printk("%02x ", *(opcode+icount)); printk("\n"); #endif #endif } static inline ssize_t usb_put_user(struct sk_buff *skb, char __user *buf, int count) { char __user *ptr = buf; int len = min_t(unsigned int, skb->len, count); if (copy_to_user(ptr, skb->data, len)) return -EFAULT; return len; } static struct sk_buff *aic_skb_queue[QUEUE_SIZE]; static int aic_skb_queue_front = 0; static int aic_skb_queue_rear = 0; static void aic_enqueue(struct sk_buff *skb) { spin_lock(&queue_lock); if (aic_skb_queue_front == (aic_skb_queue_rear + 1) % QUEUE_SIZE) { /* * If queue is full, current solution is to drop * the following entries. */ AICBT_WARN("%s: Queue is full, entry will be dropped", __func__); } else { aic_skb_queue[aic_skb_queue_rear] = skb; aic_skb_queue_rear++; aic_skb_queue_rear %= QUEUE_SIZE; } spin_unlock(&queue_lock); } static struct sk_buff *aic_dequeue_try(unsigned int deq_len) { struct sk_buff *skb; struct sk_buff *skb_copy; if (aic_skb_queue_front == aic_skb_queue_rear) { AICBT_WARN("%s: Queue is empty", __func__); return NULL; } skb = aic_skb_queue[aic_skb_queue_front]; if (deq_len >= skb->len) { aic_skb_queue_front++; aic_skb_queue_front %= QUEUE_SIZE; /* * Return skb addr to be dequeued, and the caller * should free the skb eventually. */ return skb; } else { skb_copy = pskb_copy(skb, GFP_ATOMIC); skb_pull(skb, deq_len); /* Return its copy to be freed */ return skb_copy; } } static inline int is_queue_empty(void) { return (aic_skb_queue_front == aic_skb_queue_rear) ? 1 : 0; } static void aic_clear_queue(void) { struct sk_buff *skb; spin_lock(&queue_lock); while(!is_queue_empty()) { skb = aic_skb_queue[aic_skb_queue_front]; aic_skb_queue[aic_skb_queue_front] = NULL; aic_skb_queue_front++; aic_skb_queue_front %= QUEUE_SIZE; if (skb) { kfree_skb(skb); } } spin_unlock(&queue_lock); } /* * AicSemi - Integrate from hci_core.c */ /* Get HCI device by index. * Device is held on return. */ static struct hci_dev *hci_dev_get(int index) { if (index != 0) return NULL; return ghdev; } /* ---- HCI ioctl helpers ---- */ static int hci_dev_open(__u16 dev) { struct hci_dev *hdev; int ret = 0; AICBT_DBG("%s: dev %d", __func__, dev); hdev = hci_dev_get(dev); if (!hdev) { AICBT_ERR("%s: Failed to get hci dev[Null]", __func__); return -ENODEV; } if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) { ret = -ENODEV; goto done; } if (test_bit(HCI_UP, &hdev->flags)) { ret = -EALREADY; goto done; } done: return ret; } static int hci_dev_do_close(struct hci_dev *hdev) { if (hdev->flush) hdev->flush(hdev); /* After this point our queues are empty * and no tasks are scheduled. */ hdev->close(hdev); /* Clear flags */ hdev->flags = 0; return 0; } static int hci_dev_close(__u16 dev) { struct hci_dev *hdev; int err; hdev = hci_dev_get(dev); if (!hdev) { AICBT_ERR("%s: failed to get hci dev[Null]", __func__); return -ENODEV; } err = hci_dev_do_close(hdev); return err; } #ifdef CONFIG_SCO_OVER_HCI /* copy data from the URB buffer into the ALSA ring buffer */ static bool aic_copy_capture_data_to_alsa(struct btusb_data *data, uint8_t* p_data, unsigned int frames) { struct snd_pcm_runtime *runtime; unsigned int frame_bytes, frames1; u8 *dest; AIC_sco_card_t *pSCOSnd = data->pSCOSnd; runtime = pSCOSnd->capture.substream->runtime; frame_bytes = 2; dest = runtime->dma_area + pSCOSnd->capture.buffer_pos * frame_bytes; if (pSCOSnd->capture.buffer_pos + frames <= runtime->buffer_size) { memcpy(dest, p_data, frames * frame_bytes); } else { /* wrap around at end of ring buffer */ frames1 = runtime->buffer_size - pSCOSnd->capture.buffer_pos; memcpy(dest, p_data, frames1 * frame_bytes); memcpy(runtime->dma_area, p_data + frames1 * frame_bytes, (frames - frames1) * frame_bytes); } pSCOSnd->capture.buffer_pos += frames; if (pSCOSnd->capture.buffer_pos >= runtime->buffer_size) { pSCOSnd->capture.buffer_pos -= runtime->buffer_size; } if((pSCOSnd->capture.buffer_pos%runtime->period_size) == 0) { snd_pcm_period_elapsed(pSCOSnd->capture.substream); } return false; } static void hci_send_to_alsa_ringbuffer(struct hci_dev *hdev, struct sk_buff *skb) { struct btusb_data *data = GET_DRV_DATA(hdev); AIC_sco_card_t *pSCOSnd = data->pSCOSnd; uint8_t* p_data; int sco_length = skb->len - HCI_SCO_HDR_SIZE; u16 *handle = (u16 *) (skb->data); //u8 errflg = (u8)((*handle & 0x3000) >> 12); pSCOSnd->usb_data->sco_handle = (*handle & 0x0fff); AICBT_DBG("%s, %x, %x %x\n", __func__,pSCOSnd->usb_data->sco_handle, *handle, errflg); if (!hdev) { AICBT_INFO("%s: Frame for unknown HCI device", __func__); return; } if (!test_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states)) { AICBT_INFO("%s: ALSA is not running", __func__); return; } snd_cap_timer.snd_sco_length = sco_length; p_data = (uint8_t *)skb->data + HCI_SCO_HDR_SIZE; aic_copy_capture_data_to_alsa(data, p_data, sco_length/2); } #endif #if CONFIG_BLUEDROID static struct hci_dev *hci_alloc_dev(void) { struct hci_dev *hdev; hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL); if (!hdev) return NULL; return hdev; } /* Free HCI device */ static void hci_free_dev(struct hci_dev *hdev) { kfree(hdev); } /* Register HCI device */ static int hci_register_dev(struct hci_dev *hdev) { int i, id; AICBT_DBG("%s: %p name %s bus %d", __func__, hdev, hdev->name, hdev->bus); /* Do not allow HCI_AMP devices to register at index 0, * so the index can be used as the AMP controller ID. */ id = (hdev->dev_type == HCI_BREDR) ? 0 : 1; write_lock(&hci_dev_lock); sprintf(hdev->name, "hci%d", id); hdev->id = id; hdev->flags = 0; hdev->dev_flags = 0; mutex_init(&hdev->lock); AICBT_DBG("%s: id %d, name %s", __func__, hdev->id, hdev->name); for (i = 0; i < NUM_REASSEMBLY; i++) hdev->reassembly[i] = NULL; memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); atomic_set(&hdev->promisc, 0); if (ghdev) { write_unlock(&hci_dev_lock); AICBT_ERR("%s: Hci device has been registered already", __func__); return -1; } else ghdev = hdev; write_unlock(&hci_dev_lock); return id; } /* Unregister HCI device */ static void hci_unregister_dev(struct hci_dev *hdev) { int i; AICBT_DBG("%s: hdev %p name %s bus %d", __func__, hdev, hdev->name, hdev->bus); set_bit(HCI_UNREGISTER, &hdev->dev_flags); write_lock(&hci_dev_lock); ghdev = NULL; write_unlock(&hci_dev_lock); hci_dev_do_close(hdev); for (i = 0; i < NUM_REASSEMBLY; i++) kfree_skb(hdev->reassembly[i]); } static void hci_send_to_stack(struct hci_dev *hdev, struct sk_buff *skb) { struct sk_buff *aic_skb_copy = NULL; //AICBT_DBG("%s", __func__); if (!hdev) { AICBT_ERR("%s: Frame for unknown HCI device", __func__); return; } if (!test_bit(HCI_RUNNING, &hdev->flags)) { AICBT_ERR("%s: HCI not running", __func__); return; } aic_skb_copy = pskb_copy(skb, GFP_ATOMIC); if (!aic_skb_copy) { AICBT_ERR("%s: Copy skb error", __func__); return; } memcpy(skb_push(aic_skb_copy, 1), &bt_cb(skb)->pkt_type, 1); aic_enqueue(aic_skb_copy); /* Make sure bt char device existing before wakeup read queue */ hdev = hci_dev_get(0); if (hdev) { //AICBT_DBG("%s: Try to wakeup read queue", __func__); AICBT_DBG("%s", __func__); wake_up_interruptible(&btchr_read_wait); } return; } /* Receive frame from HCI drivers */ static int hci_recv_frame(struct sk_buff *skb) { struct hci_dev *hdev = (struct hci_dev *) skb->dev; if (!hdev || (!test_bit(HCI_UP, &hdev->flags) && !test_bit(HCI_INIT, &hdev->flags))) { kfree_skb(skb); return -ENXIO; } /* Incomming skb */ bt_cb(skb)->incoming = 1; /* Time stamp */ __net_timestamp(skb); if (atomic_read(&hdev->promisc)) { #ifdef CONFIG_SCO_OVER_HCI if(bt_cb(skb)->pkt_type == HCI_SCODATA_PKT){ hci_send_to_alsa_ringbuffer(hdev, skb); }else{ #ifdef CONFIG_SUPPORT_VENDOR_APCF if(bt_cb(skb)->pkt_type == HCI_EVENT_PKT){ if(bypass_event(skb)){ kfree_skb(skb); return 0; } } #endif //CONFIG_SUPPORT_VENDOR_APCF hci_send_to_stack(hdev, skb); } #else #ifdef CONFIG_SUPPORT_VENDOR_APCF if(bt_cb(skb)->pkt_type == HCI_EVENT_PKT){ if(bypass_event(skb)){ kfree_skb(skb); return 0; } } #endif //CONFIG_SUPPORT_VENDOR_APCF /* Send copy to the sockets */ hci_send_to_stack(hdev, skb); #endif } kfree_skb(skb); return 0; } static int hci_reassembly(struct hci_dev *hdev, int type, void *data, int count, __u8 index) { int len = 0; int hlen = 0; int remain = count; struct sk_buff *skb; struct bt_skb_cb *scb; //AICBT_DBG("%s", __func__); if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) || index >= NUM_REASSEMBLY) return -EILSEQ; skb = hdev->reassembly[index]; if (!skb) { switch (type) { case HCI_ACLDATA_PKT: len = HCI_MAX_FRAME_SIZE; hlen = HCI_ACL_HDR_SIZE; break; case HCI_EVENT_PKT: len = HCI_MAX_EVENT_SIZE; hlen = HCI_EVENT_HDR_SIZE; break; case HCI_SCODATA_PKT: len = HCI_MAX_SCO_SIZE; hlen = HCI_SCO_HDR_SIZE; break; } skb = bt_skb_alloc(len, GFP_ATOMIC); if (!skb) return -ENOMEM; scb = (void *) skb->cb; scb->expect = hlen; scb->pkt_type = type; skb->dev = (void *) hdev; hdev->reassembly[index] = skb; } while (count) { scb = (void *) skb->cb; len = min_t(uint, scb->expect, count); memcpy(skb_put(skb, len), data, len); count -= len; data += len; scb->expect -= len; remain = count; switch (type) { case HCI_EVENT_PKT: if (skb->len == HCI_EVENT_HDR_SIZE) { struct hci_event_hdr *h = hci_event_hdr(skb); scb->expect = h->plen; if (skb_tailroom(skb) < scb->expect) { kfree_skb(skb); hdev->reassembly[index] = NULL; return -ENOMEM; } } break; case HCI_ACLDATA_PKT: if (skb->len == HCI_ACL_HDR_SIZE) { struct hci_acl_hdr *h = hci_acl_hdr(skb); scb->expect = __le16_to_cpu(h->dlen); if (skb_tailroom(skb) < scb->expect) { kfree_skb(skb); hdev->reassembly[index] = NULL; return -ENOMEM; } } break; case HCI_SCODATA_PKT: if (skb->len == HCI_SCO_HDR_SIZE) { struct hci_sco_hdr *h = hci_sco_hdr(skb); scb->expect = h->dlen; if (skb_tailroom(skb) < scb->expect) { kfree_skb(skb); hdev->reassembly[index] = NULL; return -ENOMEM; } } break; } if (scb->expect == 0) { /* Complete frame */ if(HCI_ACLDATA_PKT == type) print_acl(skb,0); if(HCI_SCODATA_PKT == type) print_sco(skb,0); if(HCI_EVENT_PKT == type) print_event(skb); bt_cb(skb)->pkt_type = type; hci_recv_frame(skb); hdev->reassembly[index] = NULL; return remain; } } return remain; } static int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count) { int rem = 0; if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) return -EILSEQ; while (count) { rem = hci_reassembly(hdev, type, data, count, type - 1); if (rem < 0) return rem; data += (count - rem); count = rem; } return rem; } #endif //CONFIG_BLUEDROID void hci_hardware_error(void) { struct sk_buff *aic_skb_copy = NULL; int len = 3; uint8_t hardware_err_pkt[4] = {HCI_EVENT_PKT, 0x10, 0x01, HCI_VENDOR_USB_DISC_HARDWARE_ERROR}; aic_skb_copy = alloc_skb(len, GFP_ATOMIC); if (!aic_skb_copy) { AICBT_ERR("%s: Failed to allocate mem", __func__); return; } memcpy(skb_put(aic_skb_copy, len), hardware_err_pkt, len); aic_enqueue(aic_skb_copy); wake_up_interruptible(&btchr_read_wait); } static int btchr_open(struct inode *inode_p, struct file *file_p) { struct btusb_data *data; struct hci_dev *hdev; AICBT_DBG("%s: BT usb char device is opening", __func__); /* Not open unless wanna tracing log */ /* trace_printk("%s: open....\n", __func__); */ hdev = hci_dev_get(0); if (!hdev) { AICBT_DBG("%s: Failed to get hci dev[NULL]", __func__); return -ENODEV; } data = GET_DRV_DATA(hdev); atomic_inc(&hdev->promisc); /* * As bt device is not re-opened when hotplugged out, we cannot * trust on file's private data(may be null) when other file ops * are invoked. */ file_p->private_data = data; mutex_lock(&btchr_mutex); hci_dev_open(0); mutex_unlock(&btchr_mutex); aic_clear_queue(); return nonseekable_open(inode_p, file_p); } static int btchr_close(struct inode *inode_p, struct file *file_p) { struct btusb_data *data; struct hci_dev *hdev; AICBT_INFO("%s: BT usb char device is closing", __func__); /* Not open unless wanna tracing log */ /* trace_printk("%s: close....\n", __func__); */ data = file_p->private_data; file_p->private_data = NULL; #if CONFIG_BLUEDROID /* * If the upper layer closes bt char interfaces, no reset * action required even bt device hotplugged out. */ bt_reset = 0; #endif hdev = hci_dev_get(0); if (hdev) { atomic_set(&hdev->promisc, 0); mutex_lock(&btchr_mutex); hci_dev_close(0); mutex_unlock(&btchr_mutex); } return 0; } static ssize_t btchr_read(struct file *file_p, char __user *buf_p, size_t count, loff_t *pos_p) { struct hci_dev *hdev; struct sk_buff *skb; ssize_t ret = 0; while (count) { hdev = hci_dev_get(0); if (!hdev) { /* * Note: Only when BT device hotplugged out, we wil get * into such situation. In order to keep the upper layer * stack alive (blocking the read), we should never return * EFAULT or break the loop. */ AICBT_ERR("%s: Failed to get hci dev[Null]", __func__); } ret = wait_event_interruptible(btchr_read_wait, !is_queue_empty()); if (ret < 0) { AICBT_ERR("%s: wait event is signaled %d", __func__, (int)ret); break; } skb = aic_dequeue_try(count); if (skb) { ret = usb_put_user(skb, buf_p, count); if (ret < 0) AICBT_ERR("%s: Failed to put data to user space", __func__); kfree_skb(skb); break; } } return ret; } #ifdef CONFIG_SUPPORT_VENDOR_APCF void btchr_external_write(char* buff, int len){ struct hci_dev *hdev; struct sk_buff *skb; int i; struct btusb_data *data; AICBT_INFO("%s \r\n", __func__); for(i=0;idev = (void *)hdev; memcpy((__u8 *)skb->data,(__u8 *)buff,len); skb_put(skb, len); bt_cb(skb)->pkt_type = *((__u8 *)skb->data); skb_pull(skb, 1); data->hdev->send(skb); } EXPORT_SYMBOL(btchr_external_write); #endif //CONFIG_SUPPORT_VENDOR_APCF static ssize_t btchr_write(struct file *file_p, const char __user *buf_p, size_t count, loff_t *pos_p) { struct btusb_data *data = file_p->private_data; struct hci_dev *hdev; struct sk_buff *skb; //AICBT_DBG("%s: BT usb char device is writing", __func__); AICBT_DBG("%s", __func__); hdev = hci_dev_get(0); if (!hdev) { AICBT_WARN("%s: Failed to get hci dev[Null]", __func__); /* * Note: we bypass the data from the upper layer if bt device * is hotplugged out. Fortunatelly, H4 or H5 HCI stack does * NOT check btchr_write's return value. However, returning * count instead of EFAULT is preferable. */ /* return -EFAULT; */ return count; } /* Never trust on btusb_data, as bt device may be hotplugged out */ data = GET_DRV_DATA(hdev); if (!data) { AICBT_WARN("%s: Failed to get bt usb driver data[Null]", __func__); return count; } if (count > HCI_MAX_FRAME_SIZE) return -EINVAL; skb = bt_skb_alloc(count, GFP_ATOMIC); if (!skb) return -ENOMEM; skb_reserve(skb, -1); // Add this line if (copy_from_user(skb_put(skb, count), buf_p, count)) { AICBT_ERR("%s: Failed to get data from user space", __func__); kfree_skb(skb); return -EFAULT; } skb->dev = (void *)hdev; bt_cb(skb)->pkt_type = *((__u8 *)skb->data); skb_pull(skb, 1); data->hdev->send(skb); return count; } static unsigned int btchr_poll(struct file *file_p, poll_table *wait) { struct btusb_data *data = file_p->private_data; struct hci_dev *hdev; //AICBT_DBG("%s: BT usb char device is polling", __func__); if(!bt_char_dev_registered) { AICBT_ERR("%s: char device has not registered!", __func__); return POLLERR | POLLHUP; } poll_wait(file_p, &btchr_read_wait, wait); hdev = hci_dev_get(0); if (!hdev) { AICBT_ERR("%s: Failed to get hci dev[Null]", __func__); mdelay(URB_CANCELING_DELAY_MS); return POLLERR | POLLHUP; return POLLOUT | POLLWRNORM; } /* Never trust on btusb_data, as bt device may be hotplugged out */ data = GET_DRV_DATA(hdev); if (!data) { /* * When bt device is hotplugged out, btusb_data will * be freed in disconnect. */ AICBT_ERR("%s: Failed to get bt usb driver data[Null]", __func__); mdelay(URB_CANCELING_DELAY_MS); return POLLOUT | POLLWRNORM; } if (!is_queue_empty()) return POLLIN | POLLRDNORM; return POLLOUT | POLLWRNORM; } static long btchr_ioctl(struct file *file_p,unsigned int cmd, unsigned long arg) { int ret = 0; struct hci_dev *hdev; struct btusb_data *data; firmware_info *fw_info; if(!bt_char_dev_registered) { return -ENODEV; } if(check_set_dlfw_state_value(1) != 1) { AICBT_ERR("%s bt controller is disconnecting!", __func__); return 0; } hdev = hci_dev_get(0); if(!hdev) { AICBT_ERR("%s device is NULL!", __func__); set_dlfw_state_value(0); return 0; } data = GET_DRV_DATA(hdev); fw_info = data->fw_info; AICBT_INFO(" btchr_ioctl DOWN_FW_CFG with Cmd:%d",cmd); switch (cmd) { case DOWN_FW_CFG: AICBT_INFO(" btchr_ioctl DOWN_FW_CFG"); ret = usb_autopm_get_interface(data->intf); if (ret < 0){ goto failed; } //ret = download_patch(fw_info,1); usb_autopm_put_interface(data->intf); if(ret < 0){ AICBT_ERR("%s:Failed in download_patch with ret:%d",__func__,ret); goto failed; } ret = hdev->open(hdev); if(ret < 0){ AICBT_ERR("%s:Failed in hdev->open(hdev):%d",__func__,ret); goto failed; } set_bit(HCI_UP, &hdev->flags); set_dlfw_state_value(0); wake_up_interruptible(&bt_dlfw_wait); return 1; case DWFW_CMPLT: AICBT_INFO(" btchr_ioctl DWFW_CMPLT"); #if 1 case SET_ISO_CFG: AICBT_INFO("btchr_ioctl SET_ISO_CFG"); if(copy_from_user(&(hdev->voice_setting), (__u16*)arg, sizeof(__u16))){ AICBT_INFO(" voice settings err"); } //hdev->voice_setting = *(uint16_t*)arg; AICBT_INFO(" voice settings = %d", hdev->voice_setting); //return 1; #endif case GET_USB_INFO: //ret = download_patch(fw_info,1); AICBT_INFO(" btchr_ioctl GET_USB_INFO"); ret = hdev->open(hdev); if(ret < 0){ AICBT_ERR("%s:Failed in hdev->open(hdev):%d",__func__,ret); //goto done; } set_bit(HCI_UP, &hdev->flags); set_dlfw_state_value(0); wake_up_interruptible(&bt_dlfw_wait); return 1; case RESET_CONTROLLER: AICBT_INFO(" btchr_ioctl RESET_CONTROLLER"); //reset_controller(fw_info); return 1; default: AICBT_ERR("%s:Failed with wrong Cmd:%d",__func__,cmd); goto failed; } failed: set_dlfw_state_value(0); wake_up_interruptible(&bt_dlfw_wait); return ret; } #ifdef CONFIG_PLATFORM_UBUNTU//AIDEN typedef u32 compat_uptr_t; static inline void __user *compat_ptr(compat_uptr_t uptr) { return (void __user *)(unsigned long)uptr; } #endif #ifdef CONFIG_COMPAT static long compat_btchr_ioctl (struct file *filp, unsigned int cmd, unsigned long arg) { AICBT_DBG("%s: enter",__func__); return btchr_ioctl(filp, cmd, (unsigned long) compat_ptr(arg)); } #endif static struct file_operations bt_chrdev_ops = { open : btchr_open, release : btchr_close, read : btchr_read, write : btchr_write, poll : btchr_poll, unlocked_ioctl : btchr_ioctl, #ifdef CONFIG_COMPAT compat_ioctl : compat_btchr_ioctl, #endif }; static int btchr_init(void) { int res = 0; struct device *dev; AICBT_INFO("Register usb char device interface for BT driver"); /* * btchr mutex is used to sync between * 1) downloading patch and opening bt char driver * 2) the file operations of bt char driver */ mutex_init(&btchr_mutex); skb_queue_head_init(&btchr_readq); init_waitqueue_head(&btchr_read_wait); init_waitqueue_head(&bt_dlfw_wait); bt_char_class = class_create(THIS_MODULE, BT_CHAR_DEVICE_NAME); if (IS_ERR(bt_char_class)) { AICBT_ERR("Failed to create bt char class"); return PTR_ERR(bt_char_class); } res = alloc_chrdev_region(&bt_devid, 0, 1, BT_CHAR_DEVICE_NAME); if (res < 0) { AICBT_ERR("Failed to allocate bt char device"); goto err_alloc; } dev = device_create(bt_char_class, NULL, bt_devid, NULL, BT_CHAR_DEVICE_NAME); if (IS_ERR(dev)) { AICBT_ERR("Failed to create bt char device"); res = PTR_ERR(dev); goto err_create; } cdev_init(&bt_char_dev, &bt_chrdev_ops); res = cdev_add(&bt_char_dev, bt_devid, 1); if (res < 0) { AICBT_ERR("Failed to add bt char device"); goto err_add; } return 0; err_add: device_destroy(bt_char_class, bt_devid); err_create: unregister_chrdev_region(bt_devid, 1); err_alloc: class_destroy(bt_char_class); return res; } static void btchr_exit(void) { AICBT_INFO("Unregister usb char device interface for BT driver"); device_destroy(bt_char_class, bt_devid); cdev_del(&bt_char_dev); unregister_chrdev_region(bt_devid, 1); class_destroy(bt_char_class); return; } #endif int send_hci_cmd(firmware_info *fw_info) { int len = 0; int ret_val = -1; int i = 0; if(g_chipid == PRODUCT_ID_AIC8801 || g_chipid == PRODUCT_ID_AIC8800D80){ ret_val = usb_bulk_msg(fw_info->udev, fw_info->pipe_out, fw_info->send_pkt, fw_info->pkt_len, &len, 3000); if (ret_val || (len != fw_info->pkt_len)) { AICBT_INFO("Error in send hci cmd = %d," "len = %d, size = %d", ret_val, len, fw_info->pkt_len); } }else if(g_chipid == PRODUCT_ID_AIC8800DC){ while((ret_val<0)&&(i++<3)) { ret_val = usb_control_msg( fw_info->udev, fw_info->pipe_out, 0, USB_TYPE_CLASS, 0, 0, (void *)(fw_info->send_pkt), fw_info->pkt_len, MSG_TO); } } return ret_val; } int rcv_hci_evt(firmware_info *fw_info) { int ret_len = 0, ret_val = 0; int i; while (1) { for(i = 0; i < 5; i++) { ret_val = usb_interrupt_msg( fw_info->udev, fw_info->pipe_in, (void *)(fw_info->rcv_pkt), RCV_PKT_LEN, &ret_len, MSG_TO); if (ret_val >= 0) break; } if (ret_val < 0) return ret_val; if (CMD_CMP_EVT == fw_info->evt_hdr->evt) { if (fw_info->cmd_hdr->opcode == fw_info->cmd_cmp->opcode) return ret_len; } } } int set_bt_onoff(firmware_info *fw_info, uint8_t onoff) { int ret_val; AICBT_INFO("%s: %s", __func__, onoff != 0 ? "on" : "off"); fw_info->cmd_hdr->opcode = cpu_to_le16(BTOFF_OPCODE); fw_info->cmd_hdr->plen = 1; fw_info->pkt_len = CMD_HDR_LEN + 1; fw_info->send_pkt[CMD_HDR_LEN] = onoff; ret_val = send_hci_cmd(fw_info); if (ret_val < 0) { AICBT_ERR("%s: Failed to send bt %s cmd, errno %d", __func__, onoff != 0 ? "on" : "off", ret_val); return ret_val; } ret_val = rcv_hci_evt(fw_info); if (ret_val < 0) { AICBT_ERR("%s: Failed to receive bt %s event, errno %d", __func__, onoff != 0 ? "on" : "off", ret_val); return ret_val; } return ret_val; } //for 8800DC start u32 fwcfg_tbl[][2] = { {0x40200028, 0x0021047e}, {0x40200024, 0x0000011d}, }; int fw_config(firmware_info* fw_info) { int ret_val = -1; struct hci_dbg_rd_mem_cmd *rd_cmd; struct hci_dbg_rd_mem_cmd_evt *evt_para; int len = 0, i = 0; struct fw_status *evt_status; rd_cmd = (struct hci_dbg_rd_mem_cmd *)(fw_info->req_para); if (!rd_cmd) return -ENOMEM; rd_cmd->start_addr = 0x40200024; rd_cmd->type = 32; rd_cmd->length = 4; fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VSC_DBG_RD_MEM_CMD); fw_info->cmd_hdr->plen = sizeof(struct hci_dbg_rd_mem_cmd); fw_info->pkt_len = CMD_HDR_LEN + sizeof(struct hci_dbg_rd_mem_cmd); ret_val = send_hci_cmd(fw_info); if (ret_val < 0) { printk("%s: Failed to send hci cmd 0x%04x, errno %d", __func__, fw_info->cmd_hdr->opcode, ret_val); return ret_val; } ret_val = rcv_hci_evt(fw_info); if (ret_val < 0) { printk("%s: Failed to receive hci event, errno %d", __func__, ret_val); return ret_val; } evt_para = (struct hci_dbg_rd_mem_cmd_evt *)(fw_info->rsp_para); printk("%s: fw status = 0x%04x, length %d, %x %x %x %x", __func__, evt_para->status, evt_para->length, evt_para->data[0], evt_para->data[1], evt_para->data[2], evt_para->data[3]); ret_val = evt_para->status; if (evt_para->status == 0) { uint16_t rd_data = (evt_para->data[0] | (evt_para->data[1] << 8)); printk("%s rd_data is %x\n", __func__, rd_data); if (rd_data == 0x119) { struct aicbt_patch_table_cmd *patch_table_cmd = (struct aicbt_patch_table_cmd *)(fw_info->req_para); len = sizeof(fwcfg_tbl) / sizeof(u32) / 2; patch_table_cmd->patch_num = len; for (i = 0; i < len; i++) { memcpy(&patch_table_cmd->patch_table_addr[i], &fwcfg_tbl[i][0], sizeof(uint32_t)); memcpy(&patch_table_cmd->patch_table_data[i], &fwcfg_tbl[i][1], sizeof(uint32_t)); printk("%s [%d] data: %08x %08x\n", __func__, i, patch_table_cmd->patch_table_addr[i],patch_table_cmd->patch_table_data[i]); } fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VSC_UPDATE_PT_CMD); fw_info->cmd_hdr->plen = HCI_VSC_UPDATE_PT_SIZE; fw_info->pkt_len = fw_info->cmd_hdr->plen + 3; ret_val = send_hci_cmd(fw_info); if (ret_val < 0) { AICBT_ERR("%s: rcv_hci_evt err %d", __func__, ret_val); return ret_val; } ret_val = rcv_hci_evt(fw_info); if (ret_val < 0) { printk("%s: Failed to receive hci event, errno %d", __func__, ret_val); return ret_val; } evt_status = (struct fw_status *)fw_info->rsp_para; ret_val = evt_status->status; if (0 != evt_status->status) { ret_val = -1; } else { ret_val = 0; } } } return ret_val; } int system_config(firmware_info *fw_info) { int ret_val = -1; struct hci_dbg_rd_mem_cmd *rd_cmd; struct hci_dbg_rd_mem_cmd_evt *evt_para; //int len = 0, i = 0; //struct fw_status *evt_status; rd_cmd = (struct hci_dbg_rd_mem_cmd *)(fw_info->req_para); if (!rd_cmd) return -ENOMEM; rd_cmd->start_addr = 0x40500000; rd_cmd->type = 32; rd_cmd->length = 4; fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VSC_DBG_RD_MEM_CMD); fw_info->cmd_hdr->plen = sizeof(struct hci_dbg_rd_mem_cmd); fw_info->pkt_len = CMD_HDR_LEN + sizeof(struct hci_dbg_rd_mem_cmd); ret_val = send_hci_cmd(fw_info); if (ret_val < 0) { printk("%s: Failed to send hci cmd 0x%04x, errno %d", __func__, fw_info->cmd_hdr->opcode, ret_val); return ret_val; } ret_val = rcv_hci_evt(fw_info); if (ret_val < 0) { printk("%s: Failed to receive hci event, errno %d", __func__, ret_val); return ret_val; } evt_para = (struct hci_dbg_rd_mem_cmd_evt *)(fw_info->rsp_para); printk("%s: fw status = 0x%04x, length %d, %x %x %x %x", __func__, evt_para->status, evt_para->length, evt_para->data[0], evt_para->data[1], evt_para->data[2], evt_para->data[3]); ret_val = evt_para->status; if (evt_para->status == 0) { uint32_t rd_data = (evt_para->data[0] | (evt_para->data[1] << 8) | (evt_para->data[2] << 16) | (evt_para->data[3] << 24)); //printk("%s 0x40500000 rd_data is %x\n", __func__, rd_data); chip_id = (u8) (rd_data >> 16); } rd_cmd->start_addr = 0x20; rd_cmd->type = 32; rd_cmd->length = 4; fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VSC_DBG_RD_MEM_CMD); fw_info->cmd_hdr->plen = sizeof(struct hci_dbg_rd_mem_cmd); fw_info->pkt_len = CMD_HDR_LEN + sizeof(struct hci_dbg_rd_mem_cmd); ret_val = send_hci_cmd(fw_info); if (ret_val < 0) { printk("%s: Failed to send hci cmd 0x%04x, errno %d", __func__, fw_info->cmd_hdr->opcode, ret_val); return ret_val; } ret_val = rcv_hci_evt(fw_info); if (ret_val < 0) { printk("%s: Failed to receive hci event, errno %d", __func__, ret_val); return ret_val; } evt_para = (struct hci_dbg_rd_mem_cmd_evt *)(fw_info->rsp_para); printk("%s: fw status = 0x%04x, length %d, %x %x %x %x", __func__, evt_para->status, evt_para->length, evt_para->data[0], evt_para->data[1], evt_para->data[2], evt_para->data[3]); ret_val = evt_para->status; if (evt_para->status == 0) { uint32_t rd_data = (evt_para->data[0] | (evt_para->data[1] << 8) | (evt_para->data[2] << 16) | (evt_para->data[3] << 24)); //printk("%s 0x02 rd_data is %x\n", __func__, rd_data); sub_chip_id = (u8) (rd_data); } printk("chip_id = %x, sub_chip_id = %x\n", chip_id, sub_chip_id); return ret_val; } int check_fw_status(firmware_info* fw_info) { struct fw_status *read_ver_rsp; int ret_val = -1; fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VSC_FW_STATUS_GET_CMD); fw_info->cmd_hdr->plen = 0; fw_info->pkt_len = CMD_HDR_LEN; ret_val = send_hci_cmd(fw_info); if (ret_val < 0) { printk("%s: Failed to send hci cmd 0x%04x, errno %d", __func__, fw_info->cmd_hdr->opcode, ret_val); return ret_val; } ret_val = rcv_hci_evt(fw_info); if (ret_val < 0) { printk("%s: Failed to receive hci event, errno %d", __func__, ret_val); return ret_val; } read_ver_rsp = (struct fw_status *)(fw_info->rsp_para); printk("%s: fw status = 0x%04x", __func__, read_ver_rsp->status); return read_ver_rsp->status; } int download_data(firmware_info *fw_info, u32 fw_addr, char *filename) { unsigned int i=0; int size; u8 *dst=NULL; int err=0; struct hci_dbg_wr_mem_cmd *dl_cmd; int hdr_len = sizeof(__le32) + sizeof(__u8) + sizeof(__u8); int data_len = HCI_VSC_MEM_WR_SIZE; int frag_len = data_len + hdr_len; int ret_val; int ncmd = 1; struct fw_status *evt_para; /* load aic firmware */ size = aic_load_firmware(&dst, filename, NULL); if(size <= 0){ printk("wrong size of firmware file\n"); vfree(dst); dst = NULL; return -1; } dl_cmd = (struct hci_dbg_wr_mem_cmd *)(fw_info->req_para); if (!dl_cmd) return -ENOMEM; evt_para = (struct fw_status *)fw_info->rsp_para; /* Copy the file on the Embedded side */ printk("### Upload %s firmware, @ = %x size=%d\n", filename, fw_addr, size); if (size > HCI_VSC_MEM_WR_SIZE) {// > 1KB data for (i = 0; i < (size - HCI_VSC_MEM_WR_SIZE); i += HCI_VSC_MEM_WR_SIZE) {//each time write 240 bytes data_len = HCI_VSC_MEM_WR_SIZE; frag_len = data_len + hdr_len; memcpy(dl_cmd->data, dst + i, data_len); dl_cmd->length = data_len; dl_cmd->type = 32; dl_cmd->start_addr = fw_addr + i; fw_info->cmd_hdr->opcode = cpu_to_le16(DOWNLOAD_OPCODE); fw_info->cmd_hdr->plen = frag_len; fw_info->pkt_len = frag_len + 3; #if 0 printk("[%d] data_len %d, src %x, dst %x\n", i, data_len, dst + i, fw_addr + i); printk("%p , %d\n", dl_cmd, fw_info->pkt_len); print_hex_dump(KERN_ERR,"payload:",DUMP_PREFIX_NONE,16,1,dl_cmd->data,32,false); /* Send download command */ print_hex_dump(KERN_ERR,"data:",DUMP_PREFIX_NONE,16,1,fw_info->send_pkt,32,false); #endif ret_val = send_hci_cmd(fw_info); while (ncmd > 0) { ret_val = rcv_hci_evt(fw_info); printk("rcv_hci_evt %d\n", ret_val); if (ret_val < 0) { AICBT_ERR("%s: rcv_hci_evt err %d", __func__, ret_val); goto out; } else { AICBT_DBG("%s: Receive acked frag num %d", __func__, evt_para->status); ncmd--; } if (0 != evt_para->status) { AICBT_ERR("%s: Receive acked frag num %d, err status %d", __func__, ret_val, evt_para->status); ret_val = -1; goto out; } else { ret_val = 0; } } ncmd = 1; } } if (!err && (i < size)) {// <1KB data data_len = size - i; frag_len = data_len + hdr_len; memcpy(dl_cmd->data, dst + i, data_len); dl_cmd->length = data_len; dl_cmd->type = 32; dl_cmd->start_addr = fw_addr + i; fw_info->cmd_hdr->opcode = cpu_to_le16(DOWNLOAD_OPCODE); fw_info->cmd_hdr->plen = frag_len; fw_info->pkt_len = frag_len + 3; ret_val = send_hci_cmd(fw_info); //printk("(%d) data_len %d, src %x, dst %x\n", i, data_len, (dst + i), fw_addr + i); //printk("%p , %d\n", dl_cmd, fw_info->pkt_len); while (ncmd > 0) { ret_val = rcv_hci_evt(fw_info); if (ret_val < 0) { AICBT_ERR("%s: rcv_hci_evt err %d", __func__, ret_val); goto out; } else { AICBT_DBG("%s: Receive acked frag num %d", __func__, evt_para->status); ncmd--; } if (0 != evt_para->status) { AICBT_ERR("%s: Receive acked frag num %d, err status %d", __func__, ret_val, evt_para->status); ret_val = -1; goto out; } else { ret_val = 0; } } ncmd = 0; } out: if (dst) { vfree(dst); dst = NULL; } printk("fw download complete\n\n"); return ret_val; } struct aicbt_info_t { uint32_t btmode; uint32_t btport; uint32_t uart_baud; uint32_t uart_flowctrl; uint32_t lpm_enable; uint32_t txpwr_lvl; }; struct aicbsp_info_t { int hwinfo; uint32_t cpmode; }; enum aicbsp_cpmode_type { AICBSP_CPMODE_WORK, AICBSP_CPMODE_TEST, }; /* btmode * used for force bt mode,if not AICBSP_MODE_NULL * efuse valid and vendor_info will be invalid, even has beed set valid */ enum aicbt_btmode_type { AICBT_BTMODE_BT_ONLY_SW = 0x0, // bt only mode with switch AICBT_BTMODE_BT_WIFI_COMBO, // wifi/bt combo mode AICBT_BTMODE_BT_ONLY, // bt only mode without switch AICBT_BTMODE_BT_ONLY_TEST, // bt only test mode AICBT_BTMODE_BT_WIFI_COMBO_TEST, // wifi/bt combo test mode AICBT_MODE_NULL = 0xFF, // invalid value }; enum aicbt_btport_type { AICBT_BTPORT_NULL, AICBT_BTPORT_MB, AICBT_BTPORT_UART, }; enum aicbt_uart_baud_type { AICBT_UART_BAUD_115200 = 115200, AICBT_UART_BAUD_921600 = 921600, AICBT_UART_BAUD_1_5M = 1500000, AICBT_UART_BAUD_3_25M = 3250000, }; enum aicbt_uart_flowctrl_type { AICBT_UART_FLOWCTRL_DISABLE = 0x0, // uart without flow ctrl AICBT_UART_FLOWCTRL_ENABLE, // uart with flow ctrl }; #define AICBSP_HWINFO_DEFAULT (-1) #define AICBSP_CPMODE_DEFAULT AICBSP_CPMODE_WORK #define AICBT_TXPWR_DFT 0x6F2F #define AICBT_BTMODE_DEFAULT AICBT_BTMODE_BT_WIFI_COMBO #define AICBT_BTPORT_DEFAULT AICBT_BTPORT_MB #define AICBT_UART_BAUD_DEFAULT AICBT_UART_BAUD_1_5M #define AICBT_UART_FC_DEFAULT AICBT_UART_FLOWCTRL_ENABLE #define AICBT_LPM_ENABLE_DEFAULT 0 #define AICBT_TXPWR_LVL_DEFAULT AICBT_TXPWR_DFT struct aicbsp_info_t aicbsp_info = { .hwinfo = AICBSP_HWINFO_DEFAULT, .cpmode = AICBSP_CPMODE_DEFAULT, }; #ifndef CONFIG_USE_FW_REQUEST #define FW_PATH_MAX 200 char aic_fw_path[FW_PATH_MAX]; #if (CONFIG_BLUEDROID == 0) static const char* aic_default_fw_path = "/lib/firmware/aic8800DC"; #else static const char* aic_default_fw_path = "/vendor/etc/firmware"; #endif #endif //CONFIG_USE_FW_REQUEST static struct aicbt_info_t aicbt_info = { .btmode = AICBT_BTMODE_DEFAULT, .btport = AICBT_BTPORT_DEFAULT, .uart_baud = AICBT_UART_BAUD_DEFAULT, .uart_flowctrl = AICBT_UART_FC_DEFAULT, .lpm_enable = AICBT_LPM_ENABLE_DEFAULT, .txpwr_lvl = AICBT_TXPWR_LVL_DEFAULT, }; int patch_table_load(firmware_info *fw_info, struct aicbt_patch_table *_head) { struct aicbt_patch_table *head, *p; int i; uint32_t *data = NULL; struct aicbt_patch_table_cmd *patch_table_cmd = (struct aicbt_patch_table_cmd *)(fw_info->req_para); struct fw_status *evt_para; int ret_val = 0; int ncmd = 1; uint32_t len = 0; uint32_t tot_len = 0; head = _head; for (p = head; p != NULL; p = p->next) { data = p->data; if(AICBT_PT_BTMODE == p->type){ *(data + 1) = aicbsp_info.hwinfo < 0; *(data + 3) = aicbsp_info.hwinfo; *(data + 5) = aicbsp_info.cpmode; *(data + 7) = aicbt_info.btmode; *(data + 9) = aicbt_info.btport; *(data + 11) = aicbt_info.uart_baud; *(data + 13) = aicbt_info.uart_flowctrl; *(data + 15) = aicbt_info.lpm_enable; *(data + 17) = aicbt_info.txpwr_lvl; } if (p->type == AICBT_PT_NULL || p->type == AICBT_PT_PWRON) { continue; } if (p->type == AICBT_PT_VER) { char *data_s = (char *)p->data; printk("patch version %s\n", data_s); continue; } if (p->len == 0) { printk("len is 0\n"); continue; } tot_len = p->len; while (tot_len) { if (tot_len > HCI_PT_MAX_LEN) { len = HCI_PT_MAX_LEN; } else { len = tot_len; } for (i = 0; i < len; i++) { patch_table_cmd->patch_num = len; memcpy(&patch_table_cmd->patch_table_addr[i], data, sizeof(uint32_t)); memcpy(&patch_table_cmd->patch_table_data[i], data + 1, sizeof(uint32_t)); printk("[%d] data: %08x %08x\n", i, patch_table_cmd->patch_table_addr[i],patch_table_cmd->patch_table_data[i]); data += 2; } tot_len -= len; evt_para = (struct fw_status *)fw_info->rsp_para; //print_hex_dump(KERN_ERR,"data0:",DUMP_PREFIX_NONE,16,1,patch_table_cmd,sizeof(struct aicbt_patch_table_cmd),false); //printk("patch num %x %d\n", patch_table_cmd->patch_num, sizeof(struct aicbt_patch_table_cmd)); fw_info->cmd_hdr->opcode = cpu_to_le16(HCI_VSC_UPDATE_PT_CMD); fw_info->cmd_hdr->plen = HCI_VSC_UPDATE_PT_SIZE; fw_info->pkt_len = fw_info->cmd_hdr->plen + 3; AICBT_DBG("patch num 0x%x, plen 0x%x\n", patch_table_cmd->patch_num, fw_info->cmd_hdr->plen ); //print_hex_dump(KERN_ERR,"patch table:",DUMP_PREFIX_NONE,16,1,fw_info->send_pkt,32,false); ret_val = send_hci_cmd(fw_info); while (ncmd > 0) { ret_val = rcv_hci_evt(fw_info); if (ret_val < 0) { AICBT_ERR("%s: rcv_hci_evt err %d", __func__, ret_val); goto out; } else { AICBT_DBG("%s: Receive acked frag num %d", __func__, evt_para->status); ncmd--; } if (0 != evt_para->status) { AICBT_ERR("%s: Receive acked frag num %d, err status %d", __func__, ret_val, evt_para->status); ret_val = -1; goto out; } } ncmd = 1; } } out: aicbt_patch_table_free(&head); return ret_val; } int aic_load_firmware(u8 ** fw_buf, const char *name, struct device *device) { #ifdef CONFIG_USE_FW_REQUEST const struct firmware *fw = NULL; u32 *dst = NULL; void *buffer=NULL; int size = 0; int ret = 0; printk("%s: request firmware = %s \n", __func__ ,name); ret = request_firmware(&fw, name, NULL); if (ret < 0) { printk("Load %s fail\n", name); release_firmware(fw); return -1; } size = fw->size; dst = (u32 *)fw->data; if (size <= 0) { printk("wrong size of firmware file\n"); release_firmware(fw); return -1; } buffer = vmalloc(size); memset(buffer, 0, size); memcpy(buffer, dst, size); *fw_buf = buffer; release_firmware(fw); return size; #else u8 *buffer=NULL; char *path=NULL; struct file *fp=NULL; int size = 0, len=0; ssize_t rdlen=0; /* get the firmware path */ path = __getname(); if (!path){ *fw_buf=NULL; return -1; } if (strlen(aic_fw_path) > 0) { printk("%s: use customer define fw_path\n", __func__); len = snprintf(path, FW_PATH_MAX, "%s/%s", aic_fw_path, name); } else { len = snprintf(path, FW_PATH_MAX, "%s/%s",aic_default_fw_path, name); } if (len >= FW_PATH_MAX) { printk("%s: %s file's path too long\n", __func__, name); *fw_buf=NULL; __putname(path); return -1; } printk("%s :firmware path = %s \n", __func__ ,path); /* open the firmware file */ fp=filp_open(path, O_RDONLY, 0); if(IS_ERR(fp) || (!fp)){ printk("%s: %s file failed to open\n", __func__, name); if(IS_ERR(fp)) printk("is_Err\n"); if((!fp)) printk("null\n"); *fw_buf=NULL; __putname(path); fp=NULL; return -1; } size = i_size_read(file_inode(fp)); if(size<=0){ printk("%s: %s file size invalid %d\n", __func__, name, size); *fw_buf=NULL; __putname(path); filp_close(fp,NULL); fp=NULL; return -1; } /* start to read from firmware file */ buffer = vmalloc(size); memset(buffer, 0, size); if(!buffer){ *fw_buf=NULL; __putname(path); filp_close(fp,NULL); fp=NULL; return -1; } #if LINUX_VERSION_CODE > KERNEL_VERSION(4, 13, 16) rdlen = kernel_read(fp, buffer, size, &fp->f_pos); #else rdlen = kernel_read(fp, fp->f_pos, buffer, size); #endif if(size != rdlen){ printk("%s: %s file rdlen invalid %d %d\n", __func__, name, (int)rdlen, size); *fw_buf=NULL; __putname(path); filp_close(fp,NULL); fp=NULL; vfree(buffer); buffer=NULL; return -1; } if(rdlen > 0){ fp->f_pos += rdlen; //printk("f_pos=%d\n", (int)fp->f_pos); } *fw_buf = buffer; #if 0 MD5Init(&md5); MD5Update(&md5, (unsigned char *)dst, size); MD5Final(&md5, decrypt); printk(MD5PINRT, MD5(decrypt)); #endif return size; #endif } int aicbt_patch_table_free(struct aicbt_patch_table **head) { struct aicbt_patch_table *p = *head, *n = NULL; while (p) { n = p->next; kfree(p->name); kfree(p->data); kfree(p); p = n; } *head = NULL; return 0; } int get_patch_addr_from_patch_table(firmware_info *fw_info, char *filename, uint32_t *fw_patch_base_addr) { int size; int ret = 0; uint8_t *rawdata=NULL; uint8_t *p = NULL; uint32_t *data = NULL; uint32_t type = 0, len = 0; int j; /* load aic firmware */ size = aic_load_firmware((u8 **)&rawdata, filename, NULL); /* Copy the file on the Embedded side */ printk("### Upload %s fw_patch_table, size=%d\n", filename, size); if (size <= 0) { printk("wrong size of firmware file\n"); ret = -1; goto err; } p = rawdata; if (memcmp(p, AICBT_PT_TAG, sizeof(AICBT_PT_TAG) < 16 ? sizeof(AICBT_PT_TAG) : 16)) { printk("TAG err\n"); ret = -1; goto err; } p += 16; while (p - rawdata < size) { printk("size = %d p - rawdata = 0x%0lx \r\n", size, p - rawdata); p += 16; type = *(uint32_t *)p; p += 4; len = *(uint32_t *)p; p += 4; printk("cur->type %x, len %d\n", type, len); if(type >= 1000 ) {//Temp Workaround len = 0; }else{ data = (uint32_t *)p; if (type == AICBT_PT_NULL) { *(fw_patch_base_addr) = *(data + 3); printk("addr found %x\n", *(fw_patch_base_addr)); for (j = 0; j < len; j++) { printk("addr %x\n", *(data+j)); } break; } p += len * 8; } } vfree(rawdata); return ret; err: //aicbt_patch_table_free(&head); if (rawdata){ vfree(rawdata); } return ret; } int patch_table_download(firmware_info *fw_info, char *filename) { struct aicbt_patch_table *head = NULL; struct aicbt_patch_table *new = NULL; struct aicbt_patch_table *cur = NULL; int size; int ret = 0; uint8_t *rawdata=NULL; uint8_t *p = NULL; /* load aic firmware */ size = aic_load_firmware((u8 **)&rawdata, filename, NULL); /* Copy the file on the Embedded side */ printk("### Upload %s fw_patch_table, size=%d\n", filename, size); if (size <= 0) { printk("wrong size of firmware file\n"); ret = -1; goto err; } p = rawdata; if (memcmp(p, AICBT_PT_TAG, sizeof(AICBT_PT_TAG) < 16 ? sizeof(AICBT_PT_TAG) : 16)) { printk("TAG err\n"); ret = -1; goto err; } p += 16; while (p - rawdata < size) { printk("size = %d p - rawdata = 0x%0lx \r\n", size, p - rawdata); new = (struct aicbt_patch_table *)kmalloc(sizeof(struct aicbt_patch_table), GFP_KERNEL); memset(new, 0, sizeof(struct aicbt_patch_table)); if (head == NULL) { head = new; cur = new; } else { cur->next = new; cur = cur->next; } cur->name = (char *)kmalloc(sizeof(char) * 16, GFP_KERNEL); memset(cur->name, 0, sizeof(char) * 16); memcpy(cur->name, p, 16); p += 16; cur->type = *(uint32_t *)p; p += 4; cur->len = *(uint32_t *)p; p += 4; printk("cur->type %x, len %d\n", cur->type, cur->len); if((cur->type ) >= 1000 ) {//Temp Workaround cur->len = 0; }else{ cur->data = (uint32_t *)kmalloc(sizeof(uint8_t) * cur->len * 8, GFP_KERNEL); memset(cur->data, 0, sizeof(uint8_t) * cur->len * 8); memcpy(cur->data, p, cur->len * 8); p += cur->len * 8; } } vfree(rawdata); patch_table_load(fw_info, head); printk("fw_patch_table download complete\n\n"); return ret; err: //aicbt_patch_table_free(&head); if (rawdata){ vfree(rawdata); } return ret; } int download_patch(firmware_info *fw_info, int cached) { int ret_val = 0; printk("%s: Download fw patch start, cached %d", __func__, cached); if (!fw_info) { printk("%s: No patch entry exists(fw_info %p)", __func__, fw_info); ret_val = -1; goto end; } ret_val = fw_config(fw_info); if (ret_val) { printk("%s: fw config failed %d", __func__, ret_val); goto free; } ret_val = system_config(fw_info); if (ret_val) { printk("%s: system config failed %d", __func__, ret_val); goto free; } /* * step1: check firmware statis * step2: download firmware if updated */ ret_val = check_fw_status(fw_info); if (ret_val) { #if 0 ret_val = download_data(fw_info, FW_RAM_ADID_BASE_ADDR, FW_ADID_BASE_NAME); if (ret_val) { printk("aic load adid fail %d\n", ret_val); goto free; } #endif if (sub_chip_id == 0) { ret_val= download_data(fw_info, FW_RAM_PATCH_BASE_ADDR, FW_PATCH_BASE_NAME); if (ret_val) { printk("aic load patch fail %d\n", ret_val); goto free; } ret_val= patch_table_download(fw_info, FW_PATCH_TABLE_NAME); if (ret_val) { printk("aic load patch ftable ail %d\n", ret_val); goto free; } } else if (sub_chip_id == 1) { uint32_t fw_ram_patch_base_addr = FW_RAM_PATCH_BASE_ADDR; ret_val = get_patch_addr_from_patch_table(fw_info, FW_PATCH_TABLE_NAME_U02, &fw_ram_patch_base_addr); if (ret_val) { printk("aic get patch addr fail %d\n", ret_val); goto free; } printk("%s %x\n", __func__, fw_ram_patch_base_addr); ret_val = download_data(fw_info, fw_ram_patch_base_addr, FW_PATCH_BASE_NAME_U02); if (ret_val) { printk("aic load patch fail %d\n", ret_val); goto free; } ret_val = patch_table_download(fw_info, FW_PATCH_TABLE_NAME_U02); if (ret_val) { printk("aic load patch ftable ail %d\n", ret_val); goto free; } } else if (sub_chip_id == 2) { uint32_t fw_ram_patch_base_addr = FW_RAM_PATCH_BASE_ADDR; ret_val = get_patch_addr_from_patch_table(fw_info, FW_PATCH_TABLE_NAME_U02H, &fw_ram_patch_base_addr); if (ret_val) { printk("aic get patch addr fail %d\n", ret_val); goto free; } printk("U02H %s %x\n", __func__, fw_ram_patch_base_addr); ret_val = download_data(fw_info, fw_ram_patch_base_addr, FW_PATCH_BASE_NAME_U02H); if (ret_val) { printk("aic load patch fail %d\n", ret_val); goto free; } ret_val = patch_table_download(fw_info, FW_PATCH_TABLE_NAME_U02H); if (ret_val) { printk("aic load patch ftable ail %d\n", ret_val); goto free; } } else { printk("%s unsupported sub_chip_id %x\n", __func__, sub_chip_id); } } free: /* Free fw data after download finished */ kfree(fw_info->fw_data); fw_info->fw_data = NULL; end: return ret_val; } //for 8800dc end firmware_info *firmware_info_init(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); firmware_info *fw_info; AICBT_DBG("%s: start", __func__); fw_info = kzalloc(sizeof(*fw_info), GFP_KERNEL); if (!fw_info) return NULL; fw_info->send_pkt = kzalloc(SEND_PKT_LEN, GFP_KERNEL); if (!fw_info->send_pkt) { kfree(fw_info); return NULL; } fw_info->rcv_pkt = kzalloc(RCV_PKT_LEN, GFP_KERNEL); if (!fw_info->rcv_pkt) { kfree(fw_info->send_pkt); kfree(fw_info); return NULL; } fw_info->intf = intf; fw_info->udev = udev; if(g_chipid == PRODUCT_ID_AIC8801 || g_chipid == PRODUCT_ID_AIC8800D80){ fw_info->pipe_in = usb_rcvbulkpipe(fw_info->udev, BULK_EP); fw_info->pipe_out = usb_rcvbulkpipe(fw_info->udev, CTRL_EP); }else if(g_chipid == PRODUCT_ID_AIC8800DC){ fw_info->pipe_in = usb_rcvintpipe(fw_info->udev, INTR_EP); fw_info->pipe_out = usb_sndctrlpipe(fw_info->udev, CTRL_EP); } fw_info->cmd_hdr = (struct hci_command_hdr *)(fw_info->send_pkt); fw_info->evt_hdr = (struct hci_event_hdr *)(fw_info->rcv_pkt); fw_info->cmd_cmp = (struct hci_ev_cmd_complete *)(fw_info->rcv_pkt + EVT_HDR_LEN); fw_info->req_para = fw_info->send_pkt + CMD_HDR_LEN; fw_info->rsp_para = fw_info->rcv_pkt + EVT_HDR_LEN + CMD_CMP_LEN; #if BTUSB_RPM AICBT_INFO("%s: Auto suspend is enabled", __func__); usb_enable_autosuspend(udev); pm_runtime_set_autosuspend_delay(&(udev->dev), 2000); #else AICBT_INFO("%s: Auto suspend is disabled", __func__); usb_disable_autosuspend(udev); #endif #if BTUSB_WAKEUP_HOST device_wakeup_enable(&udev->dev); #endif return fw_info; } void firmware_info_destroy(struct usb_interface *intf) { firmware_info *fw_info; struct usb_device *udev; struct btusb_data *data; udev = interface_to_usbdev(intf); data = usb_get_intfdata(intf); fw_info = data->fw_info; if (!fw_info) return; #if BTUSB_RPM usb_disable_autosuspend(udev); #endif /* * In order to reclaim fw data mem, we free fw_data immediately * after download patch finished instead of here. */ kfree(fw_info->rcv_pkt); kfree(fw_info->send_pkt); kfree(fw_info); } static struct usb_driver btusb_driver; static struct usb_device_id btusb_table[] = { #if 0 { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_INT_INFO, .idVendor = 0xa69d, .bInterfaceClass = 0xe0, .bInterfaceSubClass = 0x01, .bInterfaceProtocol = 0x01 }, #endif {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_AIC, USB_PRODUCT_ID_AIC8801, 0xe0, 0x01,0x01)}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_AIC, USB_PRODUCT_ID_AIC8800D80, 0xe0, 0x01,0x01)}, {USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_AIC, USB_PRODUCT_ID_AIC8800DC, 0xe0, 0x01,0x01)}, {} }; MODULE_DEVICE_TABLE(usb, btusb_table); static int inc_tx(struct btusb_data *data) { unsigned long flags; int rv; spin_lock_irqsave(&data->txlock, flags); rv = test_bit(BTUSB_SUSPENDING, &data->flags); if (!rv) data->tx_in_flight++; spin_unlock_irqrestore(&data->txlock, flags); return rv; } void check_sco_event(struct urb *urb) { u8* opcode = (u8*)(urb->transfer_buffer); u8 status; static uint16_t sco_handle = 0; uint16_t handle; u8 air_mode = 0; struct hci_dev *hdev = urb->context; #ifdef CONFIG_SCO_OVER_HCI struct btusb_data *data = GET_DRV_DATA(hdev); AIC_sco_card_t *pSCOSnd = data->pSCOSnd; #endif switch (*opcode) { case HCI_EV_SYNC_CONN_COMPLETE: AICBT_INFO("%s: HCI_EV_SYNC_CONN_COMPLETE(0x%02x)", __func__, *opcode); status = *(opcode + 2); sco_handle = *(opcode + 3) | *(opcode + 4) << 8; air_mode = *(opcode + 18); printk("%s status:%d,air_mode:%d \r\n", __func__, status,air_mode); if (status == 0) { hdev->conn_hash.sco_num++; hdev->notify(hdev, 0); //schedule_work(&data->work); if (air_mode == 0x03) { set_select_msbc(CODEC_MSBC); } } break; case HCI_EV_DISCONN_COMPLETE: AICBT_INFO("%s: HCI_EV_DISCONN_COMPLETE(0x%02x)", __func__, *opcode); status = *(opcode + 2); handle = *(opcode + 3) | *(opcode + 4) << 8; if (status == 0 && sco_handle == handle) { hdev->conn_hash.sco_num--; hdev->notify(hdev, 0); set_select_msbc(CODEC_CVSD); //schedule_work(&data->work); #ifdef CONFIG_SCO_OVER_HCI if (test_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states)) { mod_timer(&snd_cap_timer.cap_timer,jiffies + msecs_to_jiffies(3)); } #endif } break; default: AICBT_DBG("%s: event 0x%02x", __func__, *opcode); break; } } #if (CONFIG_BLUEDROID == 0) #if HCI_VERSION_CODE >= KERNEL_VERSION(3, 18, 0) static inline void btusb_free_frags(struct btusb_data *data) { unsigned long flags; spin_lock_irqsave(&data->rxlock, flags); kfree_skb(data->evt_skb); data->evt_skb = NULL; kfree_skb(data->acl_skb); data->acl_skb = NULL; kfree_skb(data->sco_skb); data->sco_skb = NULL; spin_unlock_irqrestore(&data->rxlock, flags); } static int btusb_recv_intr(struct btusb_data *data, void *buffer, int count) { struct sk_buff *skb; int err = 0; spin_lock(&data->rxlock); skb = data->evt_skb; //printk("%s count %d\n", __func__, count); #if 1 while (count) { int len; if (!skb) { skb = bt_skb_alloc(HCI_MAX_EVENT_SIZE, GFP_ATOMIC); if (!skb) { err = -ENOMEM; break; } bt_cb(skb)->pkt_type = HCI_EVENT_PKT; bt_cb(skb)->expect = HCI_EVENT_HDR_SIZE; } len = min_t(uint, bt_cb(skb)->expect, count); memcpy(skb_put(skb, len), buffer, len); count -= len; buffer += len; bt_cb(skb)->expect -= len; if (skb->len == HCI_EVENT_HDR_SIZE) { /* Complete event header */ bt_cb(skb)->expect = hci_event_hdr(skb)->plen; if (skb_tailroom(skb) < bt_cb(skb)->expect) { kfree_skb(skb); skb = NULL; err = -EILSEQ; break; } } if (bt_cb(skb)->expect == 0) { /* Complete frame */ hci_recv_frame(data->hdev, skb); skb = NULL; } } #endif data->evt_skb = skb; spin_unlock(&data->rxlock); return err; } static int btusb_recv_bulk(struct btusb_data *data, void *buffer, int count) { struct sk_buff *skb; int err = 0; spin_lock(&data->rxlock); skb = data->acl_skb; while (count) { int len; if (!skb) { skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC); if (!skb) { err = -ENOMEM; break; } bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT; bt_cb(skb)->expect = HCI_ACL_HDR_SIZE; } len = min_t(uint, bt_cb(skb)->expect, count); memcpy(skb_put(skb, len), buffer, len); count -= len; buffer += len; bt_cb(skb)->expect -= len; if (skb->len == HCI_ACL_HDR_SIZE) { __le16 dlen = hci_acl_hdr(skb)->dlen; /* Complete ACL header */ bt_cb(skb)->expect = __le16_to_cpu(dlen); if (skb_tailroom(skb) < bt_cb(skb)->expect) { kfree_skb(skb); skb = NULL; err = -EILSEQ; break; } } if (bt_cb(skb)->expect == 0) { /* Complete frame */ hci_recv_frame(data->hdev, skb); skb = NULL; } } data->acl_skb = skb; spin_unlock(&data->rxlock); return err; } static int btusb_recv_isoc(struct btusb_data *data, void *buffer, int count) { struct sk_buff *skb; int err = 0; spin_lock(&data->rxlock); skb = data->sco_skb; while (count) { int len; if (!skb) { skb = bt_skb_alloc(HCI_MAX_SCO_SIZE, GFP_ATOMIC); if (!skb) { err = -ENOMEM; break; } bt_cb(skb)->pkt_type = HCI_SCODATA_PKT; bt_cb(skb)->expect = HCI_SCO_HDR_SIZE; } len = min_t(uint, bt_cb(skb)->expect, count); memcpy(skb_put(skb, len), buffer, len); count -= len; buffer += len; bt_cb(skb)->expect -= len; if (skb->len == HCI_SCO_HDR_SIZE) { /* Complete SCO header */ bt_cb(skb)->expect = hci_sco_hdr(skb)->dlen; if (skb_tailroom(skb) < bt_cb(skb)->expect) { kfree_skb(skb); skb = NULL; err = -EILSEQ; break; } } if (bt_cb(skb)->expect == 0) { /* Complete frame */ hci_recv_frame(data->hdev, skb); skb = NULL; } } data->sco_skb = skb; spin_unlock(&data->rxlock); return err; } #endif #endif // (CONFIG_BLUEDROID == 0) static void btusb_intr_complete(struct urb *urb) { struct hci_dev *hdev = urb->context; struct btusb_data *data = GET_DRV_DATA(hdev); int err; AICBT_DBG("%s: urb %p status %d count %d ", __func__, urb, urb->status, urb->actual_length); if (!test_bit(HCI_RUNNING, &hdev->flags)) { printk("%s return \n", __func__); return; } if (urb->status == 0) { hdev->stat.byte_rx += urb->actual_length; #if (CONFIG_BLUEDROID) || (HCI_VERSION_CODE < KERNEL_VERSION(3, 18, 0)) if (hci_recv_fragment(hdev, HCI_EVENT_PKT, urb->transfer_buffer, urb->actual_length) < 0) { AICBT_ERR("%s: Corrupted event packet", __func__); hdev->stat.err_rx++; } #else if (btusb_recv_intr(data, urb->transfer_buffer, urb->actual_length) < 0) { AICBT_ERR("%s corrupted event packet", hdev->name); hdev->stat.err_rx++; } #endif #ifdef CONFIG_SCO_OVER_HCI check_sco_event(urb); #endif #ifdef CONFIG_USB_AIC_UART_SCO_DRIVER check_sco_event(urb); #endif } /* Avoid suspend failed when usb_kill_urb */ else if(urb->status == -ENOENT) { return; } if (!test_bit(BTUSB_INTR_RUNNING, &data->flags)) return; usb_mark_last_busy(data->udev); usb_anchor_urb(urb, &data->intr_anchor); err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { if (err != -EPERM && err != -ENODEV) AICBT_ERR("%s: Failed to re-submit urb %p, err %d", __func__, urb, err); usb_unanchor_urb(urb); } } static int btusb_submit_intr_urb(struct hci_dev *hdev, gfp_t mem_flags) { struct btusb_data *data = GET_DRV_DATA(hdev); struct urb *urb; unsigned char *buf; unsigned int pipe; int err, size; if (!data->intr_ep) return -ENODEV; urb = usb_alloc_urb(0, mem_flags); if (!urb) return -ENOMEM; size = le16_to_cpu(data->intr_ep->wMaxPacketSize); buf = kmalloc(size, mem_flags); if (!buf) { usb_free_urb(urb); return -ENOMEM; } AICBT_DBG("%s: mMaxPacketSize %d, bEndpointAddress 0x%02x", __func__, size, data->intr_ep->bEndpointAddress); pipe = usb_rcvintpipe(data->udev, data->intr_ep->bEndpointAddress); usb_fill_int_urb(urb, data->udev, pipe, buf, size, btusb_intr_complete, hdev, data->intr_ep->bInterval); urb->transfer_flags |= URB_FREE_BUFFER; usb_anchor_urb(urb, &data->intr_anchor); err = usb_submit_urb(urb, mem_flags); if (err < 0) { AICBT_ERR("%s: Failed to submit urb %p, err %d", __func__, urb, err); usb_unanchor_urb(urb); } usb_free_urb(urb); return err; } static void btusb_bulk_complete(struct urb *urb) { struct hci_dev *hdev = urb->context; struct btusb_data *data = GET_DRV_DATA(hdev); int err; AICBT_DBG("%s: urb %p status %d count %d", __func__, urb, urb->status, urb->actual_length); if (!test_bit(HCI_RUNNING, &hdev->flags)) { printk("%s HCI_RUNNING\n", __func__); return; } if (urb->status == 0) { hdev->stat.byte_rx += urb->actual_length; #if (CONFIG_BLUEDROID) || (HCI_VERSION_CODE < KERNEL_VERSION(3, 18, 0)) if (hci_recv_fragment(hdev, HCI_ACLDATA_PKT, urb->transfer_buffer, urb->actual_length) < 0) { AICBT_ERR("%s: Corrupted ACL packet", __func__); hdev->stat.err_rx++; } #else if (data->recv_bulk(data, urb->transfer_buffer, urb->actual_length) < 0) { AICBT_ERR("%s Corrupted ACL packet", hdev->name); hdev->stat.err_rx++; } #endif } /* Avoid suspend failed when usb_kill_urb */ else if(urb->status == -ENOENT) { printk("%s ENOENT\n", __func__); return; } AICBT_DBG("%s: OUT", __func__); if (!test_bit(BTUSB_BULK_RUNNING, &data->flags)) { printk("%s BTUSB_BULK_RUNNING\n", __func__); return; } usb_anchor_urb(urb, &data->bulk_anchor); usb_mark_last_busy(data->udev); //printk("LIULI bulk submit\n"); err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { /* -EPERM: urb is being killed; * -ENODEV: device got disconnected */ if (err != -EPERM && err != -ENODEV) AICBT_ERR("btusb_bulk_complete %s urb %p failed to resubmit (%d)", hdev->name, urb, -err); usb_unanchor_urb(urb); } } static int btusb_submit_bulk_urb(struct hci_dev *hdev, gfp_t mem_flags) { struct btusb_data *data = GET_DRV_DATA(hdev); struct urb *urb; unsigned char *buf; unsigned int pipe; int err, size = HCI_MAX_FRAME_SIZE; AICBT_DBG("%s: hdev name %s", __func__, hdev->name); AICBT_DBG("%s: mMaxPacketSize %d, bEndpointAddress 0x%02x", __func__, size, data->bulk_rx_ep->bEndpointAddress); if (!data->bulk_rx_ep) return -ENODEV; urb = usb_alloc_urb(0, mem_flags); if (!urb) return -ENOMEM; buf = kmalloc(size, mem_flags); if (!buf) { usb_free_urb(urb); return -ENOMEM; } pipe = usb_rcvbulkpipe(data->udev, data->bulk_rx_ep->bEndpointAddress); usb_fill_bulk_urb(urb, data->udev, pipe, buf, size, btusb_bulk_complete, hdev); urb->transfer_flags |= URB_FREE_BUFFER; usb_mark_last_busy(data->udev); usb_anchor_urb(urb, &data->bulk_anchor); err = usb_submit_urb(urb, mem_flags); if (err < 0) { AICBT_ERR("%s: Failed to submit urb %p, err %d", __func__, urb, err); usb_unanchor_urb(urb); } usb_free_urb(urb); return err; } static void btusb_isoc_complete(struct urb *urb) { struct hci_dev *hdev = urb->context; struct btusb_data *data = GET_DRV_DATA(hdev); int i, err; unsigned int total_length = 0; AICBT_DBG("%s: urb %p status %d count %d", __func__, urb, urb->status, urb->actual_length); if (!test_bit(HCI_RUNNING, &hdev->flags)) return; if (urb->status == 0) { for (i = 0; i < urb->number_of_packets; i++) { unsigned int offset = urb->iso_frame_desc[i].offset; unsigned int length = urb->iso_frame_desc[i].actual_length; //u8 *data = (u8 *)(urb->transfer_buffer + offset); //AICBT_DBG("%d,%d ,%x,%x,%x s %d.", //offset, length, data[0], data[1],data[2],urb->iso_frame_desc[i].status); if(total_length >= urb->actual_length){ AICBT_ERR("total_len >= actual_length ,return"); break; } total_length += length; if (urb->iso_frame_desc[i].status) continue; hdev->stat.byte_rx += length; if(length){ #if (CONFIG_BLUEDROID) || (HCI_VERSION_CODE < KERNEL_VERSION(3, 18, 0)) if (hci_recv_fragment(hdev, HCI_SCODATA_PKT, urb->transfer_buffer + offset, length) < 0) { AICBT_ERR("%s: Corrupted SCO packet", __func__); hdev->stat.err_rx++; } #else if (btusb_recv_isoc(data, urb->transfer_buffer + offset, length) < 0) { AICBT_ERR("%s corrupted SCO packet", hdev->name); hdev->stat.err_rx++; } #endif } } } /* Avoid suspend failed when usb_kill_urb */ else if(urb->status == -ENOENT) { return; } if (!test_bit(BTUSB_ISOC_RUNNING, &data->flags)) return; usb_anchor_urb(urb, &data->isoc_anchor); i = 0; retry: err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { /* -EPERM: urb is being killed; * -ENODEV: device got disconnected */ if (err != -EPERM && err != -ENODEV) AICBT_ERR("%s: Failed to re-sumbit urb %p, retry %d, err %d", __func__, urb, i, err); if (i < 10) { i++; mdelay(1); goto retry; } usb_unanchor_urb(urb); } } static inline void fill_isoc_descriptor(struct urb *urb, int len, int mtu) { int i, offset = 0; AICBT_DBG("%s: len %d mtu %d", __func__, len, mtu); for (i = 0; i < BTUSB_MAX_ISOC_FRAMES && len >= mtu; i++, offset += mtu, len -= mtu) { urb->iso_frame_desc[i].offset = offset; urb->iso_frame_desc[i].length = mtu; } if (len && i < BTUSB_MAX_ISOC_FRAMES) { urb->iso_frame_desc[i].offset = offset; urb->iso_frame_desc[i].length = len; i++; } urb->number_of_packets = i; } static int btusb_submit_isoc_urb(struct hci_dev *hdev, gfp_t mem_flags) { struct btusb_data *data = GET_DRV_DATA(hdev); struct urb *urb; unsigned char *buf; unsigned int pipe; int err, size; int interval; if (!data->isoc_rx_ep) return -ENODEV; AICBT_DBG("%s: mMaxPacketSize %d, bEndpointAddress 0x%02x", __func__, size, data->isoc_rx_ep->bEndpointAddress); urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, mem_flags); if (!urb) return -ENOMEM; size = le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize) * BTUSB_MAX_ISOC_FRAMES; buf = kmalloc(size, mem_flags); if (!buf) { usb_free_urb(urb); return -ENOMEM; } pipe = usb_rcvisocpipe(data->udev, data->isoc_rx_ep->bEndpointAddress); urb->dev = data->udev; urb->pipe = pipe; urb->context = hdev; urb->complete = btusb_isoc_complete; if (urb->dev->speed == USB_SPEED_HIGH || urb->dev->speed >= USB_SPEED_SUPER) { /* make sure interval is within allowed range */ interval = clamp((int)data->isoc_rx_ep->bInterval, 1, 16); urb->interval = 1 << (interval - 1); } else { urb->interval = data->isoc_rx_ep->bInterval; } AICBT_INFO("urb->interval %d \r\n", urb->interval); urb->transfer_flags = URB_FREE_BUFFER | URB_ISO_ASAP; urb->transfer_buffer = buf; urb->transfer_buffer_length = size; fill_isoc_descriptor(urb, size, le16_to_cpu(data->isoc_rx_ep->wMaxPacketSize)); usb_anchor_urb(urb, &data->isoc_anchor); err = usb_submit_urb(urb, mem_flags); if (err < 0) { AICBT_ERR("%s: Failed to submit urb %p, err %d", __func__, urb, err); usb_unanchor_urb(urb); } usb_free_urb(urb); return err; } static void btusb_tx_complete(struct urb *urb) { struct sk_buff *skb = urb->context; struct hci_dev *hdev = (struct hci_dev *) skb->dev; struct btusb_data *data = GET_DRV_DATA(hdev); if (!test_bit(HCI_RUNNING, &hdev->flags)) goto done; if (!urb->status) hdev->stat.byte_tx += urb->transfer_buffer_length; else hdev->stat.err_tx++; done: spin_lock(&data->txlock); data->tx_in_flight--; spin_unlock(&data->txlock); kfree(urb->setup_packet); kfree_skb(skb); } static void btusb_isoc_tx_complete(struct urb *urb) { struct sk_buff *skb = urb->context; struct hci_dev *hdev = (struct hci_dev *) skb->dev; AICBT_DBG("%s: urb %p status %d count %d", __func__, urb, urb->status, urb->actual_length); if (skb && hdev) { if (!test_bit(HCI_RUNNING, &hdev->flags)) goto done; if (!urb->status) hdev->stat.byte_tx += urb->transfer_buffer_length; else hdev->stat.err_tx++; } else AICBT_ERR("%s: skb 0x%p hdev 0x%p", __func__, skb, hdev); done: kfree(urb->setup_packet); kfree_skb(skb); } #if (CONFIG_BLUEDROID == 0) #if LINUX_VERSION_CODE > KERNEL_VERSION(4, 0, 9) static int btusb_shutdown(struct hci_dev *hdev) { struct sk_buff *skb; printk("aic %s\n", __func__); skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { printk("HCI reset during shutdown failed\n"); return PTR_ERR(skb); } kfree_skb(skb); return 0; } #endif #endif //(CONFIG_BLUEDROID == 0) static int btusb_open(struct hci_dev *hdev) { struct btusb_data *data = GET_DRV_DATA(hdev); int err = 0; AICBT_INFO("%s: Start", __func__); err = usb_autopm_get_interface(data->intf); if (err < 0) return err; data->intf->needs_remote_wakeup = 1; #if (CONFIG_BLUEDROID == 0) //err = download_patch(data->fw_info,1); printk(" download_patch %d", err); if (err < 0) { goto failed; } #endif if (test_and_set_bit(HCI_RUNNING, &hdev->flags)){ goto done; } if (test_and_set_bit(BTUSB_INTR_RUNNING, &data->flags)){ goto done; } err = btusb_submit_intr_urb(hdev, GFP_KERNEL); if (err < 0) goto failed; err = btusb_submit_bulk_urb(hdev, GFP_KERNEL); if (err < 0) { mdelay(URB_CANCELING_DELAY_MS); usb_kill_anchored_urbs(&data->intr_anchor); goto failed; } set_bit(BTUSB_BULK_RUNNING, &data->flags); btusb_submit_bulk_urb(hdev, GFP_KERNEL); done: usb_autopm_put_interface(data->intf); AICBT_INFO("%s: End", __func__); return 0; failed: clear_bit(BTUSB_INTR_RUNNING, &data->flags); clear_bit(HCI_RUNNING, &hdev->flags); usb_autopm_put_interface(data->intf); AICBT_ERR("%s: Failed", __func__); return err; } static void btusb_stop_traffic(struct btusb_data *data) { mdelay(URB_CANCELING_DELAY_MS); usb_kill_anchored_urbs(&data->intr_anchor); usb_kill_anchored_urbs(&data->bulk_anchor); usb_kill_anchored_urbs(&data->isoc_anchor); } static int btusb_close(struct hci_dev *hdev) { struct btusb_data *data = GET_DRV_DATA(hdev); #if (CONFIG_BLUEDROID) || (HCI_VERSION_CODE < KERNEL_VERSION(4, 1, 0)) int i; #endif int err; AICBT_INFO("%s: hci running %lu", __func__, hdev->flags & HCI_RUNNING); if (!test_and_clear_bit(HCI_RUNNING, &hdev->flags)){ return 0; } if (!test_and_clear_bit(BTUSB_INTR_RUNNING, &data->flags)){ return 0; } #if (CONFIG_BLUEDROID) || (HCI_VERSION_CODE < KERNEL_VERSION(4, 1, 0)) for (i = 0; i < NUM_REASSEMBLY; i++) { if (hdev->reassembly[i]) { AICBT_DBG("%s: free ressembly[%d]", __func__, i); kfree_skb(hdev->reassembly[i]); hdev->reassembly[i] = NULL; } } #endif cancel_work_sync(&data->work); cancel_work_sync(&data->waker); clear_bit(BTUSB_ISOC_RUNNING, &data->flags); clear_bit(BTUSB_BULK_RUNNING, &data->flags); clear_bit(BTUSB_INTR_RUNNING, &data->flags); btusb_stop_traffic(data); err = usb_autopm_get_interface(data->intf); if (err < 0) goto failed; data->intf->needs_remote_wakeup = 0; usb_autopm_put_interface(data->intf); failed: mdelay(URB_CANCELING_DELAY_MS); usb_scuttle_anchored_urbs(&data->deferred); return 0; } static int btusb_flush(struct hci_dev *hdev) { struct btusb_data *data = GET_DRV_DATA(hdev); AICBT_DBG("%s", __func__); mdelay(URB_CANCELING_DELAY_MS); usb_kill_anchored_urbs(&data->tx_anchor); return 0; } #ifdef CONFIG_SCO_OVER_HCI static void btusb_isoc_snd_tx_complete(struct urb *urb); static int snd_send_sco_frame(struct sk_buff *skb) { struct hci_dev *hdev = (struct hci_dev *) skb->dev; struct btusb_data *data = GET_DRV_DATA(hdev); //struct usb_ctrlrequest *dr; struct urb *urb; unsigned int pipe; int err; AICBT_DBG("%s:pkt type %d, packet_len : %d", __func__,bt_cb(skb)->pkt_type, skb->len); if (!hdev && !test_bit(HCI_RUNNING, &hdev->flags)) return -EBUSY; if (!data->isoc_tx_ep || hdev->conn_hash.sco_num < 1) { kfree(skb); return -ENODEV; } urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_ATOMIC); if (!urb) { AICBT_ERR("%s: Failed to allocate mem for sco pkts", __func__); kfree(skb); return -ENOMEM; } pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress); usb_fill_int_urb(urb, data->udev, pipe, skb->data, skb->len, btusb_isoc_snd_tx_complete, skb, data->isoc_tx_ep->bInterval); urb->transfer_flags = URB_ISO_ASAP; fill_isoc_descriptor(urb, skb->len, le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize)); hdev->stat.sco_tx++; usb_anchor_urb(urb, &data->tx_anchor); err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { AICBT_ERR("%s: Failed to submit urb %p, pkt type %d, err %d", __func__, urb, bt_cb(skb)->pkt_type, err); kfree(urb->setup_packet); usb_unanchor_urb(urb); } else usb_mark_last_busy(data->udev); usb_free_urb(urb); return err; } static bool snd_copy_send_sco_data( AIC_sco_card_t *pSCOSnd) { struct snd_pcm_runtime *runtime = pSCOSnd->playback.substream->runtime; unsigned int frame_bytes = 2, frames1; const u8 *source; snd_pcm_uframes_t period_size = runtime->period_size; int i, count; u8 buffer[period_size * 3]; int sco_packet_bytes = pSCOSnd->playback.sco_packet_bytes; struct sk_buff *skb; count = frames_to_bytes(runtime, period_size)/sco_packet_bytes; skb = bt_skb_alloc(((sco_packet_bytes + HCI_SCO_HDR_SIZE) * count), GFP_ATOMIC); skb->dev = (void *)hci_dev_get(0); bt_cb(skb)->pkt_type = HCI_SCODATA_PKT; skb_put(skb, ((sco_packet_bytes + HCI_SCO_HDR_SIZE) * count)); if(!skb) return false; AICBT_DBG("%s, buffer_pos:%d sco_handle:%d sco_packet_bytes:%d count:%d", __FUNCTION__, pSCOSnd->playback.buffer_pos, pSCOSnd->usb_data->sco_handle, sco_packet_bytes, count); source = runtime->dma_area + pSCOSnd->playback.buffer_pos * frame_bytes; if (pSCOSnd->playback.buffer_pos + period_size <= runtime->buffer_size) { memcpy(buffer, source, period_size * frame_bytes); } else { /* wrap around at end of ring buffer */ frames1 = runtime->buffer_size - pSCOSnd->playback.buffer_pos; memcpy(buffer, source, frames1 * frame_bytes); memcpy(&buffer[frames1 * frame_bytes], runtime->dma_area, (period_size - frames1) * frame_bytes); } pSCOSnd->playback.buffer_pos += period_size; if ( pSCOSnd->playback.buffer_pos >= runtime->buffer_size) pSCOSnd->playback.buffer_pos -= runtime->buffer_size; for(i = 0; i < count; i++) { *((__u16 *)(skb->data + i * (sco_packet_bytes + HCI_SCO_HDR_SIZE))) = pSCOSnd->usb_data->sco_handle; *((__u8 *)(skb->data + i*(sco_packet_bytes + HCI_SCO_HDR_SIZE) + 2)) = sco_packet_bytes; memcpy((skb->data + i * (sco_packet_bytes + HCI_SCO_HDR_SIZE) + HCI_SCO_HDR_SIZE), &buffer[sco_packet_bytes * i], sco_packet_bytes); } if(test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)) { snd_pcm_period_elapsed(pSCOSnd->playback.substream); } snd_send_sco_frame(skb); return true; } static void btusb_isoc_snd_tx_complete(struct urb *urb) { struct sk_buff *skb = urb->context; struct hci_dev *hdev = (struct hci_dev *) skb->dev; struct btusb_data *data = GET_DRV_DATA(hdev); AIC_sco_card_t *pSCOSnd = data->pSCOSnd; AICBT_DBG("%s: status %d count %d", __func__,urb->status, urb->actual_length); if (skb && hdev) { if (!test_bit(HCI_RUNNING, &hdev->flags)) goto done; if (!urb->status) hdev->stat.byte_tx += urb->transfer_buffer_length; else hdev->stat.err_tx++; } else AICBT_ERR("%s: skb 0x%p hdev 0x%p", __func__, skb, hdev); done: kfree(urb->setup_packet); kfree_skb(skb); if(test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)){ snd_copy_send_sco_data(pSCOSnd); //schedule_work(&pSCOSnd->send_sco_work); } } static void playback_work(struct work_struct *work) { AIC_sco_card_t *pSCOSnd = container_of(work, AIC_sco_card_t, send_sco_work); snd_copy_send_sco_data(pSCOSnd); } #endif #if (CONFIG_BLUEDROID) || (HCI_VERSION_CODE < KERNEL_VERSION(3, 13, 0)) int btusb_send_frame(struct sk_buff *skb) { struct hci_dev *hdev = (struct hci_dev *) skb->dev; #else int btusb_send_frame(struct hci_dev *hdev, struct sk_buff *skb) { #endif //struct hci_dev *hdev = (struct hci_dev *) skb->dev; struct btusb_data *data = GET_DRV_DATA(hdev); struct usb_ctrlrequest *dr; struct urb *urb; unsigned int pipe; int err = 0; int retries = 0; u16 *opcode = NULL; AICBT_DBG("%s: hdev %p, btusb data %p, pkt type %d", __func__, hdev, data, bt_cb(skb)->pkt_type); //printk("aic %d %d\r\n", bt_cb(skb)->pkt_type, skb->len); if (!test_bit(HCI_RUNNING, &hdev->flags)) return -EBUSY; #if (CONFIG_BLUEDROID == 0) #if HCI_VERSION_CODE >= KERNEL_VERSION(3, 13, 0) skb->dev = (void *)hdev; #endif #endif switch (bt_cb(skb)->pkt_type) { case HCI_COMMAND_PKT: print_command(skb); urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) return -ENOMEM; dr = kmalloc(sizeof(*dr), GFP_ATOMIC); if (!dr) { usb_free_urb(urb); return -ENOMEM; } dr->bRequestType = data->cmdreq_type; dr->bRequest = 0; dr->wIndex = 0; dr->wValue = 0; dr->wLength = __cpu_to_le16(skb->len); pipe = usb_sndctrlpipe(data->udev, 0x00); usb_fill_control_urb(urb, data->udev, pipe, (void *) dr, skb->data, skb->len, btusb_tx_complete, skb); hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT) { print_command(skb); opcode = (u16*)(skb->data); printk("aic cmd:0x%04x", *opcode); } else { print_acl(skb, 1); } if (!data->bulk_tx_ep) return -ENODEV; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) return -ENOMEM; pipe = usb_sndbulkpipe(data->udev, data->bulk_tx_ep->bEndpointAddress); usb_fill_bulk_urb(urb, data->udev, pipe, skb->data, skb->len, btusb_tx_complete, skb); hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: print_sco(skb, 1); if (!data->isoc_tx_ep || SCO_NUM < 1) { kfree(skb); return -ENODEV; } urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_ATOMIC); if (!urb) { AICBT_ERR("%s: Failed to allocate mem for sco pkts", __func__); kfree(skb); return -ENOMEM; } pipe = usb_sndisocpipe(data->udev, data->isoc_tx_ep->bEndpointAddress); usb_fill_int_urb(urb, data->udev, pipe, skb->data, skb->len, btusb_isoc_tx_complete, skb, data->isoc_tx_ep->bInterval); urb->transfer_flags = URB_ISO_ASAP; fill_isoc_descriptor(urb, skb->len, le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize)); hdev->stat.sco_tx++; goto skip_waking; default: return -EILSEQ; } err = inc_tx(data); if (err) { usb_anchor_urb(urb, &data->deferred); schedule_work(&data->waker); err = 0; goto done; } skip_waking: usb_anchor_urb(urb, &data->tx_anchor); retry: err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { AICBT_ERR("%s: Failed to submit urb %p, pkt type %d, err %d, retries %d", __func__, urb, bt_cb(skb)->pkt_type, err, retries); if ((bt_cb(skb)->pkt_type != HCI_SCODATA_PKT) && (retries < 10)) { mdelay(1); if (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT) print_error_command(skb); retries++; goto retry; } kfree(urb->setup_packet); usb_unanchor_urb(urb); } else usb_mark_last_busy(data->udev); usb_free_urb(urb); done: return err; } #if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 4, 0) static void btusb_destruct(struct hci_dev *hdev) { struct btusb_data *data = GET_DRV_DATA(hdev); AICBT_DBG("%s: name %s", __func__, hdev->name); kfree(data); } #endif static void btusb_notify(struct hci_dev *hdev, unsigned int evt) { struct btusb_data *data = GET_DRV_DATA(hdev); AICBT_DBG("%s: name %s, evt %d", __func__, hdev->name, evt); if (SCO_NUM != data->sco_num) { data->sco_num = SCO_NUM; schedule_work(&data->work); } } static inline int set_isoc_interface(struct hci_dev *hdev, int altsetting) { struct btusb_data *data = GET_DRV_DATA(hdev); struct usb_interface *intf = data->isoc; struct usb_endpoint_descriptor *ep_desc; int i, err; if (!data->isoc) return -ENODEV; err = usb_set_interface(data->udev, 1, altsetting); if (err < 0) { AICBT_ERR("%s: Failed to set interface, altsetting %d, err %d", __func__, altsetting, err); return err; } data->isoc_altsetting = altsetting; data->isoc_tx_ep = NULL; data->isoc_rx_ep = NULL; for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { ep_desc = &intf->cur_altsetting->endpoint[i].desc; if (!data->isoc_tx_ep && usb_endpoint_is_isoc_out(ep_desc)) { data->isoc_tx_ep = ep_desc; continue; } if (!data->isoc_rx_ep && usb_endpoint_is_isoc_in(ep_desc)) { data->isoc_rx_ep = ep_desc; continue; } } if (!data->isoc_tx_ep || !data->isoc_rx_ep) { AICBT_ERR("%s: Invalid SCO descriptors", __func__); return -ENODEV; } AICBT_ERR("%s: hdev->reassembly implemant\r\n", __func__); #if CONFIG_BLUEDROID if(hdev->reassembly[HCI_SCODATA_PKT - 1]) { kfree_skb(hdev->reassembly[HCI_SCODATA_PKT - 1]); hdev->reassembly[HCI_SCODATA_PKT - 1] = NULL; } #endif return 0; } static void set_select_msbc(enum CODEC_TYPE type) { printk("%s codec type = %d", __func__, (int)type); codec_type = type; } static enum CODEC_TYPE check_select_msbc(void) { return codec_type; } #ifdef CONFIG_SCO_OVER_HCI static int check_controller_support_msbc( struct usb_device *udev) { //fix this in the future,when new card support msbc decode and encode AICBT_INFO("%s:pid = 0x%02x, vid = 0x%02x",__func__,udev->descriptor.idProduct, udev->descriptor.idVendor); switch (udev->descriptor.idProduct) { default: return 0; } return 0; } #endif static void btusb_work(struct work_struct *work) { struct btusb_data *data = container_of(work, struct btusb_data, work); struct hci_dev *hdev = data->hdev; int err; int new_alts; #ifdef CONFIG_SCO_OVER_HCI AIC_sco_card_t *pSCOSnd = data->pSCOSnd; #endif printk("%s data->sco_num:%d \r\n", __func__, data->sco_num); if (data->sco_num > 0) { if (!test_bit(BTUSB_DID_ISO_RESUME, &data->flags)) { err = usb_autopm_get_interface(data->isoc ? data->isoc : data->intf); if (err < 0) { clear_bit(BTUSB_ISOC_RUNNING, &data->flags); mdelay(URB_CANCELING_DELAY_MS); usb_kill_anchored_urbs(&data->isoc_anchor); printk("%s usb_kill_anchored_urbs after \r\n", __func__); return; } set_bit(BTUSB_DID_ISO_RESUME, &data->flags); } hdev->voice_setting = 93; AICBT_INFO("%s voice settings = 0x%04x", __func__, hdev->voice_setting); if (!(hdev->voice_setting & 0x0003)) { if(data->sco_num == 1) if(check_select_msbc()) { new_alts = 1; } else { new_alts = 2; } else { AICBT_INFO("%s: we don't support mutiple sco link for cvsd", __func__); return; } } else{ if(check_select_msbc()) { if(data->sco_num == 1) new_alts = 1; else { AICBT_INFO("%s: we don't support mutiple sco link for msbc", __func__); return; } } else { new_alts = 2; } } if (data->isoc_altsetting != new_alts) { clear_bit(BTUSB_ISOC_RUNNING, &data->flags); mdelay(URB_CANCELING_DELAY_MS); usb_kill_anchored_urbs(&data->isoc_anchor); printk("%s set_isoc_interface in \r\n", __func__); if (set_isoc_interface(hdev, new_alts) < 0) return; } printk("%s set_isoc_interface out \r\n", __func__); if (!test_and_set_bit(BTUSB_ISOC_RUNNING, &data->flags)) { printk("%s btusb_submit_isoc_urb\r\n", __func__); if (btusb_submit_isoc_urb(hdev, GFP_KERNEL) < 0) clear_bit(BTUSB_ISOC_RUNNING, &data->flags); else btusb_submit_isoc_urb(hdev, GFP_KERNEL); } #ifdef CONFIG_SCO_OVER_HCI if(test_bit(BTUSB_ISOC_RUNNING, &data->flags)) { set_bit(USB_CAPTURE_RUNNING, &data->pSCOSnd->states); set_bit(USB_PLAYBACK_RUNNING, &data->pSCOSnd->states); } if (test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)) { schedule_work(&pSCOSnd->send_sco_work); AICBT_INFO("%s: play_timer restart", __func__); } #endif } else { clear_bit(BTUSB_ISOC_RUNNING, &data->flags); #ifdef CONFIG_SCO_OVER_HCI clear_bit(USB_CAPTURE_RUNNING, &data->pSCOSnd->states); clear_bit(USB_PLAYBACK_RUNNING, &data->pSCOSnd->states); //AIC_sco_card_t *pSCOSnd = data->pSCOSnd; if (test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)) { mod_timer(&snd_cap_timer.play_timer,jiffies + msecs_to_jiffies(30)); AICBT_INFO("%s: play_timer start", __func__); } #endif mdelay(URB_CANCELING_DELAY_MS); usb_kill_anchored_urbs(&data->isoc_anchor); set_isoc_interface(hdev, 0); if (test_and_clear_bit(BTUSB_DID_ISO_RESUME, &data->flags)) usb_autopm_put_interface(data->isoc ? data->isoc : data->intf); } } static void btusb_waker(struct work_struct *work) { struct btusb_data *data = container_of(work, struct btusb_data, waker); int err; AICBT_DBG("%s", __func__); err = usb_autopm_get_interface(data->intf); if (err < 0) return; usb_autopm_put_interface(data->intf); } int bt_pm_notify(struct notifier_block *notifier, ulong pm_event, void *unused) { struct btusb_data *data; firmware_info *fw_info; struct usb_device *udev; AICBT_INFO("%s: pm event %ld", __func__, pm_event); data = container_of(notifier, struct btusb_data, pm_notifier); fw_info = data->fw_info; udev = fw_info->udev; switch (pm_event) { case PM_SUSPEND_PREPARE: case PM_HIBERNATION_PREPARE: #if 0 patch_entry->fw_len = load_firmware(fw_info, &patch_entry->fw_cache); if (patch_entry->fw_len <= 0) { /* We may encount failure in loading firmware, just give a warning */ AICBT_WARN("%s: Failed to load firmware", __func__); } #endif if (!device_may_wakeup(&udev->dev)) { #if (CONFIG_RESET_RESUME || CONFIG_BLUEDROID) AICBT_INFO("%s:remote wakeup not supported, reset resume supported", __func__); #else fw_info->intf->needs_binding = 1; AICBT_INFO("%s:remote wakeup not supported, binding needed", __func__); #endif } break; case PM_POST_SUSPEND: case PM_POST_HIBERNATION: case PM_POST_RESTORE: #if 0 /* Reclaim fw buffer when bt usb resumed */ if (patch_entry->fw_len > 0) { kfree(patch_entry->fw_cache); patch_entry->fw_cache = NULL; patch_entry->fw_len = 0; } #endif #if BTUSB_RPM usb_disable_autosuspend(udev); usb_enable_autosuspend(udev); pm_runtime_set_autosuspend_delay(&(udev->dev), 2000); #endif break; default: break; } return NOTIFY_DONE; } int bt_reboot_notify(struct notifier_block *notifier, ulong pm_event, void *unused) { struct btusb_data *data; firmware_info *fw_info; struct usb_device *udev; AICBT_INFO("%s: pm event %ld", __func__, pm_event); data = container_of(notifier, struct btusb_data, reboot_notifier); fw_info = data->fw_info; udev = fw_info->udev; switch (pm_event) { case SYS_DOWN: AICBT_DBG("%s:system down or restart", __func__); break; case SYS_HALT: case SYS_POWER_OFF: #if SUSPNED_DW_FW cancel_work_sync(&data->work); btusb_stop_traffic(data); mdelay(URB_CANCELING_DELAY_MS); usb_kill_anchored_urbs(&data->tx_anchor); if(fw_info_4_suspend) { download_suspend_patch(fw_info_4_suspend,1); } else AICBT_ERR("%s: Failed to download suspend fw", __func__); #endif #ifdef SET_WAKEUP_DEVICE set_wakeup_device_from_conf(fw_info_4_suspend); #endif AICBT_DBG("%s:system halt or power off", __func__); break; default: break; } return NOTIFY_DONE; } #ifdef CONFIG_SCO_OVER_HCI #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0) void aic_snd_capture_timeout(ulong data) #else void aic_snd_capture_timeout(struct timer_list *t) #endif { uint8_t null_data[255]; struct btusb_data *usb_data; #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0) usb_data = (struct btusb_data *)data; #else usb_data = &snd_cap_timer.snd_usb_data; #endif aic_copy_capture_data_to_alsa(usb_data, null_data, snd_cap_timer.snd_sco_length/2); //printk("%s enter\r\n", __func__); mod_timer(&snd_cap_timer.cap_timer,jiffies + msecs_to_jiffies(3)); } #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0) void aic_snd_play_timeout(ulong data) #else void aic_snd_play_timeout(struct timer_list *t) #endif { AIC_sco_card_t *pSCOSnd; struct snd_pcm_runtime *runtime; snd_pcm_uframes_t period_size; int count; struct btusb_data *usb_data; int sco_packet_bytes; #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0) usb_data = (struct btusb_data *)data; #else usb_data = &snd_cap_timer.snd_usb_data; #endif pSCOSnd = usb_data->pSCOSnd; if(test_bit(USB_PLAYBACK_RUNNING, &pSCOSnd->states)) { return; } if(!test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)) { return; } runtime = pSCOSnd->playback.substream->runtime; period_size = runtime->period_size; sco_packet_bytes = pSCOSnd->playback.sco_packet_bytes; count = frames_to_bytes(runtime, period_size)/sco_packet_bytes; pSCOSnd->playback.buffer_pos += period_size; if ( pSCOSnd->playback.buffer_pos >= runtime->buffer_size) pSCOSnd->playback.buffer_pos -= runtime->buffer_size; if(test_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states)) { snd_pcm_period_elapsed(pSCOSnd->playback.substream); } //AICBT_DBG("%s,play_timer restart buffer_pos:%d sco_handle:%d sco_packet_bytes:%d count:%d", __FUNCTION__, pSCOSnd->playback.buffer_pos, pSCOSnd->usb_data->sco_handle, //sco_packet_bytes, count); mod_timer(&snd_cap_timer.play_timer,jiffies + msecs_to_jiffies(3*count)); } static const struct snd_pcm_hardware snd_card_sco_capture_default = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_NONINTERLEAVED | SNDRV_PCM_ACCESS_RW_INTERLEAVED | SNDRV_PCM_INFO_FIFO_IN_FRAMES), .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S8, .rates = (SNDRV_PCM_RATE_8000), .rate_min = 8000, .rate_max = 8000, .channels_min = 1, .channels_max = 1, .buffer_bytes_max = 8 * 768, .period_bytes_min = 48, .period_bytes_max = 768, .periods_min = 1, .periods_max = 8, .fifo_size = 8, }; static int snd_sco_capture_pcm_open(struct snd_pcm_substream * substream) { AIC_sco_card_t *pSCOSnd = substream->private_data; AICBT_INFO("%s", __FUNCTION__); pSCOSnd->capture.substream = substream; memcpy(&substream->runtime->hw, &snd_card_sco_capture_default, sizeof(struct snd_pcm_hardware)); pSCOSnd->capture.buffer_pos = 0; #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0) init_timer(&snd_cap_timer.cap_timer); snd_cap_timer.cap_timer.data = (unsigned long)pSCOSnd->usb_data; snd_cap_timer.cap_timer.function = aic_snd_capture_timeout; #else timer_setup(&snd_cap_timer.cap_timer, aic_snd_capture_timeout, 0); snd_cap_timer.snd_usb_data = *(pSCOSnd->usb_data); #endif if(check_controller_support_msbc(pSCOSnd->dev)) { substream->runtime->hw.rates |= SNDRV_PCM_RATE_16000; substream->runtime->hw.rate_max = 16000; substream->runtime->hw.period_bytes_min = 96; substream->runtime->hw.period_bytes_max = 16 * 96; substream->runtime->hw.buffer_bytes_max = 8 * 16 * 96; } set_bit(ALSA_CAPTURE_OPEN, &pSCOSnd->states); return 0; } static int snd_sco_capture_pcm_close(struct snd_pcm_substream *substream) { AIC_sco_card_t *pSCOSnd = substream->private_data; del_timer(&snd_cap_timer.cap_timer); clear_bit(ALSA_CAPTURE_OPEN, &pSCOSnd->states); return 0; } static int snd_sco_capture_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg) { AICBT_DBG("%s, cmd = %d", __FUNCTION__, cmd); switch (cmd) { default: return snd_pcm_lib_ioctl(substream, cmd, arg); } return 0; } static int snd_sco_capture_pcm_hw_params(struct snd_pcm_substream * substream, struct snd_pcm_hw_params * hw_params) { int err; struct snd_pcm_runtime *runtime = substream->runtime; err = snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params)); AICBT_INFO("%s,err : %d, runtime state : %d", __FUNCTION__, err, runtime->status->state); return err; } static int snd_sco_capture_pcm_hw_free(struct snd_pcm_substream * substream) { AICBT_DBG("%s", __FUNCTION__); return snd_pcm_lib_free_vmalloc_buffer(substream);; } static int snd_sco_capture_pcm_prepare(struct snd_pcm_substream *substream) { AIC_sco_card_t *pSCOSnd = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; AICBT_INFO("%s %d\n", __FUNCTION__, (int)runtime->period_size); if (test_bit(DISCONNECTED, &pSCOSnd->states)) return -ENODEV; if (!test_bit(USB_CAPTURE_RUNNING, &pSCOSnd->states)) return -EIO; if(runtime->rate == 8000) { if(pSCOSnd->usb_data->isoc_altsetting != 2) return -ENOEXEC; pSCOSnd->capture.sco_packet_bytes = 48; } else if(runtime->rate == 16000 && check_controller_support_msbc(pSCOSnd->dev)) { if(pSCOSnd->usb_data->isoc_altsetting != 4) return -ENOEXEC; pSCOSnd->capture.sco_packet_bytes = 96; } else if(pSCOSnd->usb_data->isoc_altsetting == 2) { pSCOSnd->capture.sco_packet_bytes = 48; } else if(pSCOSnd->usb_data->isoc_altsetting == 1) { pSCOSnd->capture.sco_packet_bytes = 24; } return 0; } static int snd_sco_capture_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { AIC_sco_card_t *pSCOSnd = substream->private_data; AICBT_INFO("%s, cmd : %d", __FUNCTION__, cmd); switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (!test_bit(USB_CAPTURE_RUNNING, &pSCOSnd->states)) return -EIO; set_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states); return 0; case SNDRV_PCM_TRIGGER_STOP: clear_bit(ALSA_CAPTURE_RUNNING, &pSCOSnd->states); return 0; default: return -EINVAL; } } static snd_pcm_uframes_t snd_sco_capture_pcm_pointer(struct snd_pcm_substream *substream) { AIC_sco_card_t *pSCOSnd = substream->private_data; return pSCOSnd->capture.buffer_pos; } static struct snd_pcm_ops snd_sco_capture_pcm_ops = { .open = snd_sco_capture_pcm_open, .close = snd_sco_capture_pcm_close, .ioctl = snd_sco_capture_ioctl, .hw_params = snd_sco_capture_pcm_hw_params, .hw_free = snd_sco_capture_pcm_hw_free, .prepare = snd_sco_capture_pcm_prepare, .trigger = snd_sco_capture_pcm_trigger, .pointer = snd_sco_capture_pcm_pointer, }; static const struct snd_pcm_hardware snd_card_sco_playback_default = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_NONINTERLEAVED | SNDRV_PCM_ACCESS_RW_INTERLEAVED | SNDRV_PCM_INFO_FIFO_IN_FRAMES), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = (SNDRV_PCM_RATE_8000), .rate_min = 8000, .rate_max = 8000, .channels_min = 1, .channels_max = 1, .buffer_bytes_max = 8 * 768, .period_bytes_min = 48, .period_bytes_max = 768, .periods_min = 1, .periods_max = 8, .fifo_size = 8, }; static int snd_sco_playback_pcm_open(struct snd_pcm_substream * substream) { AIC_sco_card_t *pSCOSnd = substream->private_data; int err = 0; #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0) init_timer(&snd_cap_timer.play_timer); snd_cap_timer.play_timer.data = (unsigned long)pSCOSnd->usb_data; snd_cap_timer.play_timer.function = aic_snd_play_timeout; #else timer_setup(&snd_cap_timer.play_timer, aic_snd_play_timeout, 0); snd_cap_timer.snd_usb_data = *(pSCOSnd->usb_data); #endif pSCOSnd->playback.buffer_pos = 0; AICBT_INFO("%s, rate : %d", __FUNCTION__, substream->runtime->rate); memcpy(&substream->runtime->hw, &snd_card_sco_playback_default, sizeof(struct snd_pcm_hardware)); if(check_controller_support_msbc(pSCOSnd->dev)) { substream->runtime->hw.rates |= SNDRV_PCM_RATE_16000; substream->runtime->hw.rate_max = 16000; substream->runtime->hw.period_bytes_min = 96; substream->runtime->hw.period_bytes_max = 16 * 96; substream->runtime->hw.buffer_bytes_max = 8 * 16 * 96; } pSCOSnd->playback.substream = substream; set_bit(ALSA_PLAYBACK_OPEN, &pSCOSnd->states); return err; } static int snd_sco_playback_pcm_close(struct snd_pcm_substream *substream) { AIC_sco_card_t *pSCOSnd = substream->private_data; del_timer(&snd_cap_timer.play_timer); AICBT_INFO("%s: play_timer delete", __func__); clear_bit(ALSA_PLAYBACK_OPEN, &pSCOSnd->states); cancel_work_sync(&pSCOSnd->send_sco_work); return 0; } static int snd_sco_playback_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg) { AICBT_DBG("%s, cmd : %d", __FUNCTION__, cmd); switch (cmd) { default: return snd_pcm_lib_ioctl(substream, cmd, arg); break; } return 0; } static int snd_sco_playback_pcm_hw_params(struct snd_pcm_substream * substream, struct snd_pcm_hw_params * hw_params) { int err; err = snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params)); return err; } static int snd_sco_palyback_pcm_hw_free(struct snd_pcm_substream * substream) { AICBT_DBG("%s", __FUNCTION__); return snd_pcm_lib_free_vmalloc_buffer(substream); } static int snd_sco_playback_pcm_prepare(struct snd_pcm_substream *substream) { AIC_sco_card_t *pSCOSnd = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; AICBT_INFO("%s, bound_rate = %d", __FUNCTION__, runtime->rate); if (test_bit(DISCONNECTED, &pSCOSnd->states)) return -ENODEV; if (!test_bit(USB_PLAYBACK_RUNNING, &pSCOSnd->states)) return -EIO; if(runtime->rate == 8000) { if(pSCOSnd->usb_data->isoc_altsetting != 2) return -ENOEXEC; pSCOSnd->playback.sco_packet_bytes = 48; } else if(runtime->rate == 16000) { if(pSCOSnd->usb_data->isoc_altsetting != 4) return -ENOEXEC; pSCOSnd->playback.sco_packet_bytes = 96; } return 0; } static int snd_sco_playback_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { AIC_sco_card_t *pSCOSnd = substream->private_data; AICBT_INFO("%s, cmd = %d", __FUNCTION__, cmd); switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (!test_bit(USB_PLAYBACK_RUNNING, &pSCOSnd->states)) return -EIO; set_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states); schedule_work(&pSCOSnd->send_sco_work); #ifdef CONFIG_SCO_OVER_HCI if (!test_bit(USB_PLAYBACK_RUNNING, &pSCOSnd->states)) { AICBT_INFO("%s: play_timer cmd 1 start ", __func__); mod_timer(&snd_cap_timer.play_timer,jiffies + msecs_to_jiffies(3)); } #endif return 0; case SNDRV_PCM_TRIGGER_STOP: clear_bit(ALSA_PLAYBACK_RUNNING, &pSCOSnd->states); return 0; default: return -EINVAL; } } static snd_pcm_uframes_t snd_sco_playback_pcm_pointer(struct snd_pcm_substream *substream) { AIC_sco_card_t *pSCOSnd = substream->private_data; return pSCOSnd->playback.buffer_pos; } static struct snd_pcm_ops snd_sco_playback_pcm_ops = { .open = snd_sco_playback_pcm_open, .close = snd_sco_playback_pcm_close, .ioctl = snd_sco_playback_ioctl, .hw_params = snd_sco_playback_pcm_hw_params, .hw_free = snd_sco_palyback_pcm_hw_free, .prepare = snd_sco_playback_pcm_prepare, .trigger = snd_sco_playback_pcm_trigger, .pointer = snd_sco_playback_pcm_pointer, }; static AIC_sco_card_t* btusb_snd_init(struct usb_interface *intf, const struct usb_device_id *id, struct btusb_data *data) { struct snd_card *card; AIC_sco_card_t *pSCOSnd; int err=0; AICBT_INFO("%s", __func__); err = snd_card_new(&intf->dev, -1, AIC_SCO_ID, THIS_MODULE, sizeof(AIC_sco_card_t), &card); if (err < 0) { AICBT_ERR("%s: sco snd card create fail", __func__); return NULL; } // private data pSCOSnd = (AIC_sco_card_t *)card->private_data; pSCOSnd->card = card; pSCOSnd->dev = interface_to_usbdev(intf); pSCOSnd->usb_data = data; strcpy(card->driver, AIC_SCO_ID); strcpy(card->shortname, "Aicsemi sco snd"); sprintf(card->longname, "Aicsemi sco over hci: VID:0x%04x, PID:0x%04x", id->idVendor, pSCOSnd->dev->descriptor.idProduct); err = snd_pcm_new(card, AIC_SCO_ID, 0, 1, 1, &pSCOSnd->pcm); if (err < 0) { AICBT_ERR("%s: sco snd card new pcm fail", __func__); return NULL; } pSCOSnd->pcm->private_data = pSCOSnd; sprintf(pSCOSnd->pcm->name, "sco_pcm:VID:0x%04x, PID:0x%04x", id->idVendor, pSCOSnd->dev->descriptor.idProduct); snd_pcm_set_ops(pSCOSnd->pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_sco_playback_pcm_ops); snd_pcm_set_ops(pSCOSnd->pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_sco_capture_pcm_ops); err = snd_card_register(card); if (err < 0) { AICBT_ERR("%s: sco snd card register card fail", __func__); return NULL; } spin_lock_init(&pSCOSnd->capture_lock); spin_lock_init(&pSCOSnd->playback_lock); INIT_WORK(&pSCOSnd->send_sco_work, playback_work); return pSCOSnd; } #endif static int aicwf_usb_chipmatch(u16 vid, u16 pid){ if(pid == USB_PRODUCT_ID_AIC8801){ g_chipid = PRODUCT_ID_AIC8801; printk("%s USE AIC8801\r\n", __func__); return 0; }else if(pid == USB_PRODUCT_ID_AIC8800DC){ g_chipid = PRODUCT_ID_AIC8800DC; printk("%s USE AIC8800DC\r\n", __func__); return 0; }else if(pid == USB_PRODUCT_ID_AIC8800D80){ g_chipid = PRODUCT_ID_AIC8800D80; printk("%s USE AIC8800D80\r\n", __func__); return 0; }else{ return -1; } } static int btusb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_endpoint_descriptor *ep_desc; u8 endpoint_num; struct btusb_data *data; struct hci_dev *hdev; firmware_info *fw_info; int i, err=0; bt_support = 1; AICBT_INFO("%s: usb_interface %p, bInterfaceNumber %d, idVendor 0x%04x, " "idProduct 0x%04x", __func__, intf, intf->cur_altsetting->desc.bInterfaceNumber, id->idVendor, id->idProduct); aicwf_usb_chipmatch(id->idVendor, id->idProduct); /* interface numbers are hardcoded in the spec */ if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return -ENODEV; AICBT_DBG("%s: can wakeup = %x, may wakeup = %x", __func__, device_can_wakeup(&udev->dev), device_may_wakeup(&udev->dev)); data = aic_alloc(intf); if (!data) return -ENOMEM; for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) { ep_desc = &intf->cur_altsetting->endpoint[i].desc; endpoint_num = usb_endpoint_num(ep_desc); printk("endpoint num %d\n", endpoint_num); if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) { data->intr_ep = ep_desc; continue; } if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) { data->bulk_tx_ep = ep_desc; continue; } if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) { data->bulk_rx_ep = ep_desc; continue; } } if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) { aic_free(data); return -ENODEV; } data->cmdreq_type = USB_TYPE_CLASS; data->udev = udev; data->intf = intf; dlfw_dis_state = 0; spin_lock_init(&queue_lock); spin_lock_init(&dlfw_lock); spin_lock_init(&data->lock); INIT_WORK(&data->work, btusb_work); INIT_WORK(&data->waker, btusb_waker); spin_lock_init(&data->txlock); init_usb_anchor(&data->tx_anchor); init_usb_anchor(&data->intr_anchor); init_usb_anchor(&data->bulk_anchor); init_usb_anchor(&data->isoc_anchor); init_usb_anchor(&data->deferred); #if (CONFIG_BLUEDROID == 0) #if HCI_VERSION_CODE >= KERNEL_VERSION(3, 18, 0) spin_lock_init(&data->rxlock); data->recv_bulk = btusb_recv_bulk; #endif #endif fw_info = firmware_info_init(intf); if (fw_info) data->fw_info = fw_info; else { AICBT_WARN("%s: Failed to initialize fw info", __func__); /* Skip download patch */ goto end; } AICBT_INFO("%s: download begining...", __func__); #if CONFIG_BLUEDROID mutex_lock(&btchr_mutex); #endif if(g_chipid == PRODUCT_ID_AIC8800DC){ err = download_patch(data->fw_info,1); } #if CONFIG_BLUEDROID mutex_unlock(&btchr_mutex); #endif AICBT_INFO("%s: download ending...", __func__); if (err < 0) { return err; } hdev = hci_alloc_dev(); if (!hdev) { aic_free(data); data = NULL; return -ENOMEM; } HDEV_BUS = HCI_USB; data->hdev = hdev; SET_HCIDEV_DEV(hdev, &intf->dev); hdev->open = btusb_open; hdev->close = btusb_close; hdev->flush = btusb_flush; hdev->send = btusb_send_frame; hdev->notify = btusb_notify; #if (CONFIG_BLUEDROID == 0) #if LINUX_VERSION_CODE > KERNEL_VERSION(4, 0, 9) hdev->shutdown = btusb_shutdown; #endif #endif //(CONFIG_BLUEDROIF == 0) #if LINUX_VERSION_CODE > KERNEL_VERSION(3, 4, 0) hci_set_drvdata(hdev, data); #else hdev->driver_data = data; hdev->destruct = btusb_destruct; hdev->owner = THIS_MODULE; #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 1) if (!reset_on_close){ /* set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks); */ AICBT_DBG("%s: Set HCI_QUIRK_RESET_ON_CLOSE", __func__); } #endif /* Interface numbers are hardcoded in the specification */ data->isoc = usb_ifnum_to_if(data->udev, 1); if (data->isoc) { err = usb_driver_claim_interface(&btusb_driver, data->isoc, data); if (err < 0) { hci_free_dev(hdev); hdev = NULL; aic_free(data); data = NULL; return err; } #ifdef CONFIG_SCO_OVER_HCI data->pSCOSnd = btusb_snd_init(intf, id, data); #endif } err = hci_register_dev(hdev); if (err < 0) { hci_free_dev(hdev); hdev = NULL; aic_free(data); data = NULL; return err; } usb_set_intfdata(intf, data); //#ifdef CONFIG_HAS_EARLYSUSPEND #if 0 data->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN; data->early_suspend.suspend = btusb_early_suspend; data->early_suspend.resume = btusb_late_resume; register_early_suspend(&data->early_suspend); #else data->pm_notifier.notifier_call = bt_pm_notify; data->reboot_notifier.notifier_call = bt_reboot_notify; register_pm_notifier(&data->pm_notifier); register_reboot_notifier(&data->reboot_notifier); #endif #if CONFIG_BLUEDROID AICBT_INFO("%s: Check bt reset flag %d", __func__, bt_reset); /* Report hci hardware error after everthing is ready, * especially hci register is completed. Or, btchr_poll * will get null hci dev when hotplug in. */ if (bt_reset == 1) { hci_hardware_error(); bt_reset = 0; } else bt_reset = 0; /* Clear and reset it anyway */ #endif end: return 0; } static void btusb_disconnect(struct usb_interface *intf) { struct btusb_data *data; struct hci_dev *hdev = NULL; #if CONFIG_BLUEDROID wait_event_interruptible(bt_dlfw_wait, (check_set_dlfw_state_value(2) == 2)); #endif bt_support = 0; AICBT_INFO("%s: usb_interface %p, bInterfaceNumber %d", __func__, intf, intf->cur_altsetting->desc.bInterfaceNumber); data = usb_get_intfdata(intf); if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return; if (data) hdev = data->hdev; else { AICBT_WARN("%s: Failed to get bt usb data[Null]", __func__); return; } #ifdef CONFIG_SCO_OVER_HCI if (intf->cur_altsetting->desc.bInterfaceNumber == 0) { AIC_sco_card_t *pSCOSnd = data->pSCOSnd; if(!pSCOSnd) { AICBT_ERR("%s: sco private data is null", __func__); return; } set_bit(DISCONNECTED, &pSCOSnd->states); snd_card_disconnect(pSCOSnd->card); snd_card_free_when_closed(pSCOSnd->card); } #endif //#ifdef CONFIG_HAS_EARLYSUSPEND #if 0 unregister_early_suspend(&data->early_suspend); #else unregister_pm_notifier(&data->pm_notifier); unregister_reboot_notifier(&data->reboot_notifier); #endif firmware_info_destroy(intf); #if CONFIG_BLUEDROID if (test_bit(HCI_RUNNING, &hdev->flags)) { AICBT_INFO("%s: Set BT reset flag", __func__); bt_reset = 1; } #endif usb_set_intfdata(data->intf, NULL); if (data->isoc) usb_set_intfdata(data->isoc, NULL); hci_unregister_dev(hdev); if (intf == data->isoc) usb_driver_release_interface(&btusb_driver, data->intf); else if (data->isoc) usb_driver_release_interface(&btusb_driver, data->isoc); #if !CONFIG_BLUEDROID #if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 4, 0) __hci_dev_put(hdev); #endif #endif hci_free_dev(hdev); aic_free(data); data = NULL; set_dlfw_state_value(0); } #ifdef CONFIG_PM static int btusb_suspend(struct usb_interface *intf, pm_message_t message) { struct btusb_data *data = usb_get_intfdata(intf); //firmware_info *fw_info = data->fw_info; AICBT_INFO("%s: event 0x%x, suspend count %d", __func__, message.event, data->suspend_count); if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return 0; #if 0 if (!test_bit(HCI_RUNNING, &data->hdev->flags)) set_bt_onoff(fw_info, 1); #endif if (data->suspend_count++) return 0; spin_lock_irq(&data->txlock); if (!((message.event & PM_EVENT_AUTO) && data->tx_in_flight)) { set_bit(BTUSB_SUSPENDING, &data->flags); spin_unlock_irq(&data->txlock); } else { spin_unlock_irq(&data->txlock); data->suspend_count--; AICBT_ERR("%s: Failed to enter suspend", __func__); return -EBUSY; } cancel_work_sync(&data->work); btusb_stop_traffic(data); mdelay(URB_CANCELING_DELAY_MS); usb_kill_anchored_urbs(&data->tx_anchor); return 0; } static void play_deferred(struct btusb_data *data) { struct urb *urb; int err; while ((urb = usb_get_from_anchor(&data->deferred))) { usb_anchor_urb(urb, &data->tx_anchor); err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { AICBT_ERR("%s: Failed to submit urb %p, err %d", __func__, urb, err); kfree(urb->setup_packet); usb_unanchor_urb(urb); } else { usb_mark_last_busy(data->udev); } usb_free_urb(urb); data->tx_in_flight++; } mdelay(URB_CANCELING_DELAY_MS); usb_scuttle_anchored_urbs(&data->deferred); } static int btusb_resume(struct usb_interface *intf) { struct btusb_data *data = usb_get_intfdata(intf); struct hci_dev *hdev = data->hdev; int err = 0; AICBT_INFO("%s: Suspend count %d", __func__, data->suspend_count); if (intf->cur_altsetting->desc.bInterfaceNumber != 0) return 0; if (--data->suspend_count) return 0; #if 0 /*check_fw_version to check the status of the BT Controller after USB Resume*/ err = check_fw_version(fw_info); if (err !=0) { AICBT_INFO("%s: BT Controller Power OFF And Return hci_hardware_error:%d", __func__, err); hci_hardware_error(); } #endif AICBT_INFO("%s g_chipid %x\n", __func__, g_chipid); if(g_chipid == PRODUCT_ID_AIC8800DC){ if(data->fw_info){ err = download_patch(data->fw_info,1); }else{ AICBT_WARN("%s: Failed to initialize fw info", __func__); } } #if 1 if (test_bit(BTUSB_INTR_RUNNING, &data->flags)) { err = btusb_submit_intr_urb(hdev, GFP_NOIO); if (err < 0) { clear_bit(BTUSB_INTR_RUNNING, &data->flags); goto failed; } } #endif if (test_bit(BTUSB_BULK_RUNNING, &data->flags)) { err = btusb_submit_bulk_urb(hdev, GFP_NOIO); if (err < 0) { clear_bit(BTUSB_BULK_RUNNING, &data->flags); goto failed; } btusb_submit_bulk_urb(hdev, GFP_NOIO); } if (test_bit(BTUSB_ISOC_RUNNING, &data->flags)) { if (btusb_submit_isoc_urb(hdev, GFP_NOIO) < 0) clear_bit(BTUSB_ISOC_RUNNING, &data->flags); else btusb_submit_isoc_urb(hdev, GFP_NOIO); } spin_lock_irq(&data->txlock); play_deferred(data); clear_bit(BTUSB_SUSPENDING, &data->flags); spin_unlock_irq(&data->txlock); schedule_work(&data->work); return 0; failed: mdelay(URB_CANCELING_DELAY_MS); usb_scuttle_anchored_urbs(&data->deferred); spin_lock_irq(&data->txlock); clear_bit(BTUSB_SUSPENDING, &data->flags); spin_unlock_irq(&data->txlock); return err; } #endif static struct usb_driver btusb_driver = { .name = "aic_btusb", .probe = btusb_probe, .disconnect = btusb_disconnect, #ifdef CONFIG_PM .suspend = btusb_suspend, .resume = btusb_resume, #if CONFIG_RESET_RESUME .reset_resume = btusb_resume, #endif #endif .id_table = btusb_table, .supports_autosuspend = 1, #if LINUX_VERSION_CODE > KERNEL_VERSION(3, 7, 1) .disable_hub_initiated_lpm = 1, #endif }; static int __init btusb_init(void) { int err; AICBT_INFO("AICBT_RELEASE_NAME: %s",AICBT_RELEASE_NAME); AICBT_INFO("AicSemi Bluetooth USB driver module init, version %s", VERSION); AICBT_INFO("RELEASE DATE: 2023_0506_1635 \r\n"); #if CONFIG_BLUEDROID err = btchr_init(); if (err < 0) { /* usb register will go on, even bt char register failed */ AICBT_ERR("Failed to register usb char device interfaces"); } else bt_char_dev_registered = 1; #endif err = usb_register(&btusb_driver); if (err < 0) AICBT_ERR("Failed to register aic bluetooth USB driver"); return err; } static void __exit btusb_exit(void) { AICBT_INFO("AicSemi Bluetooth USB driver module exit"); #if CONFIG_BLUEDROID if (bt_char_dev_registered > 0) btchr_exit(); #endif usb_deregister(&btusb_driver); } module_init(btusb_init); module_exit(btusb_exit); module_param(mp_drv_mode, int, 0644); MODULE_PARM_DESC(mp_drv_mode, "0: NORMAL; 1: MP MODE"); #if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0) MODULE_IMPORT_NS(VFS_internal_I_am_really_a_filesystem_and_am_NOT_a_driver); #endif MODULE_AUTHOR("AicSemi Corporation"); MODULE_DESCRIPTION("AicSemi Bluetooth USB driver version"); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL");