/* * Disk Array driver for HP Smart Array controllers. * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA * 02111-1307, USA. * * Questions/Comments/Bugfixes to iss_storagedev@hp.com * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) #define DRIVER_NAME "HP CISS Driver (v 3.6.20)" #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20) /* Embedded module documentation macros - see modules.h */ MODULE_AUTHOR("Hewlett-Packard Company"); MODULE_DESCRIPTION("Driver for HP Smart Array Controllers"); MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400" " SA6i P600 P800 P400 P400i E200 E200i E500 P700m" " Smart Array G2 Series SAS/SATA Controllers"); MODULE_VERSION("3.6.20"); MODULE_LICENSE("GPL"); #include "cciss_cmd.h" #include "cciss.h" #include /* define the PCI info for the cards we can control */ static const struct pci_device_id cciss_pci_device_id[] = { {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C}, {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, cciss_pci_device_id); /* board_id = Subsystem Device ID & Vendor ID * product = Marketing Name for the board * access = Address of the struct of function pointers */ static struct board_type products[] = { {0x40700E11, "Smart Array 5300", &SA5_access}, {0x40800E11, "Smart Array 5i", &SA5B_access}, {0x40820E11, "Smart Array 532", &SA5B_access}, {0x40830E11, "Smart Array 5312", &SA5B_access}, {0x409A0E11, "Smart Array 641", &SA5_access}, {0x409B0E11, "Smart Array 642", &SA5_access}, {0x409C0E11, "Smart Array 6400", &SA5_access}, {0x409D0E11, "Smart Array 6400 EM", &SA5_access}, {0x40910E11, "Smart Array 6i", &SA5_access}, {0x3225103C, "Smart Array P600", &SA5_access}, {0x3223103C, "Smart Array P800", &SA5_access}, {0x3234103C, "Smart Array P400", &SA5_access}, {0x3235103C, "Smart Array P400i", &SA5_access}, {0x3211103C, "Smart Array E200i", &SA5_access}, {0x3212103C, "Smart Array E200", &SA5_access}, {0x3213103C, "Smart Array E200i", &SA5_access}, {0x3214103C, "Smart Array E200i", &SA5_access}, {0x3215103C, "Smart Array E200i", &SA5_access}, {0x3237103C, "Smart Array E500", &SA5_access}, {0x323D103C, "Smart Array P700m", &SA5_access}, {0x3241103C, "Smart Array P212", &SA5_access}, {0x3243103C, "Smart Array P410", &SA5_access}, {0x3245103C, "Smart Array P410i", &SA5_access}, {0x3247103C, "Smart Array P411", &SA5_access}, {0x3249103C, "Smart Array P812", &SA5_access}, {0x324A103C, "Smart Array P712m", &SA5_access}, {0x324B103C, "Smart Array P711m", &SA5_access}, {0xFFFF103C, "Unknown Smart Array", &SA5_access}, }; /* How long to wait (in milliseconds) for board to go into simple mode */ #define MAX_CONFIG_WAIT 30000 #define MAX_IOCTL_CONFIG_WAIT 1000 /*define how many times we will try a command because of bus resets */ #define MAX_CMD_RETRIES 3 #define MAX_CTLR 32 /* Originally cciss driver only supports 8 major numbers */ #define MAX_CTLR_ORIG 8 static ctlr_info_t *hba[MAX_CTLR]; static struct task_struct *cciss_scan_thread; static DEFINE_MUTEX(scan_mutex); static LIST_HEAD(scan_q); static void do_cciss_request(struct request_queue *q); static irqreturn_t do_cciss_intr(int irq, void *dev_id); static int cciss_open(struct block_device *bdev, fmode_t mode); static int cciss_release(struct gendisk *disk, fmode_t mode); static int cciss_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo); static int cciss_revalidate(struct gendisk *disk); static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl); static int deregister_disk(ctlr_info_t *h, int drv_index, int clear_all, int via_ioctl); static void cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size); static void cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size); static void cciss_geometry_inquiry(int ctlr, int logvol, int withirq, sector_t total_size, unsigned int block_size, InquiryData_struct *inq_buff, drive_info_struct *drv); static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *, __u32); static void start_io(ctlr_info_t *h); static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, int cmd_type); static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size, __u8 page_code, unsigned char scsi3addr[], int cmd_type); static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, int attempt_retry); static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c); static void fail_all_cmds(unsigned long ctlr); static int add_to_scan_list(struct ctlr_info *h); static int scan_thread(void *data); static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c); static void cciss_hba_release(struct device *dev); static void cciss_device_release(struct device *dev); static void cciss_free_gendisk(ctlr_info_t *h, int drv_index); static void cciss_free_drive_info(ctlr_info_t *h, int drv_index); #ifdef CONFIG_PROC_FS static void cciss_procinit(int i); #else static void cciss_procinit(int i) { } #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_COMPAT static int cciss_compat_ioctl(struct block_device *, fmode_t, unsigned, unsigned long); #endif static const struct block_device_operations cciss_fops = { .owner = THIS_MODULE, .open = cciss_open, .release = cciss_release, .locked_ioctl = cciss_ioctl, .getgeo = cciss_getgeo, #ifdef CONFIG_COMPAT .compat_ioctl = cciss_compat_ioctl, #endif .revalidate_disk = cciss_revalidate, }; /* * Enqueuing and dequeuing functions for cmdlists. */ static inline void addQ(struct hlist_head *list, CommandList_struct *c) { hlist_add_head(&c->list, list); } static inline void removeQ(CommandList_struct *c) { /* * After kexec/dump some commands might still * be in flight, which the firmware will try * to complete. Resetting the firmware doesn't work * with old fw revisions, so we have to mark * them off as 'stale' to prevent the driver from * falling over. */ if (WARN_ON(hlist_unhashed(&c->list))) { c->cmd_type = CMD_MSG_STALE; return; } hlist_del_init(&c->list); } #include "cciss_scsi.c" /* For SCSI tape support */ #ifdef CONFIG_PROC_FS /* * Report information about this controller. */ #define ENG_GIG 1000000000 #define ENG_GIG_FACTOR (ENG_GIG/512) #define ENGAGE_SCSI "engage scsi" static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", "UNKNOWN" }; #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1) static struct proc_dir_entry *proc_cciss; static void cciss_seq_show_header(struct seq_file *seq) { ctlr_info_t *h = seq->private; seq_printf(seq, "%s: HP %s Controller\n" "Board ID: 0x%08lx\n" "Firmware Version: %c%c%c%c\n" "IRQ: %d\n" "Logical drives: %d\n" "Current Q depth: %d\n" "Current # commands on controller: %d\n" "Max Q depth since init: %d\n" "Max # commands on controller since init: %d\n" "Max SG entries since init: %d\n", h->devname, h->product_name, (unsigned long)h->board_id, h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT], h->num_luns, h->Qdepth, h->commands_outstanding, h->maxQsinceinit, h->max_outstanding, h->maxSG); #ifdef CONFIG_CISS_SCSI_TAPE cciss_seq_tape_report(seq, h->ctlr); #endif /* CONFIG_CISS_SCSI_TAPE */ } static void *cciss_seq_start(struct seq_file *seq, loff_t *pos) { ctlr_info_t *h = seq->private; unsigned ctlr = h->ctlr; unsigned long flags; /* prevent displaying bogus info during configuration * or deconfiguration of a logical volume */ spin_lock_irqsave(CCISS_LOCK(ctlr), flags); if (h->busy_configuring) { spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); return ERR_PTR(-EBUSY); } h->busy_configuring = 1; spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); if (*pos == 0) cciss_seq_show_header(seq); return pos; } static int cciss_seq_show(struct seq_file *seq, void *v) { sector_t vol_sz, vol_sz_frac; ctlr_info_t *h = seq->private; unsigned ctlr = h->ctlr; loff_t *pos = v; drive_info_struct *drv = h->drv[*pos]; if (*pos > h->highest_lun) return 0; if (drv->heads == 0) return 0; vol_sz = drv->nr_blocks; vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR); vol_sz_frac *= 100; sector_div(vol_sz_frac, ENG_GIG_FACTOR); if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN) drv->raid_level = RAID_UNKNOWN; seq_printf(seq, "cciss/c%dd%d:" "\t%4u.%02uGB\tRAID %s\n", ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac, raid_label[drv->raid_level]); return 0; } static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ctlr_info_t *h = seq->private; if (*pos > h->highest_lun) return NULL; *pos += 1; return pos; } static void cciss_seq_stop(struct seq_file *seq, void *v) { ctlr_info_t *h = seq->private; /* Only reset h->busy_configuring if we succeeded in setting * it during cciss_seq_start. */ if (v == ERR_PTR(-EBUSY)) return; h->busy_configuring = 0; } static const struct seq_operations cciss_seq_ops = { .start = cciss_seq_start, .show = cciss_seq_show, .next = cciss_seq_next, .stop = cciss_seq_stop, }; static int cciss_seq_open(struct inode *inode, struct file *file) { int ret = seq_open(file, &cciss_seq_ops); struct seq_file *seq = file->private_data; if (!ret) seq->private = PDE(inode)->data; return ret; } static ssize_t cciss_proc_write(struct file *file, const char __user *buf, size_t length, loff_t *ppos) { int err; char *buffer; #ifndef CONFIG_CISS_SCSI_TAPE return -EINVAL; #endif if (!buf || length > PAGE_SIZE - 1) return -EINVAL; buffer = (char *)__get_free_page(GFP_KERNEL); if (!buffer) return -ENOMEM; err = -EFAULT; if (copy_from_user(buffer, buf, length)) goto out; buffer[length] = '\0'; #ifdef CONFIG_CISS_SCSI_TAPE if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) { struct seq_file *seq = file->private_data; ctlr_info_t *h = seq->private; int rc; rc = cciss_engage_scsi(h->ctlr); if (rc != 0) err = -rc; else err = length; } else #endif /* CONFIG_CISS_SCSI_TAPE */ err = -EINVAL; /* might be nice to have "disengage" too, but it's not safely possible. (only 1 module use count, lock issues.) */ out: free_page((unsigned long)buffer); return err; } static struct file_operations cciss_proc_fops = { .owner = THIS_MODULE, .open = cciss_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, .write = cciss_proc_write, }; static void __devinit cciss_procinit(int i) { struct proc_dir_entry *pde; if (proc_cciss == NULL) proc_cciss = proc_mkdir("driver/cciss", NULL); if (!proc_cciss) return; pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH, proc_cciss, &cciss_proc_fops, hba[i]); } #endif /* CONFIG_PROC_FS */ #define MAX_PRODUCT_NAME_LEN 19 #define to_hba(n) container_of(n, struct ctlr_info, dev) #define to_drv(n) container_of(n, drive_info_struct, dev) static ssize_t host_store_rescan(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ctlr_info *h = to_hba(dev); add_to_scan_list(h); wake_up_process(cciss_scan_thread); wait_for_completion_interruptible(&h->scan_wait); return count; } DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); static ssize_t dev_show_unique_id(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); __u8 sn[16]; unsigned long flags; int ret = 0; spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); if (h->busy_configuring) ret = -EBUSY; else memcpy(sn, drv->serial_no, sizeof(sn)); spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); if (ret) return ret; else return snprintf(buf, 16 * 2 + 2, "%02X%02X%02X%02X%02X%02X%02X%02X" "%02X%02X%02X%02X%02X%02X%02X%02X\n", sn[0], sn[1], sn[2], sn[3], sn[4], sn[5], sn[6], sn[7], sn[8], sn[9], sn[10], sn[11], sn[12], sn[13], sn[14], sn[15]); } DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL); static ssize_t dev_show_vendor(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); char vendor[VENDOR_LEN + 1]; unsigned long flags; int ret = 0; spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); if (h->busy_configuring) ret = -EBUSY; else memcpy(vendor, drv->vendor, VENDOR_LEN + 1); spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); if (ret) return ret; else return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor); } DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL); static ssize_t dev_show_model(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); char model[MODEL_LEN + 1]; unsigned long flags; int ret = 0; spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); if (h->busy_configuring) ret = -EBUSY; else memcpy(model, drv->model, MODEL_LEN + 1); spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); if (ret) return ret; else return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model); } DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL); static ssize_t dev_show_rev(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); char rev[REV_LEN + 1]; unsigned long flags; int ret = 0; spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); if (h->busy_configuring) ret = -EBUSY; else memcpy(rev, drv->rev, REV_LEN + 1); spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); if (ret) return ret; else return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev); } DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL); static ssize_t cciss_show_lunid(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); unsigned long flags; unsigned char lunid[8]; spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); if (h->busy_configuring) { spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return -EBUSY; } if (!drv->heads) { spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return -ENOTTY; } memcpy(lunid, drv->LunID, sizeof(lunid)); spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", lunid[0], lunid[1], lunid[2], lunid[3], lunid[4], lunid[5], lunid[6], lunid[7]); } DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL); static ssize_t cciss_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); int raid; unsigned long flags; spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); if (h->busy_configuring) { spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return -EBUSY; } raid = drv->raid_level; spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); if (raid < 0 || raid > RAID_UNKNOWN) raid = RAID_UNKNOWN; return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n", raid_label[raid]); } DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL); static ssize_t cciss_show_usage_count(struct device *dev, struct device_attribute *attr, char *buf) { drive_info_struct *drv = to_drv(dev); struct ctlr_info *h = to_hba(drv->dev.parent); unsigned long flags; int count; spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); if (h->busy_configuring) { spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return -EBUSY; } count = drv->usage_count; spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return snprintf(buf, 20, "%d\n", count); } DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL); static struct attribute *cciss_host_attrs[] = { &dev_attr_rescan.attr, NULL }; static struct attribute_group cciss_host_attr_group = { .attrs = cciss_host_attrs, }; static const struct attribute_group *cciss_host_attr_groups[] = { &cciss_host_attr_group, NULL }; static struct device_type cciss_host_type = { .name = "cciss_host", .groups = cciss_host_attr_groups, .release = cciss_hba_release, }; static struct attribute *cciss_dev_attrs[] = { &dev_attr_unique_id.attr, &dev_attr_model.attr, &dev_attr_vendor.attr, &dev_attr_rev.attr, &dev_attr_lunid.attr, &dev_attr_raid_level.attr, &dev_attr_usage_count.attr, NULL }; static struct attribute_group cciss_dev_attr_group = { .attrs = cciss_dev_attrs, }; static const struct attribute_group *cciss_dev_attr_groups[] = { &cciss_dev_attr_group, NULL }; static struct device_type cciss_dev_type = { .name = "cciss_device", .groups = cciss_dev_attr_groups, .release = cciss_device_release, }; static struct bus_type cciss_bus_type = { .name = "cciss", }; /* * cciss_hba_release is called when the reference count * of h->dev goes to zero. */ static void cciss_hba_release(struct device *dev) { /* * nothing to do, but need this to avoid a warning * about not having a release handler from lib/kref.c. */ } /* * Initialize sysfs entry for each controller. This sets up and registers * the 'cciss#' directory for each individual controller under * /sys/bus/pci/devices//. */ static int cciss_create_hba_sysfs_entry(struct ctlr_info *h) { device_initialize(&h->dev); h->dev.type = &cciss_host_type; h->dev.bus = &cciss_bus_type; dev_set_name(&h->dev, "%s", h->devname); h->dev.parent = &h->pdev->dev; return device_add(&h->dev); } /* * Remove sysfs entries for an hba. */ static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h) { device_del(&h->dev); put_device(&h->dev); /* final put. */ } /* cciss_device_release is called when the reference count * of h->drv[x]dev goes to zero. */ static void cciss_device_release(struct device *dev) { drive_info_struct *drv = to_drv(dev); kfree(drv); } /* * Initialize sysfs for each logical drive. This sets up and registers * the 'c#d#' directory for each individual logical drive under * /sys/bus/pci/devices/drv[drv_index]->device_initialized) return 0; dev = &h->drv[drv_index]->dev; device_initialize(dev); dev->type = &cciss_dev_type; dev->bus = &cciss_bus_type; dev_set_name(dev, "c%dd%d", h->ctlr, drv_index); dev->parent = &h->dev; h->drv[drv_index]->device_initialized = 1; return device_add(dev); } /* * Remove sysfs entries for a logical drive. */ static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index, int ctlr_exiting) { struct device *dev = &h->drv[drv_index]->dev; /* special case for c*d0, we only destroy it on controller exit */ if (drv_index == 0 && !ctlr_exiting) return; device_del(dev); put_device(dev); /* the "final" put. */ h->drv[drv_index] = NULL; } /* * For operations that cannot sleep, a command block is allocated at init, * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track * which ones are free or in use. For operations that can wait for kmalloc * to possible sleep, this routine can be called with get_from_pool set to 0. * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was. */ static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool) { CommandList_struct *c; int i; u64bit temp64; dma_addr_t cmd_dma_handle, err_dma_handle; if (!get_from_pool) { c = (CommandList_struct *) pci_alloc_consistent(h->pdev, sizeof(CommandList_struct), &cmd_dma_handle); if (c == NULL) return NULL; memset(c, 0, sizeof(CommandList_struct)); c->cmdindex = -1; c->err_info = (ErrorInfo_struct *) pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct), &err_dma_handle); if (c->err_info == NULL) { pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, cmd_dma_handle); return NULL; } memset(c->err_info, 0, sizeof(ErrorInfo_struct)); } else { /* get it out of the controllers pool */ do { i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); if (i == h->nr_cmds) return NULL; } while (test_and_set_bit (i & (BITS_PER_LONG - 1), h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: using command buffer %d\n", i); #endif c = h->cmd_pool + i; memset(c, 0, sizeof(CommandList_struct)); cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct); c->err_info = h->errinfo_pool + i; memset(c->err_info, 0, sizeof(ErrorInfo_struct)); err_dma_handle = h->errinfo_pool_dhandle + i * sizeof(ErrorInfo_struct); h->nr_allocs++; c->cmdindex = i; } INIT_HLIST_NODE(&c->list); c->busaddr = (__u32) cmd_dma_handle; temp64.val = (__u64) err_dma_handle; c->ErrDesc.Addr.lower = temp64.val32.lower; c->ErrDesc.Addr.upper = temp64.val32.upper; c->ErrDesc.Len = sizeof(ErrorInfo_struct); c->ctlr = h->ctlr; return c; } /* * Frees a command block that was previously allocated with cmd_alloc(). */ static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool) { int i; u64bit temp64; if (!got_from_pool) { temp64.val32.lower = c->ErrDesc.Addr.lower; temp64.val32.upper = c->ErrDesc.Addr.upper; pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), c->err_info, (dma_addr_t) temp64.val); pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, (dma_addr_t) c->busaddr); } else { i = c - h->cmd_pool; clear_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits + (i / BITS_PER_LONG)); h->nr_frees++; } } static inline ctlr_info_t *get_host(struct gendisk *disk) { return disk->queue->queuedata; } static inline drive_info_struct *get_drv(struct gendisk *disk) { return disk->private_data; } /* * Open. Make sure the device is really there. */ static int cciss_open(struct block_device *bdev, fmode_t mode) { ctlr_info_t *host = get_host(bdev->bd_disk); drive_info_struct *drv = get_drv(bdev->bd_disk); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name); #endif /* CCISS_DEBUG */ if (drv->busy_configuring) return -EBUSY; /* * Root is allowed to open raw volume zero even if it's not configured * so array config can still work. Root is also allowed to open any * volume that has a LUN ID, so it can issue IOCTL to reread the * disk information. I don't think I really like this * but I'm already using way to many device nodes to claim another one * for "raw controller". */ if (drv->heads == 0) { if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */ /* if not node 0 make sure it is a partition = 0 */ if (MINOR(bdev->bd_dev) & 0x0f) { return -ENXIO; /* if it is, make sure we have a LUN ID */ } else if (memcmp(drv->LunID, CTLR_LUNID, sizeof(drv->LunID))) { return -ENXIO; } } if (!capable(CAP_SYS_ADMIN)) return -EPERM; } drv->usage_count++; host->usage_count++; return 0; } /* * Close. Sync first. */ static int cciss_release(struct gendisk *disk, fmode_t mode) { ctlr_info_t *host = get_host(disk); drive_info_struct *drv = get_drv(disk); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name); #endif /* CCISS_DEBUG */ drv->usage_count--; host->usage_count--; return 0; } #ifdef CONFIG_COMPAT static int do_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { int ret; lock_kernel(); ret = cciss_ioctl(bdev, mode, cmd, arg); unlock_kernel(); return ret; } static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg); static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg); static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { switch (cmd) { case CCISS_GETPCIINFO: case CCISS_GETINTINFO: case CCISS_SETINTINFO: case CCISS_GETNODENAME: case CCISS_SETNODENAME: case CCISS_GETHEARTBEAT: case CCISS_GETBUSTYPES: case CCISS_GETFIRMVER: case CCISS_GETDRIVVER: case CCISS_REVALIDVOLS: case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: case CCISS_RESCANDISK: case CCISS_GETLUNINFO: return do_ioctl(bdev, mode, cmd, arg); case CCISS_PASSTHRU32: return cciss_ioctl32_passthru(bdev, mode, cmd, arg); case CCISS_BIG_PASSTHRU32: return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg); default: return -ENOIOCTLCMD; } } static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { IOCTL32_Command_struct __user *arg32 = (IOCTL32_Command_struct __user *) arg; IOCTL_Command_struct arg64; IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { BIG_IOCTL32_Command_struct __user *arg32 = (BIG_IOCTL32_Command_struct __user *) arg; BIG_IOCTL_Command_struct arg64; BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(arg64.malloc_size, &arg32->malloc_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } #endif static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo) { drive_info_struct *drv = get_drv(bdev->bd_disk); if (!drv->cylinders) return -ENXIO; geo->heads = drv->heads; geo->sectors = drv->sectors; geo->cylinders = drv->cylinders; return 0; } static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c) { if (c->err_info->CommandStatus == CMD_TARGET_STATUS && c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) (void)check_for_unit_attention(host, c); } /* * ioctl */ static int cciss_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct gendisk *disk = bdev->bd_disk; ctlr_info_t *host = get_host(disk); drive_info_struct *drv = get_drv(disk); int ctlr = host->ctlr; void __user *argp = (void __user *)arg; #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg); #endif /* CCISS_DEBUG */ switch (cmd) { case CCISS_GETPCIINFO: { cciss_pci_info_struct pciinfo; if (!arg) return -EINVAL; pciinfo.domain = pci_domain_nr(host->pdev->bus); pciinfo.bus = host->pdev->bus->number; pciinfo.dev_fn = host->pdev->devfn; pciinfo.board_id = host->board_id; if (copy_to_user (argp, &pciinfo, sizeof(cciss_pci_info_struct))) return -EFAULT; return 0; } case CCISS_GETINTINFO: { cciss_coalint_struct intinfo; if (!arg) return -EINVAL; intinfo.delay = readl(&host->cfgtable->HostWrite.CoalIntDelay); intinfo.count = readl(&host->cfgtable->HostWrite.CoalIntCount); if (copy_to_user (argp, &intinfo, sizeof(cciss_coalint_struct))) return -EFAULT; return 0; } case CCISS_SETINTINFO: { cciss_coalint_struct intinfo; unsigned long flags; int i; if (!arg) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user (&intinfo, argp, sizeof(cciss_coalint_struct))) return -EFAULT; if ((intinfo.delay == 0) && (intinfo.count == 0)) { // printk("cciss_ioctl: delay and count cannot be 0\n"); return -EINVAL; } spin_lock_irqsave(CCISS_LOCK(ctlr), flags); /* Update the field, and then ring the doorbell */ writel(intinfo.delay, &(host->cfgtable->HostWrite.CoalIntDelay)); writel(intinfo.count, &(host->cfgtable->HostWrite.CoalIntCount)); writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL); for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { if (!(readl(host->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ udelay(1000); } spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); if (i >= MAX_IOCTL_CONFIG_WAIT) return -EAGAIN; return 0; } case CCISS_GETNODENAME: { NodeName_type NodeName; int i; if (!arg) return -EINVAL; for (i = 0; i < 16; i++) NodeName[i] = readb(&host->cfgtable->ServerName[i]); if (copy_to_user(argp, NodeName, sizeof(NodeName_type))) return -EFAULT; return 0; } case CCISS_SETNODENAME: { NodeName_type NodeName; unsigned long flags; int i; if (!arg) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user (NodeName, argp, sizeof(NodeName_type))) return -EFAULT; spin_lock_irqsave(CCISS_LOCK(ctlr), flags); /* Update the field, and then ring the doorbell */ for (i = 0; i < 16; i++) writeb(NodeName[i], &host->cfgtable->ServerName[i]); writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL); for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { if (!(readl(host->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ udelay(1000); } spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); if (i >= MAX_IOCTL_CONFIG_WAIT) return -EAGAIN; return 0; } case CCISS_GETHEARTBEAT: { Heartbeat_type heartbeat; if (!arg) return -EINVAL; heartbeat = readl(&host->cfgtable->HeartBeat); if (copy_to_user (argp, &heartbeat, sizeof(Heartbeat_type))) return -EFAULT; return 0; } case CCISS_GETBUSTYPES: { BusTypes_type BusTypes; if (!arg) return -EINVAL; BusTypes = readl(&host->cfgtable->BusTypes); if (copy_to_user (argp, &BusTypes, sizeof(BusTypes_type))) return -EFAULT; return 0; } case CCISS_GETFIRMVER: { FirmwareVer_type firmware; if (!arg) return -EINVAL; memcpy(firmware, host->firm_ver, 4); if (copy_to_user (argp, firmware, sizeof(FirmwareVer_type))) return -EFAULT; return 0; } case CCISS_GETDRIVVER: { DriverVer_type DriverVer = DRIVER_VERSION; if (!arg) return -EINVAL; if (copy_to_user (argp, &DriverVer, sizeof(DriverVer_type))) return -EFAULT; return 0; } case CCISS_DEREGDISK: case CCISS_REGNEWD: case CCISS_REVALIDVOLS: return rebuild_lun_table(host, 0, 1); case CCISS_GETLUNINFO:{ LogvolInfo_struct luninfo; memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID)); luninfo.num_opens = drv->usage_count; luninfo.num_parts = 0; if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct))) return -EFAULT; return 0; } case CCISS_PASSTHRU: { IOCTL_Command_struct iocommand; CommandList_struct *c; char *buff = NULL; u64bit temp64; unsigned long flags; DECLARE_COMPLETION_ONSTACK(wait); if (!arg) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user (&iocommand, argp, sizeof(IOCTL_Command_struct))) return -EFAULT; if ((iocommand.buf_size < 1) && (iocommand.Request.Type.Direction != XFER_NONE)) { return -EINVAL; } #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */ /* Check kmalloc limits */ if (iocommand.buf_size > 128000) return -EINVAL; #endif if (iocommand.buf_size > 0) { buff = kmalloc(iocommand.buf_size, GFP_KERNEL); if (buff == NULL) return -EFAULT; } if (iocommand.Request.Type.Direction == XFER_WRITE) { /* Copy the data into the buffer we created */ if (copy_from_user (buff, iocommand.buf, iocommand.buf_size)) { kfree(buff); return -EFAULT; } } else { memset(buff, 0, iocommand.buf_size); } if ((c = cmd_alloc(host, 0)) == NULL) { kfree(buff); return -ENOMEM; } // Fill in the command type c->cmd_type = CMD_IOCTL_PEND; // Fill in Command Header c->Header.ReplyQueue = 0; // unused in simple mode if (iocommand.buf_size > 0) // buffer to fill { c->Header.SGList = 1; c->Header.SGTotal = 1; } else // no buffers to fill { c->Header.SGList = 0; c->Header.SGTotal = 0; } c->Header.LUN = iocommand.LUN_info; c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag // Fill in Request block c->Request = iocommand.Request; // Fill in the scatter gather information if (iocommand.buf_size > 0) { temp64.val = pci_map_single(host->pdev, buff, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = temp64.val32.lower; c->SG[0].Addr.upper = temp64.val32.upper; c->SG[0].Len = iocommand.buf_size; c->SG[0].Ext = 0; // we are not chaining } c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(CCISS_LOCK(ctlr), flags); addQ(&host->reqQ, c); host->Qdepth++; start_io(host); spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); wait_for_completion(&wait); /* unlock the buffers from DMA */ temp64.val32.lower = c->SG[0].Addr.lower; temp64.val32.upper = c->SG[0].Addr.upper; pci_unmap_single(host->pdev, (dma_addr_t) temp64.val, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); check_ioctl_unit_attention(host, c); /* Copy the error information out */ iocommand.error_info = *(c->err_info); if (copy_to_user (argp, &iocommand, sizeof(IOCTL_Command_struct))) { kfree(buff); cmd_free(host, c, 0); return -EFAULT; } if (iocommand.Request.Type.Direction == XFER_READ) { /* Copy the data out of the buffer we created */ if (copy_to_user (iocommand.buf, buff, iocommand.buf_size)) { kfree(buff); cmd_free(host, c, 0); return -EFAULT; } } kfree(buff); cmd_free(host, c, 0); return 0; } case CCISS_BIG_PASSTHRU:{ BIG_IOCTL_Command_struct *ioc; CommandList_struct *c; unsigned char **buff = NULL; int *buff_size = NULL; u64bit temp64; unsigned long flags; BYTE sg_used = 0; int status = 0; int i; DECLARE_COMPLETION_ONSTACK(wait); __u32 left; __u32 sz; BYTE __user *data_ptr; if (!arg) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; ioc = (BIG_IOCTL_Command_struct *) kmalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) { status = -ENOMEM; goto cleanup1; } if (copy_from_user(ioc, argp, sizeof(*ioc))) { status = -EFAULT; goto cleanup1; } if ((ioc->buf_size < 1) && (ioc->Request.Type.Direction != XFER_NONE)) { status = -EINVAL; goto cleanup1; } /* Check kmalloc limits using all SGs */ if (ioc->malloc_size > MAX_KMALLOC_SIZE) { status = -EINVAL; goto cleanup1; } if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { status = -EINVAL; goto cleanup1; } buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); if (!buff) { status = -ENOMEM; goto cleanup1; } buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); if (!buff_size) { status = -ENOMEM; goto cleanup1; } left = ioc->buf_size; data_ptr = ioc->buf; while (left) { sz = (left > ioc->malloc_size) ? ioc-> malloc_size : left; buff_size[sg_used] = sz; buff[sg_used] = kmalloc(sz, GFP_KERNEL); if (buff[sg_used] == NULL) { status = -ENOMEM; goto cleanup1; } if (ioc->Request.Type.Direction == XFER_WRITE) { if (copy_from_user (buff[sg_used], data_ptr, sz)) { status = -EFAULT; goto cleanup1; } } else { memset(buff[sg_used], 0, sz); } left -= sz; data_ptr += sz; sg_used++; } if ((c = cmd_alloc(host, 0)) == NULL) { status = -ENOMEM; goto cleanup1; } c->cmd_type = CMD_IOCTL_PEND; c->Header.ReplyQueue = 0; if (ioc->buf_size > 0) { c->Header.SGList = sg_used; c->Header.SGTotal = sg_used; } else { c->Header.SGList = 0; c->Header.SGTotal = 0; } c->Header.LUN = ioc->LUN_info; c->Header.Tag.lower = c->busaddr; c->Request = ioc->Request; if (ioc->buf_size > 0) { int i; for (i = 0; i < sg_used; i++) { temp64.val = pci_map_single(host->pdev, buff[i], buff_size[i], PCI_DMA_BIDIRECTIONAL); c->SG[i].Addr.lower = temp64.val32.lower; c->SG[i].Addr.upper = temp64.val32.upper; c->SG[i].Len = buff_size[i]; c->SG[i].Ext = 0; /* we are not chaining */ } } c->waiting = &wait; /* Put the request on the tail of the request queue */ spin_lock_irqsave(CCISS_LOCK(ctlr), flags); addQ(&host->reqQ, c); host->Qdepth++; start_io(host); spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); wait_for_completion(&wait); /* unlock the buffers from DMA */ for (i = 0; i < sg_used; i++) { temp64.val32.lower = c->SG[i].Addr.lower; temp64.val32.upper = c->SG[i].Addr.upper; pci_unmap_single(host->pdev, (dma_addr_t) temp64.val, buff_size[i], PCI_DMA_BIDIRECTIONAL); } check_ioctl_unit_attention(host, c); /* Copy the error information out */ ioc->error_info = *(c->err_info); if (copy_to_user(argp, ioc, sizeof(*ioc))) { cmd_free(host, c, 0); status = -EFAULT; goto cleanup1; } if (ioc->Request.Type.Direction == XFER_READ) { /* Copy the data out of the buffer we created */ BYTE __user *ptr = ioc->buf; for (i = 0; i < sg_used; i++) { if (copy_to_user (ptr, buff[i], buff_size[i])) { cmd_free(host, c, 0); status = -EFAULT; goto cleanup1; } ptr += buff_size[i]; } } cmd_free(host, c, 0); status = 0; cleanup1: if (buff) { for (i = 0; i < sg_used; i++) kfree(buff[i]); kfree(buff); } kfree(buff_size); kfree(ioc); return status; } /* scsi_cmd_ioctl handles these, below, though some are not */ /* very meaningful for cciss. SG_IO is the main one people want. */ case SG_GET_VERSION_NUM: case SG_SET_TIMEOUT: case SG_GET_TIMEOUT: case SG_GET_RESERVED_SIZE: case SG_SET_RESERVED_SIZE: case SG_EMULATED_HOST: case SG_IO: case SCSI_IOCTL_SEND_COMMAND: return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp); /* scsi_cmd_ioctl would normally handle these, below, but */ /* they aren't a good fit for cciss, as CD-ROMs are */ /* not supported, and we don't have any bus/target/lun */ /* which we present to the kernel. */ case CDROM_SEND_PACKET: case CDROMCLOSETRAY: case CDROMEJECT: case SCSI_IOCTL_GET_IDLUN: case SCSI_IOCTL_GET_BUS_NUMBER: default: return -ENOTTY; } } static void cciss_check_queues(ctlr_info_t *h) { int start_queue = h->next_to_run; int i; /* check to see if we have maxed out the number of commands that can * be placed on the queue. If so then exit. We do this check here * in case the interrupt we serviced was from an ioctl and did not * free any new commands. */ if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) return; /* We have room on the queue for more commands. Now we need to queue * them up. We will also keep track of the next queue to run so * that every queue gets a chance to be started first. */ for (i = 0; i < h->highest_lun + 1; i++) { int curr_queue = (start_queue + i) % (h->highest_lun + 1); /* make sure the disk has been added and the drive is real * because this can be called from the middle of init_one. */ if (!h->drv[curr_queue]) continue; if (!(h->drv[curr_queue]->queue) || !(h->drv[curr_queue]->heads)) continue; blk_start_queue(h->gendisk[curr_queue]->queue); /* check to see if we have maxed out the number of commands * that can be placed on the queue. */ if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) { if (curr_queue == start_queue) { h->next_to_run = (start_queue + 1) % (h->highest_lun + 1); break; } else { h->next_to_run = curr_queue; break; } } } } static void cciss_softirq_done(struct request *rq) { CommandList_struct *cmd = rq->completion_data; ctlr_info_t *h = hba[cmd->ctlr]; unsigned long flags; u64bit temp64; int i, ddir; if (cmd->Request.Type.Direction == XFER_READ) ddir = PCI_DMA_FROMDEVICE; else ddir = PCI_DMA_TODEVICE; /* command did not need to be retried */ /* unmap the DMA mapping for all the scatter gather elements */ for (i = 0; i < cmd->Header.SGList; i++) { temp64.val32.lower = cmd->SG[i].Addr.lower; temp64.val32.upper = cmd->SG[i].Addr.upper; pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir); } #ifdef CCISS_DEBUG printk("Done with %p\n", rq); #endif /* CCISS_DEBUG */ /* set the residual count for pc requests */ if (blk_pc_request(rq)) rq->resid_len = cmd->err_info->ResidualCnt; blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO); spin_lock_irqsave(&h->lock, flags); cmd_free(h, cmd, 1); cciss_check_queues(h); spin_unlock_irqrestore(&h->lock, flags); } static inline void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[], uint32_t log_unit) { memcpy(scsi3addr, h->drv[log_unit]->LunID, sizeof(h->drv[log_unit]->LunID)); } /* This function gets the SCSI vendor, model, and revision of a logical drive * via the inquiry page 0. Model, vendor, and rev are set to empty strings if * they cannot be read. */ static void cciss_get_device_descr(int ctlr, int logvol, int withirq, char *vendor, char *model, char *rev) { int rc; InquiryData_struct *inq_buf; unsigned char scsi3addr[8]; *vendor = '\0'; *model = '\0'; *rev = '\0'; inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); if (!inq_buf) return; log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); if (withirq) rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(InquiryData_struct), 0, scsi3addr, TYPE_CMD); else rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf, sizeof(InquiryData_struct), 0, scsi3addr, TYPE_CMD); if (rc == IO_OK) { memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN); vendor[VENDOR_LEN] = '\0'; memcpy(model, &inq_buf->data_byte[16], MODEL_LEN); model[MODEL_LEN] = '\0'; memcpy(rev, &inq_buf->data_byte[32], REV_LEN); rev[REV_LEN] = '\0'; } kfree(inq_buf); return; } /* This function gets the serial number of a logical drive via * inquiry page 0x83. Serial no. is 16 bytes. If the serial * number cannot be had, for whatever reason, 16 bytes of 0xff * are returned instead. */ static void cciss_get_serial_no(int ctlr, int logvol, int withirq, unsigned char *serial_no, int buflen) { #define PAGE_83_INQ_BYTES 64 int rc; unsigned char *buf; unsigned char scsi3addr[8]; if (buflen > 16) buflen = 16; memset(serial_no, 0xff, buflen); buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL); if (!buf) return; memset(serial_no, 0, buflen); log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); if (withirq) rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf, PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD); else rc = sendcmd(CISS_INQUIRY, ctlr, buf, PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD); if (rc == IO_OK) memcpy(serial_no, &buf[8], buflen); kfree(buf); return; } /* * cciss_add_disk sets up the block device queue for a logical drive */ static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk, int drv_index) { disk->queue = blk_init_queue(do_cciss_request, &h->lock); if (!disk->queue) goto init_queue_failure; sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index); disk->major = h->major; disk->first_minor = drv_index << NWD_SHIFT; disk->fops = &cciss_fops; if (cciss_create_ld_sysfs_entry(h, drv_index)) goto cleanup_queue; disk->private_data = h->drv[drv_index]; disk->driverfs_dev = &h->drv[drv_index]->dev; /* Set up queue information */ blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask); /* This is a hardware imposed limit. */ blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES); /* This is a limit in the driver and could be eliminated. */ blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES); blk_queue_max_sectors(disk->queue, h->cciss_max_sectors); blk_queue_softirq_done(disk->queue, cciss_softirq_done); disk->queue->queuedata = h; blk_queue_logical_block_size(disk->queue, h->drv[drv_index]->block_size); /* Make sure all queue data is written out before */ /* setting h->drv[drv_index]->queue, as setting this */ /* allows the interrupt handler to start the queue */ wmb(); h->drv[drv_index]->queue = disk->queue; add_disk(disk); return 0; cleanup_queue: blk_cleanup_queue(disk->queue); disk->queue = NULL; init_queue_failure: return -1; } /* This function will check the usage_count of the drive to be updated/added. * If the usage_count is zero and it is a heretofore unknown drive, or, * the drive's capacity, geometry, or serial number has changed, * then the drive information will be updated and the disk will be * re-registered with the kernel. If these conditions don't hold, * then it will be left alone for the next reboot. The exception to this * is disk 0 which will always be left registered with the kernel since it * is also the controller node. Any changes to disk 0 will show up on * the next reboot. */ static void cciss_update_drive_info(int ctlr, int drv_index, int first_time, int via_ioctl) { ctlr_info_t *h = hba[ctlr]; struct gendisk *disk; InquiryData_struct *inq_buff = NULL; unsigned int block_size; sector_t total_size; unsigned long flags = 0; int ret = 0; drive_info_struct *drvinfo; /* Get information about the disk and modify the driver structure */ inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL); if (inq_buff == NULL || drvinfo == NULL) goto mem_msg; /* testing to see if 16-byte CDBs are already being used */ if (h->cciss_read == CCISS_READ_16) { cciss_read_capacity_16(h->ctlr, drv_index, 1, &total_size, &block_size); } else { cciss_read_capacity(ctlr, drv_index, 1, &total_size, &block_size); /* if read_capacity returns all F's this volume is >2TB */ /* in size so we switch to 16-byte CDB's for all */ /* read/write ops */ if (total_size == 0xFFFFFFFFULL) { cciss_read_capacity_16(ctlr, drv_index, 1, &total_size, &block_size); h->cciss_read = CCISS_READ_16; h->cciss_write = CCISS_WRITE_16; } else { h->cciss_read = CCISS_READ_10; h->cciss_write = CCISS_WRITE_10; } } cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size, inq_buff, drvinfo); drvinfo->block_size = block_size; drvinfo->nr_blocks = total_size + 1; cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor, drvinfo->model, drvinfo->rev); cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no, sizeof(drvinfo->serial_no)); /* Save the lunid in case we deregister the disk, below. */ memcpy(drvinfo->LunID, h->drv[drv_index]->LunID, sizeof(drvinfo->LunID)); /* Is it the same disk we already know, and nothing's changed? */ if (h->drv[drv_index]->raid_level != -1 && ((memcmp(drvinfo->serial_no, h->drv[drv_index]->serial_no, 16) == 0) && drvinfo->block_size == h->drv[drv_index]->block_size && drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks && drvinfo->heads == h->drv[drv_index]->heads && drvinfo->sectors == h->drv[drv_index]->sectors && drvinfo->cylinders == h->drv[drv_index]->cylinders)) /* The disk is unchanged, nothing to update */ goto freeret; /* If we get here it's not the same disk, or something's changed, * so we need to * deregister it, and re-register it, if it's not * in use. * If the disk already exists then deregister it before proceeding * (unless it's the first disk (for the controller node). */ if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) { printk(KERN_WARNING "disk %d has changed.\n", drv_index); spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); h->drv[drv_index]->busy_configuring = 1; spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); /* deregister_disk sets h->drv[drv_index]->queue = NULL * which keeps the interrupt handler from starting * the queue. */ ret = deregister_disk(h, drv_index, 0, via_ioctl); } /* If the disk is in use return */ if (ret) goto freeret; /* Save the new information from cciss_geometry_inquiry * and serial number inquiry. If the disk was deregistered * above, then h->drv[drv_index] will be NULL. */ if (h->drv[drv_index] == NULL) { drvinfo->device_initialized = 0; h->drv[drv_index] = drvinfo; drvinfo = NULL; /* so it won't be freed below. */ } else { /* special case for cxd0 */ h->drv[drv_index]->block_size = drvinfo->block_size; h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks; h->drv[drv_index]->heads = drvinfo->heads; h->drv[drv_index]->sectors = drvinfo->sectors; h->drv[drv_index]->cylinders = drvinfo->cylinders; h->drv[drv_index]->raid_level = drvinfo->raid_level; memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16); memcpy(h->drv[drv_index]->vendor, drvinfo->vendor, VENDOR_LEN + 1); memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1); memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1); } ++h->num_luns; disk = h->gendisk[drv_index]; set_capacity(disk, h->drv[drv_index]->nr_blocks); /* If it's not disk 0 (drv_index != 0) * or if it was disk 0, but there was previously * no actual corresponding configured logical drive * (raid_leve == -1) then we want to update the * logical drive's information. */ if (drv_index || first_time) { if (cciss_add_disk(h, disk, drv_index) != 0) { cciss_free_gendisk(h, drv_index); cciss_free_drive_info(h, drv_index); printk(KERN_WARNING "cciss:%d could not update " "disk %d\n", h->ctlr, drv_index); --h->num_luns; } } freeret: kfree(inq_buff); kfree(drvinfo); return; mem_msg: printk(KERN_ERR "cciss: out of memory\n"); goto freeret; } /* This function will find the first index of the controllers drive array * that has a null drv pointer and allocate the drive info struct and * will return that index This is where new drives will be added. * If the index to be returned is greater than the highest_lun index for * the controller then highest_lun is set * to this new index. * If there are no available indexes or if tha allocation fails, then -1 * is returned. * "controller_node" is used to know if this is a real * logical drive, or just the controller node, which determines if this * counts towards highest_lun. */ static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node) { int i; drive_info_struct *drv; /* Search for an empty slot for our drive info */ for (i = 0; i < CISS_MAX_LUN; i++) { /* if not cxd0 case, and it's occupied, skip it. */ if (h->drv[i] && i != 0) continue; /* * If it's cxd0 case, and drv is alloc'ed already, and a * disk is configured there, skip it. */ if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1) continue; /* * We've found an empty slot. Update highest_lun * provided this isn't just the fake cxd0 controller node. */ if (i > h->highest_lun && !controller_node) h->highest_lun = i; /* If adding a real disk at cxd0, and it's already alloc'ed */ if (i == 0 && h->drv[i] != NULL) return i; /* * Found an empty slot, not already alloc'ed. Allocate it. * Mark it with raid_level == -1, so we know it's new later on. */ drv = kzalloc(sizeof(*drv), GFP_KERNEL); if (!drv) return -1; drv->raid_level = -1; /* so we know it's new */ h->drv[i] = drv; return i; } return -1; } static void cciss_free_drive_info(ctlr_info_t *h, int drv_index) { kfree(h->drv[drv_index]); h->drv[drv_index] = NULL; } static void cciss_free_gendisk(ctlr_info_t *h, int drv_index) { put_disk(h->gendisk[drv_index]); h->gendisk[drv_index] = NULL; } /* cciss_add_gendisk finds a free hba[]->drv structure * and allocates a gendisk if needed, and sets the lunid * in the drvinfo structure. It returns the index into * the ->drv[] array, or -1 if none are free. * is_controller_node indicates whether highest_lun should * count this disk, or if it's only being added to provide * a means to talk to the controller in case no logical * drives have yet been configured. */ static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[], int controller_node) { int drv_index; drv_index = cciss_alloc_drive_info(h, controller_node); if (drv_index == -1) return -1; /*Check if the gendisk needs to be allocated */ if (!h->gendisk[drv_index]) { h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT); if (!h->gendisk[drv_index]) { printk(KERN_ERR "cciss%d: could not " "allocate a new disk %d\n", h->ctlr, drv_index); goto err_free_drive_info; } } memcpy(h->drv[drv_index]->LunID, lunid, sizeof(h->drv[drv_index]->LunID)); if (cciss_create_ld_sysfs_entry(h, drv_index)) goto err_free_disk; /* Don't need to mark this busy because nobody */ /* else knows about this disk yet to contend */ /* for access to it. */ h->drv[drv_index]->busy_configuring = 0; wmb(); return drv_index; err_free_disk: cciss_free_gendisk(h, drv_index); err_free_drive_info: cciss_free_drive_info(h, drv_index); return -1; } /* This is for the special case of a controller which * has no logical drives. In this case, we still need * to register a disk so the controller can be accessed * by the Array Config Utility. */ static void cciss_add_controller_node(ctlr_info_t *h) { struct gendisk *disk; int drv_index; if (h->gendisk[0] != NULL) /* already did this? Then bail. */ return; drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1); if (drv_index == -1) goto error; h->drv[drv_index]->block_size = 512; h->drv[drv_index]->nr_blocks = 0; h->drv[drv_index]->heads = 0; h->drv[drv_index]->sectors = 0; h->drv[drv_index]->cylinders = 0; h->drv[drv_index]->raid_level = -1; memset(h->drv[drv_index]->serial_no, 0, 16); disk = h->gendisk[drv_index]; if (cciss_add_disk(h, disk, drv_index) == 0) return; cciss_free_gendisk(h, drv_index); cciss_free_drive_info(h, drv_index); error: printk(KERN_WARNING "cciss%d: could not " "add disk 0.\n", h->ctlr); return; } /* This function will add and remove logical drives from the Logical * drive array of the controller and maintain persistency of ordering * so that mount points are preserved until the next reboot. This allows * for the removal of logical drives in the middle of the drive array * without a re-ordering of those drives. * INPUT * h = The controller to perform the operations on */ static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl) { int ctlr = h->ctlr; int num_luns; ReportLunData_struct *ld_buff = NULL; int return_code; int listlength = 0; int i; int drv_found; int drv_index = 0; unsigned char lunid[8] = CTLR_LUNID; unsigned long flags; if (!capable(CAP_SYS_RAWIO)) return -EPERM; /* Set busy_configuring flag for this operation */ spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); if (h->busy_configuring) { spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return -EBUSY; } h->busy_configuring = 1; spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL); if (ld_buff == NULL) goto mem_msg; return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff, sizeof(ReportLunData_struct), 0, CTLR_LUNID, TYPE_CMD); if (return_code == IO_OK) listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength); else { /* reading number of logical volumes failed */ printk(KERN_WARNING "cciss: report logical volume" " command failed\n"); listlength = 0; goto freeret; } num_luns = listlength / 8; /* 8 bytes per entry */ if (num_luns > CISS_MAX_LUN) { num_luns = CISS_MAX_LUN; printk(KERN_WARNING "cciss: more luns configured" " on controller than can be handled by" " this driver.\n"); } if (num_luns == 0) cciss_add_controller_node(h); /* Compare controller drive array to driver's drive array * to see if any drives are missing on the controller due * to action of Array Config Utility (user deletes drive) * and deregister logical drives which have disappeared. */ for (i = 0; i <= h->highest_lun; i++) { int j; drv_found = 0; /* skip holes in the array from already deleted drives */ if (h->drv[i] == NULL) continue; for (j = 0; j < num_luns; j++) { memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid)); if (memcmp(h->drv[i]->LunID, lunid, sizeof(lunid)) == 0) { drv_found = 1; break; } } if (!drv_found) { /* Deregister it from the OS, it's gone. */ spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); h->drv[i]->busy_configuring = 1; spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return_code = deregister_disk(h, i, 1, via_ioctl); if (h->drv[i] != NULL) h->drv[i]->busy_configuring = 0; } } /* Compare controller drive array to driver's drive array. * Check for updates in the drive information and any new drives * on the controller due to ACU adding logical drives, or changing * a logical drive's size, etc. Reregister any new/changed drives */ for (i = 0; i < num_luns; i++) { int j; drv_found = 0; memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid)); /* Find if the LUN is already in the drive array * of the driver. If so then update its info * if not in use. If it does not exist then find * the first free index and add it. */ for (j = 0; j <= h->highest_lun; j++) { if (h->drv[j] != NULL && memcmp(h->drv[j]->LunID, lunid, sizeof(h->drv[j]->LunID)) == 0) { drv_index = j; drv_found = 1; break; } } /* check if the drive was found already in the array */ if (!drv_found) { drv_index = cciss_add_gendisk(h, lunid, 0); if (drv_index == -1) goto freeret; } cciss_update_drive_info(ctlr, drv_index, first_time, via_ioctl); } /* end for */ freeret: kfree(ld_buff); h->busy_configuring = 0; /* We return -1 here to tell the ACU that we have registered/updated * all of the drives that we can and to keep it from calling us * additional times. */ return -1; mem_msg: printk(KERN_ERR "cciss: out of memory\n"); h->busy_configuring = 0; goto freeret; } static void cciss_clear_drive_info(drive_info_struct *drive_info) { /* zero out the disk size info */ drive_info->nr_blocks = 0; drive_info->block_size = 0; drive_info->heads = 0; drive_info->sectors = 0; drive_info->cylinders = 0; drive_info->raid_level = -1; memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no)); memset(drive_info->model, 0, sizeof(drive_info->model)); memset(drive_info->rev, 0, sizeof(drive_info->rev)); memset(drive_info->vendor, 0, sizeof(drive_info->vendor)); /* * don't clear the LUNID though, we need to remember which * one this one is. */ } /* This function will deregister the disk and it's queue from the * kernel. It must be called with the controller lock held and the * drv structures busy_configuring flag set. It's parameters are: * * disk = This is the disk to be deregistered * drv = This is the drive_info_struct associated with the disk to be * deregistered. It contains information about the disk used * by the driver. * clear_all = This flag determines whether or not the disk information * is going to be completely cleared out and the highest_lun * reset. Sometimes we want to clear out information about * the disk in preparation for re-adding it. In this case * the highest_lun should be left unchanged and the LunID * should not be cleared. * via_ioctl * This indicates whether we've reached this path via ioctl. * This affects the maximum usage count allowed for c0d0 to be messed with. * If this path is reached via ioctl(), then the max_usage_count will * be 1, as the process calling ioctl() has got to have the device open. * If we get here via sysfs, then the max usage count will be zero. */ static int deregister_disk(ctlr_info_t *h, int drv_index, int clear_all, int via_ioctl) { int i; struct gendisk *disk; drive_info_struct *drv; int recalculate_highest_lun; if (!capable(CAP_SYS_RAWIO)) return -EPERM; drv = h->drv[drv_index]; disk = h->gendisk[drv_index]; /* make sure logical volume is NOT is use */ if (clear_all || (h->gendisk[0] == disk)) { if (drv->usage_count > via_ioctl) return -EBUSY; } else if (drv->usage_count > 0) return -EBUSY; recalculate_highest_lun = (drv == h->drv[h->highest_lun]); /* invalidate the devices and deregister the disk. If it is disk * zero do not deregister it but just zero out it's values. This * allows us to delete disk zero but keep the controller registered. */ if (h->gendisk[0] != disk) { struct request_queue *q = disk->queue; if (disk->flags & GENHD_FL_UP) { cciss_destroy_ld_sysfs_entry(h, drv_index, 0); del_gendisk(disk); } if (q) blk_cleanup_queue(q); /* If clear_all is set then we are deleting the logical * drive, not just refreshing its info. For drives * other than disk 0 we will call put_disk. We do not * do this for disk 0 as we need it to be able to * configure the controller. */ if (clear_all){ /* This isn't pretty, but we need to find the * disk in our array and NULL our the pointer. * This is so that we will call alloc_disk if * this index is used again later. */ for (i=0; i < CISS_MAX_LUN; i++){ if (h->gendisk[i] == disk) { h->gendisk[i] = NULL; break; } } put_disk(disk); } } else { set_capacity(disk, 0); cciss_clear_drive_info(drv); } --h->num_luns; /* if it was the last disk, find the new hightest lun */ if (clear_all && recalculate_highest_lun) { int i, newhighest = -1; for (i = 0; i <= h->highest_lun; i++) { /* if the disk has size > 0, it is available */ if (h->drv[i] && h->drv[i]->heads) newhighest = i; } h->highest_lun = newhighest; } return 0; } static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, int cmd_type) { ctlr_info_t *h = hba[ctlr]; u64bit buff_dma_handle; int status = IO_OK; c->cmd_type = CMD_IOCTL_PEND; c->Header.ReplyQueue = 0; if (buff != NULL) { c->Header.SGList = 1; c->Header.SGTotal = 1; } else { c->Header.SGList = 0; c->Header.SGTotal = 0; } c->Header.Tag.lower = c->busaddr; memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); c->Request.Type.Type = cmd_type; if (cmd_type == TYPE_CMD) { switch (cmd) { case CISS_INQUIRY: /* are we trying to read a vital product page */ if (page_code != 0) { c->Request.CDB[1] = 0x01; c->Request.CDB[2] = page_code; } c->Request.CDBLen = 6; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = CISS_INQUIRY; c->Request.CDB[4] = size & 0xFF; break; case CISS_REPORT_LOG: case CISS_REPORT_PHYS: /* Talking to controller so It's a physical command mode = 00 target = 0. Nothing to write. */ c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; case CCISS_READ_CAPACITY: c->Request.CDBLen = 10; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; case CCISS_READ_CAPACITY_16: c->Request.CDBLen = 16; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; c->Request.CDB[1] = 0x10; c->Request.CDB[10] = (size >> 24) & 0xFF; c->Request.CDB[11] = (size >> 16) & 0xFF; c->Request.CDB[12] = (size >> 8) & 0xFF; c->Request.CDB[13] = size & 0xFF; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; case CCISS_CACHE_FLUSH: c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_WRITE; c->Request.CDB[6] = BMIC_CACHE_FLUSH; break; case TEST_UNIT_READY: c->Request.CDBLen = 6; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_NONE; c->Request.Timeout = 0; break; default: printk(KERN_WARNING "cciss%d: Unknown Command 0x%c\n", ctlr, cmd); return IO_ERROR; } } else if (cmd_type == TYPE_MSG) { switch (cmd) { case 0: /* ABORT message */ c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; /* abort */ c->Request.CDB[1] = 0; /* abort a command */ /* buff contains the tag of the command to abort */ memcpy(&c->Request.CDB[4], buff, 8); break; case 1: /* RESET message */ c->Request.CDBLen = 16; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_NONE; c->Request.Timeout = 0; memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); c->Request.CDB[0] = cmd; /* reset */ c->Request.CDB[1] = 0x03; /* reset a target */ break; case 3: /* No-Op message */ c->Request.CDBLen = 1; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; break; default: printk(KERN_WARNING "cciss%d: unknown message type %d\n", ctlr, cmd); return IO_ERROR; } } else { printk(KERN_WARNING "cciss%d: unknown command type %d\n", ctlr, cmd_type); return IO_ERROR; } /* Fill in the scatter gather information */ if (size > 0) { buff_dma_handle.val = (__u64) pci_map_single(h->pdev, buff, size, PCI_DMA_BIDIRECTIONAL); c->SG[0].Addr.lower = buff_dma_handle.val32.lower; c->SG[0].Addr.upper = buff_dma_handle.val32.upper; c->SG[0].Len = size; c->SG[0].Ext = 0; /* we are not chaining */ } return status; } static int check_target_status(ctlr_info_t *h, CommandList_struct *c) { switch (c->err_info->ScsiStatus) { case SAM_STAT_GOOD: return IO_OK; case SAM_STAT_CHECK_CONDITION: switch (0xf & c->err_info->SenseInfo[2]) { case 0: return IO_OK; /* no sense */ case 1: return IO_OK; /* recovered error */ default: printk(KERN_WARNING "cciss%d: cmd 0x%02x " "check condition, sense key = 0x%02x\n", h->ctlr, c->Request.CDB[0], c->err_info->SenseInfo[2]); } break; default: printk(KERN_WARNING "cciss%d: cmd 0x%02x" "scsi status = 0x%02x\n", h->ctlr, c->Request.CDB[0], c->err_info->ScsiStatus); break; } return IO_ERROR; } static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c) { int return_status = IO_OK; if (c->err_info->CommandStatus == CMD_SUCCESS) return IO_OK; switch (c->err_info->CommandStatus) { case CMD_TARGET_STATUS: return_status = check_target_status(h, c); break; case CMD_DATA_UNDERRUN: case CMD_DATA_OVERRUN: /* expected for inquiry and report lun commands */ break; case CMD_INVALID: printk(KERN_WARNING "cciss: cmd 0x%02x is " "reported invalid\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_PROTOCOL_ERR: printk(KERN_WARNING "cciss: cmd 0x%02x has " "protocol error \n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_HARDWARE_ERR: printk(KERN_WARNING "cciss: cmd 0x%02x had " " hardware error\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_CONNECTION_LOST: printk(KERN_WARNING "cciss: cmd 0x%02x had " "connection lost\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_ABORTED: printk(KERN_WARNING "cciss: cmd 0x%02x was " "aborted\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_ABORT_FAILED: printk(KERN_WARNING "cciss: cmd 0x%02x reports " "abort failed\n", c->Request.CDB[0]); return_status = IO_ERROR; break; case CMD_UNSOLICITED_ABORT: printk(KERN_WARNING "cciss%d: unsolicited abort 0x%02x\n", h->ctlr, c->Request.CDB[0]); return_status = IO_NEEDS_RETRY; break; default: printk(KERN_WARNING "cciss: cmd 0x%02x returned " "unknown status %x\n", c->Request.CDB[0], c->err_info->CommandStatus); return_status = IO_ERROR; } return return_status; } static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, int attempt_retry) { DECLARE_COMPLETION_ONSTACK(wait); u64bit buff_dma_handle; unsigned long flags; int return_status = IO_OK; resend_cmd2: c->waiting = &wait; /* Put the request on the tail of the queue and send it */ spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); addQ(&h->reqQ, c); h->Qdepth++; start_io(h); spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); wait_for_completion(&wait); if (c->err_info->CommandStatus == 0 || !attempt_retry) goto command_done; return_status = process_sendcmd_error(h, c); if (return_status == IO_NEEDS_RETRY && c->retry_count < MAX_CMD_RETRIES) { printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr, c->Request.CDB[0]); c->retry_count++; /* erase the old error information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); return_status = IO_OK; INIT_COMPLETION(wait); goto resend_cmd2; } command_done: /* unlock the buffers from DMA */ buff_dma_handle.val32.lower = c->SG[0].Addr.lower; buff_dma_handle.val32.upper = c->SG[0].Addr.upper; pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val, c->SG[0].Len, PCI_DMA_BIDIRECTIONAL); return return_status; } static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size, __u8 page_code, unsigned char scsi3addr[], int cmd_type) { ctlr_info_t *h = hba[ctlr]; CommandList_struct *c; int return_status; c = cmd_alloc(h, 0); if (!c) return -ENOMEM; return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code, scsi3addr, cmd_type); if (return_status == IO_OK) return_status = sendcmd_withirq_core(h, c, 1); cmd_free(h, c, 0); return return_status; } static void cciss_geometry_inquiry(int ctlr, int logvol, int withirq, sector_t total_size, unsigned int block_size, InquiryData_struct *inq_buff, drive_info_struct *drv) { int return_code; unsigned long t; unsigned char scsi3addr[8]; memset(inq_buff, 0, sizeof(InquiryData_struct)); log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); if (withirq) return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff, sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD); else return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff, sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD); if (return_code == IO_OK) { if (inq_buff->data_byte[8] == 0xFF) { printk(KERN_WARNING "cciss: reading geometry failed, volume " "does not support reading geometry\n"); drv->heads = 255; drv->sectors = 32; // Sectors per track drv->cylinders = total_size + 1; drv->raid_level = RAID_UNKNOWN; } else { drv->heads = inq_buff->data_byte[6]; drv->sectors = inq_buff->data_byte[7]; drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8; drv->cylinders += inq_buff->data_byte[5]; drv->raid_level = inq_buff->data_byte[8]; } drv->block_size = block_size; drv->nr_blocks = total_size + 1; t = drv->heads * drv->sectors; if (t > 1) { sector_t real_size = total_size + 1; unsigned long rem = sector_div(real_size, t); if (rem) real_size++; drv->cylinders = real_size; } } else { /* Get geometry failed */ printk(KERN_WARNING "cciss: reading geometry failed\n"); } } static void cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size) { ReadCapdata_struct *buf; int return_code; unsigned char scsi3addr[8]; buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL); if (!buf) { printk(KERN_WARNING "cciss: out of memory\n"); return; } log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); if (withirq) return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf, sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD); else return_code = sendcmd(CCISS_READ_CAPACITY, ctlr, buf, sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD); if (return_code == IO_OK) { *total_size = be32_to_cpu(*(__be32 *) buf->total_size); *block_size = be32_to_cpu(*(__be32 *) buf->block_size); } else { /* read capacity command failed */ printk(KERN_WARNING "cciss: read capacity failed\n"); *total_size = 0; *block_size = BLOCK_SIZE; } kfree(buf); } static void cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size) { ReadCapdata_struct_16 *buf; int return_code; unsigned char scsi3addr[8]; buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL); if (!buf) { printk(KERN_WARNING "cciss: out of memory\n"); return; } log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol); if (withirq) { return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16, ctlr, buf, sizeof(ReadCapdata_struct_16), 0, scsi3addr, TYPE_CMD); } else { return_code = sendcmd(CCISS_READ_CAPACITY_16, ctlr, buf, sizeof(ReadCapdata_struct_16), 0, scsi3addr, TYPE_CMD); } if (return_code == IO_OK) { *total_size = be64_to_cpu(*(__be64 *) buf->total_size); *block_size = be32_to_cpu(*(__be32 *) buf->block_size); } else { /* read capacity command failed */ printk(KERN_WARNING "cciss: read capacity failed\n"); *total_size = 0; *block_size = BLOCK_SIZE; } printk(KERN_INFO " blocks= %llu block_size= %d\n", (unsigned long long)*total_size+1, *block_size); kfree(buf); } static int cciss_revalidate(struct gendisk *disk) { ctlr_info_t *h = get_host(disk); drive_info_struct *drv = get_drv(disk); int logvol; int FOUND = 0; unsigned int block_size; sector_t total_size; InquiryData_struct *inq_buff = NULL; for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) { if (memcmp(h->drv[logvol]->LunID, drv->LunID, sizeof(drv->LunID)) == 0) { FOUND = 1; break; } } if (!FOUND) return 1; inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { printk(KERN_WARNING "cciss: out of memory\n"); return 1; } if (h->cciss_read == CCISS_READ_10) { cciss_read_capacity(h->ctlr, logvol, 1, &total_size, &block_size); } else { cciss_read_capacity_16(h->ctlr, logvol, 1, &total_size, &block_size); } cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size, inq_buff, drv); blk_queue_logical_block_size(drv->queue, drv->block_size); set_capacity(disk, drv->nr_blocks); kfree(inq_buff); return 0; } /* * Wait polling for a command to complete. * The memory mapped FIFO is polled for the completion. * Used only at init time, interrupts from the HBA are disabled. */ static unsigned long pollcomplete(int ctlr) { unsigned long done; int i; /* Wait (up to 20 seconds) for a command to complete */ for (i = 20 * HZ; i > 0; i--) { done = hba[ctlr]->access.command_completed(hba[ctlr]); if (done == FIFO_EMPTY) schedule_timeout_uninterruptible(1); else return done; } /* Invalid address to tell caller we ran out of time */ return 1; } /* Send command c to controller h and poll for it to complete. * Turns interrupts off on the board. Used at driver init time * and during SCSI error recovery. */ static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c) { int i; unsigned long complete; int status = IO_ERROR; u64bit buff_dma_handle; resend_cmd1: /* Disable interrupt on the board. */ h->access.set_intr_mask(h, CCISS_INTR_OFF); /* Make sure there is room in the command FIFO */ /* Actually it should be completely empty at this time */ /* unless we are in here doing error handling for the scsi */ /* tape side of the driver. */ for (i = 200000; i > 0; i--) { /* if fifo isn't full go */ if (!(h->access.fifo_full(h))) break; udelay(10); printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full," " waiting!\n", h->ctlr); } h->access.submit_command(h, c); /* Send the cmd */ do { complete = pollcomplete(h->ctlr); #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: command completed\n"); #endif /* CCISS_DEBUG */ if (complete == 1) { printk(KERN_WARNING "cciss cciss%d: SendCmd Timeout out, " "No command list address returned!\n", h->ctlr); status = IO_ERROR; break; } /* Make sure it's the command we're expecting. */ if ((complete & ~CISS_ERROR_BIT) != c->busaddr) { printk(KERN_WARNING "cciss%d: Unexpected command " "completion.\n", h->ctlr); continue; } /* It is our command. If no error, we're done. */ if (!(complete & CISS_ERROR_BIT)) { status = IO_OK; break; } /* There is an error... */ /* if data overrun or underun on Report command ignore it */ if (((c->Request.CDB[0] == CISS_REPORT_LOG) || (c->Request.CDB[0] == CISS_REPORT_PHYS) || (c->Request.CDB[0] == CISS_INQUIRY)) && ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) || (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) { complete = c->busaddr; status = IO_OK; break; } if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) { printk(KERN_WARNING "cciss%d: unsolicited abort %p\n", h->ctlr, c); if (c->retry_count < MAX_CMD_RETRIES) { printk(KERN_WARNING "cciss%d: retrying %p\n", h->ctlr, c); c->retry_count++; /* erase the old error information */ memset(c->err_info, 0, sizeof(c->err_info)); goto resend_cmd1; } printk(KERN_WARNING "cciss%d: retried %p too many " "times\n", h->ctlr, c); status = IO_ERROR; break; } if (c->err_info->CommandStatus == CMD_UNABORTABLE) { printk(KERN_WARNING "cciss%d: command could not be " "aborted.\n", h->ctlr); status = IO_ERROR; break; } if (c->err_info->CommandStatus == CMD_TARGET_STATUS) { status = check_target_status(h, c); break; } printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr); printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n", c->Request.CDB[0], c->err_info->CommandStatus); status = IO_ERROR; break; } while (1); /* unlock the data buffer from DMA */ buff_dma_handle.val32.lower = c->SG[0].Addr.lower; buff_dma_handle.val32.upper = c->SG[0].Addr.upper; pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val, c->SG[0].Len, PCI_DMA_BIDIRECTIONAL); return status; } /* * Send a command to the controller, and wait for it to complete. * Used at init time, and during SCSI error recovery. */ static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, int cmd_type) { CommandList_struct *c; int status; c = cmd_alloc(hba[ctlr], 1); if (!c) { printk(KERN_WARNING "cciss: unable to get memory"); return IO_ERROR; } status = fill_cmd(c, cmd, ctlr, buff, size, page_code, scsi3addr, cmd_type); if (status == IO_OK) status = sendcmd_core(hba[ctlr], c); cmd_free(hba[ctlr], c, 1); return status; } /* * Map (physical) PCI mem into (virtual) kernel space */ static void __iomem *remap_pci_mem(ulong base, ulong size) { ulong page_base = ((ulong) base) & PAGE_MASK; ulong page_offs = ((ulong) base) - page_base; void __iomem *page_remapped = ioremap(page_base, page_offs + size); return page_remapped ? (page_remapped + page_offs) : NULL; } /* * Takes jobs of the Q and sends them to the hardware, then puts it on * the Q to wait for completion. */ static void start_io(ctlr_info_t *h) { CommandList_struct *c; while (!hlist_empty(&h->reqQ)) { c = hlist_entry(h->reqQ.first, CommandList_struct, list); /* can't do anything if fifo is full */ if ((h->access.fifo_full(h))) { printk(KERN_WARNING "cciss: fifo full\n"); break; } /* Get the first entry from the Request Q */ removeQ(c); h->Qdepth--; /* Tell the controller execute command */ h->access.submit_command(h, c); /* Put job onto the completed Q */ addQ(&h->cmpQ, c); } } /* Assumes that CCISS_LOCK(h->ctlr) is held. */ /* Zeros out the error record and then resends the command back */ /* to the controller */ static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c) { /* erase the old error information */ memset(c->err_info, 0, sizeof(ErrorInfo_struct)); /* add it to software queue and then send it to the controller */ addQ(&h->reqQ, c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; start_io(h); } static inline unsigned int make_status_bytes(unsigned int scsi_status_byte, unsigned int msg_byte, unsigned int host_byte, unsigned int driver_byte) { /* inverse of macros in scsi.h */ return (scsi_status_byte & 0xff) | ((msg_byte & 0xff) << 8) | ((host_byte & 0xff) << 16) | ((driver_byte & 0xff) << 24); } static inline int evaluate_target_status(ctlr_info_t *h, CommandList_struct *cmd, int *retry_cmd) { unsigned char sense_key; unsigned char status_byte, msg_byte, host_byte, driver_byte; int error_value; *retry_cmd = 0; /* If we get in here, it means we got "target status", that is, scsi status */ status_byte = cmd->err_info->ScsiStatus; driver_byte = DRIVER_OK; msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */ if (blk_pc_request(cmd->rq)) host_byte = DID_PASSTHROUGH; else host_byte = DID_OK; error_value = make_status_bytes(status_byte, msg_byte, host_byte, driver_byte); if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) { if (!blk_pc_request(cmd->rq)) printk(KERN_WARNING "cciss: cmd %p " "has SCSI Status 0x%x\n", cmd, cmd->err_info->ScsiStatus); return error_value; } /* check the sense key */ sense_key = 0xf & cmd->err_info->SenseInfo[2]; /* no status or recovered error */ if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq)) error_value = 0; if (check_for_unit_attention(h, cmd)) { *retry_cmd = !blk_pc_request(cmd->rq); return 0; } if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */ if (error_value != 0) printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION" " sense key = 0x%x\n", cmd, sense_key); return error_value; } /* SG_IO or similar, copy sense data back */ if (cmd->rq->sense) { if (cmd->rq->sense_len > cmd->err_info->SenseLen) cmd->rq->sense_len = cmd->err_info->SenseLen; memcpy(cmd->rq->sense, cmd->err_info->SenseInfo, cmd->rq->sense_len); } else cmd->rq->sense_len = 0; return error_value; } /* checks the status of the job and calls complete buffers to mark all * buffers for the completed job. Note that this function does not need * to hold the hba/queue lock. */ static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd, int timeout) { int retry_cmd = 0; struct request *rq = cmd->rq; rq->errors = 0; if (timeout) rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT); if (cmd->err_info->CommandStatus == 0) /* no error has occurred */ goto after_error_processing; switch (cmd->err_info->CommandStatus) { case CMD_TARGET_STATUS: rq->errors = evaluate_target_status(h, cmd, &retry_cmd); break; case CMD_DATA_UNDERRUN: if (blk_fs_request(cmd->rq)) { printk(KERN_WARNING "cciss: cmd %p has" " completed with data underrun " "reported\n", cmd); cmd->rq->resid_len = cmd->err_info->ResidualCnt; } break; case CMD_DATA_OVERRUN: if (blk_fs_request(cmd->rq)) printk(KERN_WARNING "cciss: cmd %p has" " completed with data overrun " "reported\n", cmd); break; case CMD_INVALID: printk(KERN_WARNING "cciss: cmd %p is " "reported invalid\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_PROTOCOL_ERR: printk(KERN_WARNING "cciss: cmd %p has " "protocol error \n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_HARDWARE_ERR: printk(KERN_WARNING "cciss: cmd %p had " " hardware error\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_CONNECTION_LOST: printk(KERN_WARNING "cciss: cmd %p had " "connection lost\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_ABORTED: printk(KERN_WARNING "cciss: cmd %p was " "aborted\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT); break; case CMD_ABORT_FAILED: printk(KERN_WARNING "cciss: cmd %p reports " "abort failed\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); break; case CMD_UNSOLICITED_ABORT: printk(KERN_WARNING "cciss%d: unsolicited " "abort %p\n", h->ctlr, cmd); if (cmd->retry_count < MAX_CMD_RETRIES) { retry_cmd = 1; printk(KERN_WARNING "cciss%d: retrying %p\n", h->ctlr, cmd); cmd->retry_count++; } else printk(KERN_WARNING "cciss%d: %p retried too " "many times\n", h->ctlr, cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT); break; case CMD_TIMEOUT: printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); break; default: printk(KERN_WARNING "cciss: cmd %p returned " "unknown status %x\n", cmd, cmd->err_info->CommandStatus); rq->errors = make_status_bytes(SAM_STAT_GOOD, cmd->err_info->CommandStatus, DRIVER_OK, blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR); } after_error_processing: /* We need to return this command */ if (retry_cmd) { resend_cciss_cmd(h, cmd); return; } cmd->rq->completion_data = cmd; blk_complete_request(cmd->rq); } /* * Get a request and submit it to the controller. */ static void do_cciss_request(struct request_queue *q) { ctlr_info_t *h = q->queuedata; CommandList_struct *c; sector_t start_blk; int seg; struct request *creq; u64bit temp64; struct scatterlist tmp_sg[MAXSGENTRIES]; drive_info_struct *drv; int i, dir; /* We call start_io here in case there is a command waiting on the * queue that has not been sent. */ if (blk_queue_plugged(q)) goto startio; queue: creq = blk_peek_request(q); if (!creq) goto startio; BUG_ON(creq->nr_phys_segments > MAXSGENTRIES); if ((c = cmd_alloc(h, 1)) == NULL) goto full; blk_start_request(creq); spin_unlock_irq(q->queue_lock); c->cmd_type = CMD_RWREQ; c->rq = creq; /* fill in the request */ drv = creq->rq_disk->private_data; c->Header.ReplyQueue = 0; // unused in simple mode /* got command from pool, so use the command block index instead */ /* for direct lookups. */ /* The first 2 bits are reserved for controller error reporting. */ c->Header.Tag.lower = (c->cmdindex << 3); c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */ memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID)); c->Request.CDBLen = 10; // 12 byte commands not in FW yet; c->Request.Type.Type = TYPE_CMD; // It is a command. c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE; c->Request.Timeout = 0; // Don't time out c->Request.CDB[0] = (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write; start_blk = blk_rq_pos(creq); #ifdef CCISS_DEBUG printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq)); #endif /* CCISS_DEBUG */ sg_init_table(tmp_sg, MAXSGENTRIES); seg = blk_rq_map_sg(q, creq, tmp_sg); /* get the DMA records for the setup */ if (c->Request.Type.Direction == XFER_READ) dir = PCI_DMA_FROMDEVICE; else dir = PCI_DMA_TODEVICE; for (i = 0; i < seg; i++) { c->SG[i].Len = tmp_sg[i].length; temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]), tmp_sg[i].offset, tmp_sg[i].length, dir); c->SG[i].Addr.lower = temp64.val32.lower; c->SG[i].Addr.upper = temp64.val32.upper; c->SG[i].Ext = 0; // we are not chaining } /* track how many SG entries we are using */ if (seg > h->maxSG) h->maxSG = seg; #ifdef CCISS_DEBUG printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n", blk_rq_sectors(creq), seg); #endif /* CCISS_DEBUG */ c->Header.SGList = c->Header.SGTotal = seg; if (likely(blk_fs_request(creq))) { if(h->cciss_read == CCISS_READ_10) { c->Request.CDB[1] = 0; c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB c->Request.CDB[3] = (start_blk >> 16) & 0xff; c->Request.CDB[4] = (start_blk >> 8) & 0xff; c->Request.CDB[5] = start_blk & 0xff; c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff; c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff; c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0; } else { u32 upper32 = upper_32_bits(start_blk); c->Request.CDBLen = 16; c->Request.CDB[1]= 0; c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB c->Request.CDB[3]= (upper32 >> 16) & 0xff; c->Request.CDB[4]= (upper32 >> 8) & 0xff; c->Request.CDB[5]= upper32 & 0xff; c->Request.CDB[6]= (start_blk >> 24) & 0xff; c->Request.CDB[7]= (start_blk >> 16) & 0xff; c->Request.CDB[8]= (start_blk >> 8) & 0xff; c->Request.CDB[9]= start_blk & 0xff; c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff; c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff; c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff; c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff; c->Request.CDB[14] = c->Request.CDB[15] = 0; } } else if (blk_pc_request(creq)) { c->Request.CDBLen = creq->cmd_len; memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB); } else { printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type); BUG(); } spin_lock_irq(q->queue_lock); addQ(&h->reqQ, c); h->Qdepth++; if (h->Qdepth > h->maxQsinceinit) h->maxQsinceinit = h->Qdepth; goto queue; full: blk_stop_queue(q); startio: /* We will already have the driver lock here so not need * to lock it. */ start_io(h); } static inline unsigned long get_next_completion(ctlr_info_t *h) { return h->access.command_completed(h); } static inline int interrupt_pending(ctlr_info_t *h) { return h->access.intr_pending(h); } static inline long interrupt_not_for_us(ctlr_info_t *h) { return (((h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0))); } static irqreturn_t do_cciss_intr(int irq, void *dev_id) { ctlr_info_t *h = dev_id; CommandList_struct *c; unsigned long flags; __u32 a, a1, a2; if (interrupt_not_for_us(h)) return IRQ_NONE; /* * If there are completed commands in the completion queue, * we had better do something about it. */ spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags); while (interrupt_pending(h)) { while ((a = get_next_completion(h)) != FIFO_EMPTY) { a1 = a; if ((a & 0x04)) { a2 = (a >> 3); if (a2 >= h->nr_cmds) { printk(KERN_WARNING "cciss: controller cciss%d failed, stopping.\n", h->ctlr); fail_all_cmds(h->ctlr); return IRQ_HANDLED; } c = h->cmd_pool + a2; a = c->busaddr; } else { struct hlist_node *tmp; a &= ~3; c = NULL; hlist_for_each_entry(c, tmp, &h->cmpQ, list) { if (c->busaddr == a) break; } } /* * If we've found the command, take it off the * completion Q and free it */ if (c && c->busaddr == a) { removeQ(c); if (c->cmd_type == CMD_RWREQ) { complete_command(h, c, 0); } else if (c->cmd_type == CMD_IOCTL_PEND) { complete(c->waiting); } # ifdef CONFIG_CISS_SCSI_TAPE else if (c->cmd_type == CMD_SCSI) complete_scsi_command(c, 0, a1); # endif continue; } } } spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags); return IRQ_HANDLED; } /** * add_to_scan_list() - add controller to rescan queue * @h: Pointer to the controller. * * Adds the controller to the rescan queue if not already on the queue. * * returns 1 if added to the queue, 0 if skipped (could be on the * queue already, or the controller could be initializing or shutting * down). **/ static int add_to_scan_list(struct ctlr_info *h) { struct ctlr_info *test_h; int found = 0; int ret = 0; if (h->busy_initializing) return 0; if (!mutex_trylock(&h->busy_shutting_down)) return 0; mutex_lock(&scan_mutex); list_for_each_entry(test_h, &scan_q, scan_list) { if (test_h == h) { found = 1; break; } } if (!found && !h->busy_scanning) { INIT_COMPLETION(h->scan_wait); list_add_tail(&h->scan_list, &scan_q); ret = 1; } mutex_unlock(&scan_mutex); mutex_unlock(&h->busy_shutting_down); return ret; } /** * remove_from_scan_list() - remove controller from rescan queue * @h: Pointer to the controller. * * Removes the controller from the rescan queue if present. Blocks if * the controller is currently conducting a rescan. **/ static void remove_from_scan_list(struct ctlr_info *h) { struct ctlr_info *test_h, *tmp_h; int scanning = 0; mutex_lock(&scan_mutex); list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) { if (test_h == h) { list_del(&h->scan_list); complete_all(&h->scan_wait); mutex_unlock(&scan_mutex); return; } } if (&h->busy_scanning) scanning = 0; mutex_unlock(&scan_mutex); if (scanning) wait_for_completion(&h->scan_wait); } /** * scan_thread() - kernel thread used to rescan controllers * @data: Ignored. * * A kernel thread used scan for drive topology changes on * controllers. The thread processes only one controller at a time * using a queue. Controllers are added to the queue using * add_to_scan_list() and removed from the queue either after done * processing or using remove_from_scan_list(). * * returns 0. **/ static int scan_thread(void *data) { struct ctlr_info *h; while (1) { set_current_state(TASK_INTERRUPTIBLE); schedule(); if (kthread_should_stop()) break; while (1) { mutex_lock(&scan_mutex); if (list_empty(&scan_q)) { mutex_unlock(&scan_mutex); break; } h = list_entry(scan_q.next, struct ctlr_info, scan_list); list_del(&h->scan_list); h->busy_scanning = 1; mutex_unlock(&scan_mutex); if (h) { rebuild_lun_table(h, 0, 0); complete_all(&h->scan_wait); mutex_lock(&scan_mutex); h->busy_scanning = 0; mutex_unlock(&scan_mutex); } } } return 0; } static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c) { if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) return 0; switch (c->err_info->SenseInfo[12]) { case STATE_CHANGED: printk(KERN_WARNING "cciss%d: a state change " "detected, command retried\n", h->ctlr); return 1; break; case LUN_FAILED: printk(KERN_WARNING "cciss%d: LUN failure " "detected, action required\n", h->ctlr); return 1; break; case REPORT_LUNS_CHANGED: printk(KERN_WARNING "cciss%d: report LUN data " "changed\n", h->ctlr); add_to_scan_list(h); wake_up_process(cciss_scan_thread); return 1; break; case POWER_OR_RESET: printk(KERN_WARNING "cciss%d: a power on " "or device reset detected\n", h->ctlr); return 1; break; case UNIT_ATTENTION_CLEARED: printk(KERN_WARNING "cciss%d: unit attention " "cleared by another initiator\n", h->ctlr); return 1; break; default: printk(KERN_WARNING "cciss%d: unknown " "unit attention detected\n", h->ctlr); return 1; } } /* * We cannot read the structure directly, for portability we must use * the io functions. * This is for debug only. */ #ifdef CCISS_DEBUG static void print_cfg_table(CfgTable_struct *tb) { int i; char temp_name[17]; printk("Controller Configuration information\n"); printk("------------------------------------\n"); for (i = 0; i < 4; i++) temp_name[i] = readb(&(tb->Signature[i])); temp_name[4] = '\0'; printk(" Signature = %s\n", temp_name); printk(" Spec Number = %d\n", readl(&(tb->SpecValence))); printk(" Transport methods supported = 0x%x\n", readl(&(tb->TransportSupport))); printk(" Transport methods active = 0x%x\n", readl(&(tb->TransportActive))); printk(" Requested transport Method = 0x%x\n", readl(&(tb->HostWrite.TransportRequest))); printk(" Coalesce Interrupt Delay = 0x%x\n", readl(&(tb->HostWrite.CoalIntDelay))); printk(" Coalesce Interrupt Count = 0x%x\n", readl(&(tb->HostWrite.CoalIntCount))); printk(" Max outstanding commands = 0x%d\n", readl(&(tb->CmdsOutMax))); printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes))); for (i = 0; i < 16; i++) temp_name[i] = readb(&(tb->ServerName[i])); temp_name[16] = '\0'; printk(" Server Name = %s\n", temp_name); printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat))); } #endif /* CCISS_DEBUG */ static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) { int i, offset, mem_type, bar_type; if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ return 0; offset = 0; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) offset += 4; else { mem_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_MEM_TYPE_MASK; switch (mem_type) { case PCI_BASE_ADDRESS_MEM_TYPE_32: case PCI_BASE_ADDRESS_MEM_TYPE_1M: offset += 4; /* 32 bit */ break; case PCI_BASE_ADDRESS_MEM_TYPE_64: offset += 8; break; default: /* reserved in PCI 2.2 */ printk(KERN_WARNING "Base address is invalid\n"); return -1; break; } } if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) return i + 1; } return -1; } /* If MSI/MSI-X is supported by the kernel we will try to enable it on * controllers that are capable. If not, we use IO-APIC mode. */ static void __devinit cciss_interrupt_mode(ctlr_info_t *c, struct pci_dev *pdev, __u32 board_id) { #ifdef CONFIG_PCI_MSI int err; struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1}, {0, 2}, {0, 3} }; /* Some boards advertise MSI but don't really support it */ if ((board_id == 0x40700E11) || (board_id == 0x40800E11) || (board_id == 0x40820E11) || (board_id == 0x40830E11)) goto default_int_mode; if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) { err = pci_enable_msix(pdev, cciss_msix_entries, 4); if (!err) { c->intr[0] = cciss_msix_entries[0].vector; c->intr[1] = cciss_msix_entries[1].vector; c->intr[2] = cciss_msix_entries[2].vector; c->intr[3] = cciss_msix_entries[3].vector; c->msix_vector = 1; return; } if (err > 0) { printk(KERN_WARNING "cciss: only %d MSI-X vectors " "available\n", err); goto default_int_mode; } else { printk(KERN_WARNING "cciss: MSI-X init failed %d\n", err); goto default_int_mode; } } if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) { if (!pci_enable_msi(pdev)) { c->msi_vector = 1; } else { printk(KERN_WARNING "cciss: MSI init failed\n"); } } default_int_mode: #endif /* CONFIG_PCI_MSI */ /* if we get here we're going to use the default interrupt mode */ c->intr[SIMPLE_MODE_INT] = pdev->irq; return; } static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev) { ushort subsystem_vendor_id, subsystem_device_id, command; __u32 board_id, scratchpad = 0; __u64 cfg_offset; __u32 cfg_base_addr; __u64 cfg_base_addr_index; int i, err; /* check to see if controller has been disabled */ /* BEFORE trying to enable it */ (void)pci_read_config_word(pdev, PCI_COMMAND, &command); if (!(command & 0x02)) { printk(KERN_WARNING "cciss: controller appears to be disabled\n"); return -ENODEV; } err = pci_enable_device(pdev); if (err) { printk(KERN_ERR "cciss: Unable to Enable PCI device\n"); return err; } err = pci_request_regions(pdev, "cciss"); if (err) { printk(KERN_ERR "cciss: Cannot obtain PCI resources, " "aborting\n"); return err; } subsystem_vendor_id = pdev->subsystem_vendor; subsystem_device_id = pdev->subsystem_device; board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) | subsystem_vendor_id); #ifdef CCISS_DEBUG printk("command = %x\n", command); printk("irq = %x\n", pdev->irq); printk("board_id = %x\n", board_id); #endif /* CCISS_DEBUG */ /* If the kernel supports MSI/MSI-X we will try to enable that functionality, * else we use the IO-APIC interrupt assigned to us by system ROM. */ cciss_interrupt_mode(c, pdev, board_id); /* find the memory BAR */ for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) break; } if (i == DEVICE_COUNT_RESOURCE) { printk(KERN_WARNING "cciss: No memory BAR found\n"); err = -ENODEV; goto err_out_free_res; } c->paddr = pci_resource_start(pdev, i); /* addressing mode bits * already removed */ #ifdef CCISS_DEBUG printk("address 0 = %lx\n", c->paddr); #endif /* CCISS_DEBUG */ c->vaddr = remap_pci_mem(c->paddr, 0x250); /* Wait for the board to become ready. (PCI hotplug needs this.) * We poll for up to 120 secs, once per 100ms. */ for (i = 0; i < 1200; i++) { scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET); if (scratchpad == CCISS_FIRMWARE_READY) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */ } if (scratchpad != CCISS_FIRMWARE_READY) { printk(KERN_WARNING "cciss: Board not ready. Timed out.\n"); err = -ENODEV; goto err_out_free_res; } /* get the address index number */ cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET); cfg_base_addr &= (__u32) 0x0000ffff; #ifdef CCISS_DEBUG printk("cfg base address = %x\n", cfg_base_addr); #endif /* CCISS_DEBUG */ cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); #ifdef CCISS_DEBUG printk("cfg base address index = %llx\n", (unsigned long long)cfg_base_addr_index); #endif /* CCISS_DEBUG */ if (cfg_base_addr_index == -1) { printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n"); err = -ENODEV; goto err_out_free_res; } cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET); #ifdef CCISS_DEBUG printk("cfg offset = %llx\n", (unsigned long long)cfg_offset); #endif /* CCISS_DEBUG */ c->cfgtable = remap_pci_mem(pci_resource_start(pdev, cfg_base_addr_index) + cfg_offset, sizeof(CfgTable_struct)); c->board_id = board_id; #ifdef CCISS_DEBUG print_cfg_table(c->cfgtable); #endif /* CCISS_DEBUG */ /* Some controllers support Zero Memory Raid (ZMR). * When configured in ZMR mode the number of supported * commands drops to 64. So instead of just setting an * arbitrary value we make the driver a little smarter. * We read the config table to tell us how many commands * are supported on the controller then subtract 4 to * leave a little room for ioctl calls. */ c->max_commands = readl(&(c->cfgtable->CmdsOutMax)); for (i = 0; i < ARRAY_SIZE(products); i++) { if (board_id == products[i].board_id) { c->product_name = products[i].product_name; c->access = *(products[i].access); c->nr_cmds = c->max_commands - 4; break; } } if ((readb(&c->cfgtable->Signature[0]) != 'C') || (readb(&c->cfgtable->Signature[1]) != 'I') || (readb(&c->cfgtable->Signature[2]) != 'S') || (readb(&c->cfgtable->Signature[3]) != 'S')) { printk("Does not appear to be a valid CISS config table\n"); err = -ENODEV; goto err_out_free_res; } /* We didn't find the controller in our list. We know the * signature is valid. If it's an HP device let's try to * bind to the device and fire it up. Otherwise we bail. */ if (i == ARRAY_SIZE(products)) { if (subsystem_vendor_id == PCI_VENDOR_ID_HP) { c->product_name = products[i-1].product_name; c->access = *(products[i-1].access); c->nr_cmds = c->max_commands - 4; printk(KERN_WARNING "cciss: This is an unknown " "Smart Array controller.\n" "cciss: Please update to the latest driver " "available from www.hp.com.\n"); } else { printk(KERN_WARNING "cciss: Sorry, I don't know how" " to access the Smart Array controller %08lx\n" , (unsigned long)board_id); err = -ENODEV; goto err_out_free_res; } } #ifdef CONFIG_X86 { /* Need to enable prefetch in the SCSI core for 6400 in x86 */ __u32 prefetch; prefetch = readl(&(c->cfgtable->SCSI_Prefetch)); prefetch |= 0x100; writel(prefetch, &(c->cfgtable->SCSI_Prefetch)); } #endif /* Disabling DMA prefetch and refetch for the P600. * An ASIC bug may result in accesses to invalid memory addresses. * We've disabled prefetch for some time now. Testing with XEN * kernels revealed a bug in the refetch if dom0 resides on a P600. */ if(board_id == 0x3225103C) { __u32 dma_prefetch; __u32 dma_refetch; dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG); dma_prefetch |= 0x8000; writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG); pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch); dma_refetch |= 0x1; pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch); } #ifdef CCISS_DEBUG printk("Trying to put board into Simple mode\n"); #endif /* CCISS_DEBUG */ c->max_commands = readl(&(c->cfgtable->CmdsOutMax)); /* Update the field, and then ring the doorbell */ writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest)); writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL); /* under certain very rare conditions, this can take awhile. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right * as we enter this code.) */ for (i = 0; i < MAX_CONFIG_WAIT; i++) { if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) break; /* delay and try again */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(1)); } #ifdef CCISS_DEBUG printk(KERN_DEBUG "I counter got to %d %x\n", i, readl(c->vaddr + SA5_DOORBELL)); #endif /* CCISS_DEBUG */ #ifdef CCISS_DEBUG print_cfg_table(c->cfgtable); #endif /* CCISS_DEBUG */ if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { printk(KERN_WARNING "cciss: unable to get board into" " simple mode\n"); err = -ENODEV; goto err_out_free_res; } return 0; err_out_free_res: /* * Deliberately omit pci_disable_device(): it does something nasty to * Smart Array controllers that pci_enable_device does not undo */ pci_release_regions(pdev); return err; } /* Function to find the first free pointer into our hba[] array * Returns -1 if no free entries are left. */ static int alloc_cciss_hba(void) { int i; for (i = 0; i < MAX_CTLR; i++) { if (!hba[i]) { ctlr_info_t *p; p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL); if (!p) goto Enomem; hba[i] = p; return i; } } printk(KERN_WARNING "cciss: This driver supports a maximum" " of %d controllers.\n", MAX_CTLR); return -1; Enomem: printk(KERN_ERR "cciss: out of memory.\n"); return -1; } static void free_hba(int n) { ctlr_info_t *h = hba[n]; int i; hba[n] = NULL; for (i = 0; i < h->highest_lun + 1; i++) if (h->gendisk[i] != NULL) put_disk(h->gendisk[i]); kfree(h); } /* Send a message CDB to the firmware. */ static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type) { typedef struct { CommandListHeader_struct CommandHeader; RequestBlock_struct Request; ErrDescriptor_struct ErrorDescriptor; } Command; static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct); Command *cmd; dma_addr_t paddr64; uint32_t paddr32, tag; void __iomem *vaddr; int i, err; vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (vaddr == NULL) return -ENOMEM; /* The Inbound Post Queue only accepts 32-bit physical addresses for the CCISS commands, so they must be allocated from the lower 4GiB of memory. */ err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { iounmap(vaddr); return -ENOMEM; } cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); if (cmd == NULL) { iounmap(vaddr); return -ENOMEM; } /* This must fit, because of the 32-bit consistent DMA mask. Also, although there's no guarantee, we assume that the address is at least 4-byte aligned (most likely, it's page-aligned). */ paddr32 = paddr64; cmd->CommandHeader.ReplyQueue = 0; cmd->CommandHeader.SGList = 0; cmd->CommandHeader.SGTotal = 0; cmd->CommandHeader.Tag.lower = paddr32; cmd->CommandHeader.Tag.upper = 0; memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); cmd->Request.CDBLen = 16; cmd->Request.Type.Type = TYPE_MSG; cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; cmd->Request.Type.Direction = XFER_NONE; cmd->Request.Timeout = 0; /* Don't time out */ cmd->Request.CDB[0] = opcode; cmd->Request.CDB[1] = type; memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */ cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command); cmd->ErrorDescriptor.Addr.upper = 0; cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct); writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); for (i = 0; i < 10; i++) { tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); if ((tag & ~3) == paddr32) break; schedule_timeout_uninterruptible(HZ); } iounmap(vaddr); /* we leak the DMA buffer here ... no choice since the controller could still complete the command. */ if (i == 10) { printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n", opcode, type); return -ETIMEDOUT; } pci_free_consistent(pdev, cmd_sz, cmd, paddr64); if (tag & 2) { printk(KERN_ERR "cciss: controller message %02x:%02x failed\n", opcode, type); return -EIO; } printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n", opcode, type); return 0; } #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0) #define cciss_noop(p) cciss_message(p, 3, 0) static __devinit int cciss_reset_msi(struct pci_dev *pdev) { /* the #defines are stolen from drivers/pci/msi.h. */ #define msi_control_reg(base) (base + PCI_MSI_FLAGS) #define PCI_MSIX_FLAGS_ENABLE (1 << 15) int pos; u16 control = 0; pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); if (pos) { pci_read_config_word(pdev, msi_control_reg(pos), &control); if (control & PCI_MSI_FLAGS_ENABLE) { printk(KERN_INFO "cciss: resetting MSI\n"); pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE); } } pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); if (pos) { pci_read_config_word(pdev, msi_control_reg(pos), &control); if (control & PCI_MSIX_FLAGS_ENABLE) { printk(KERN_INFO "cciss: resetting MSI-X\n"); pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE); } } return 0; } /* This does a hard reset of the controller using PCI power management * states. */ static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev) { u16 pmcsr, saved_config_space[32]; int i, pos; printk(KERN_INFO "cciss: using PCI PM to reset controller\n"); /* This is very nearly the same thing as pci_save_state(pci_dev); pci_set_power_state(pci_dev, PCI_D3hot); pci_set_power_state(pci_dev, PCI_D0); pci_restore_state(pci_dev); but we can't use these nice canned kernel routines on kexec, because they also check the MSI/MSI-X state in PCI configuration space and do the wrong thing when it is set/cleared. Also, the pci_save/restore_state functions violate the ordering requirements for restoring the configuration space from the CCISS document (see the comment below). So we roll our own .... */ for (i = 0; i < 32; i++) pci_read_config_word(pdev, 2*i, &saved_config_space[i]); pos = pci_find_capability(pdev, PCI_CAP_ID_PM); if (pos == 0) { printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n"); return -ENODEV; } /* Quoting from the Open CISS Specification: "The Power * Management Control/Status Register (CSR) controls the power * state of the device. The normal operating state is D0, * CSR=00h. The software off state is D3, CSR=03h. To reset * the controller, place the interface device in D3 then to * D0, this causes a secondary PCI reset which will reset the * controller." */ /* enter the D3hot power management state */ pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); pmcsr &= ~PCI_PM_CTRL_STATE_MASK; pmcsr |= PCI_D3hot; pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); schedule_timeout_uninterruptible(HZ >> 1); /* enter the D0 power management state */ pmcsr &= ~PCI_PM_CTRL_STATE_MASK; pmcsr |= PCI_D0; pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); schedule_timeout_uninterruptible(HZ >> 1); /* Restore the PCI configuration space. The Open CISS * Specification says, "Restore the PCI Configuration * Registers, offsets 00h through 60h. It is important to * restore the command register, 16-bits at offset 04h, * last. Do not restore the configuration status register, * 16-bits at offset 06h." Note that the offset is 2*i. */ for (i = 0; i < 32; i++) { if (i == 2 || i == 3) continue; pci_write_config_word(pdev, 2*i, saved_config_space[i]); } wmb(); pci_write_config_word(pdev, 4, saved_config_space[2]); return 0; } /* * This is it. Find all the controllers and register them. I really hate * stealing all these major device numbers. * returns the number of block devices registered. */ static int __devinit cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int i; int j = 0; int rc; int dac, return_code; InquiryData_struct *inq_buff; if (reset_devices) { /* Reset the controller with a PCI power-cycle */ if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev)) return -ENODEV; /* Now try to get the controller to respond to a no-op. Some devices (notably the HP Smart Array 5i Controller) need up to 30 seconds to respond. */ for (i=0; i<30; i++) { if (cciss_noop(pdev) == 0) break; schedule_timeout_uninterruptible(HZ); } if (i == 30) { printk(KERN_ERR "cciss: controller seems dead\n"); return -EBUSY; } } i = alloc_cciss_hba(); if (i < 0) return -1; hba[i]->busy_initializing = 1; INIT_HLIST_HEAD(&hba[i]->cmpQ); INIT_HLIST_HEAD(&hba[i]->reqQ); mutex_init(&hba[i]->busy_shutting_down); if (cciss_pci_init(hba[i], pdev) != 0) goto clean0; sprintf(hba[i]->devname, "cciss%d", i); hba[i]->ctlr = i; hba[i]->pdev = pdev; init_completion(&hba[i]->scan_wait); if (cciss_create_hba_sysfs_entry(hba[i])) goto clean0; /* configure PCI DMA stuff */ if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) dac = 1; else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) dac = 0; else { printk(KERN_ERR "cciss: no suitable DMA available\n"); goto clean1; } /* * register with the major number, or get a dynamic major number * by passing 0 as argument. This is done for greater than * 8 controller support. */ if (i < MAX_CTLR_ORIG) hba[i]->major = COMPAQ_CISS_MAJOR + i; rc = register_blkdev(hba[i]->major, hba[i]->devname); if (rc == -EBUSY || rc == -EINVAL) { printk(KERN_ERR "cciss: Unable to get major number %d for %s " "on hba %d\n", hba[i]->major, hba[i]->devname, i); goto clean1; } else { if (i >= MAX_CTLR_ORIG) hba[i]->major = rc; } /* make sure the board interrupts are off */ hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF); if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr, IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) { printk(KERN_ERR "cciss: Unable to get irq %d for %s\n", hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname); goto clean2; } printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", hba[i]->devname, pdev->device, pci_name(pdev), hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not"); hba[i]->cmd_pool_bits = kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); hba[i]->cmd_pool = (CommandList_struct *) pci_alloc_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct), &(hba[i]->cmd_pool_dhandle)); hba[i]->errinfo_pool = (ErrorInfo_struct *) pci_alloc_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct), &(hba[i]->errinfo_pool_dhandle)); if ((hba[i]->cmd_pool_bits == NULL) || (hba[i]->cmd_pool == NULL) || (hba[i]->errinfo_pool == NULL)) { printk(KERN_ERR "cciss: out of memory"); goto clean4; } spin_lock_init(&hba[i]->lock); /* Initialize the pdev driver private data. have it point to hba[i]. */ pci_set_drvdata(pdev, hba[i]); /* command and error info recs zeroed out before they are used */ memset(hba[i]->cmd_pool_bits, 0, DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG) * sizeof(unsigned long)); hba[i]->num_luns = 0; hba[i]->highest_lun = -1; for (j = 0; j < CISS_MAX_LUN; j++) { hba[i]->drv[j] = NULL; hba[i]->gendisk[j] = NULL; } cciss_scsi_setup(i); /* Turn the interrupts on so we can service requests */ hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON); /* Get the firmware version */ inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); if (inq_buff == NULL) { printk(KERN_ERR "cciss: out of memory\n"); goto clean4; } return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff, sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD); if (return_code == IO_OK) { hba[i]->firm_ver[0] = inq_buff->data_byte[32]; hba[i]->firm_ver[1] = inq_buff->data_byte[33]; hba[i]->firm_ver[2] = inq_buff->data_byte[34]; hba[i]->firm_ver[3] = inq_buff->data_byte[35]; } else { /* send command failed */ printk(KERN_WARNING "cciss: unable to determine firmware" " version of controller\n"); } kfree(inq_buff); cciss_procinit(i); hba[i]->cciss_max_sectors = 2048; rebuild_lun_table(hba[i], 1, 0); hba[i]->busy_initializing = 0; return 1; clean4: kfree(hba[i]->cmd_pool_bits); if (hba[i]->cmd_pool) pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct), hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); if (hba[i]->errinfo_pool) pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct), hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle); free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]); clean2: unregister_blkdev(hba[i]->major, hba[i]->devname); clean1: cciss_destroy_hba_sysfs_entry(hba[i]); clean0: hba[i]->busy_initializing = 0; /* * Deliberately omit pci_disable_device(): it does something nasty to * Smart Array controllers that pci_enable_device does not undo */ pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); free_hba(i); return -1; } static void cciss_shutdown(struct pci_dev *pdev) { ctlr_info_t *tmp_ptr; int i; char flush_buf[4]; int return_code; tmp_ptr = pci_get_drvdata(pdev); if (tmp_ptr == NULL) return; i = tmp_ptr->ctlr; if (hba[i] == NULL) return; /* Turn board interrupts off and send the flush cache command */ /* sendcmd will turn off interrupt, and send the flush... * To write all data in the battery backed cache to disks */ memset(flush_buf, 0, 4); return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, CTLR_LUNID, TYPE_CMD); if (return_code == IO_OK) { printk(KERN_INFO "Completed flushing cache on controller %d\n", i); } else { printk(KERN_WARNING "Error flushing cache on controller %d\n", i); } free_irq(hba[i]->intr[2], hba[i]); } static void __devexit cciss_remove_one(struct pci_dev *pdev) { ctlr_info_t *tmp_ptr; int i, j; if (pci_get_drvdata(pdev) == NULL) { printk(KERN_ERR "cciss: Unable to remove device \n"); return; } tmp_ptr = pci_get_drvdata(pdev); i = tmp_ptr->ctlr; if (hba[i] == NULL) { printk(KERN_ERR "cciss: device appears to " "already be removed \n"); return; } mutex_lock(&hba[i]->busy_shutting_down); remove_from_scan_list(hba[i]); remove_proc_entry(hba[i]->devname, proc_cciss); unregister_blkdev(hba[i]->major, hba[i]->devname); /* remove it from the disk list */ for (j = 0; j < CISS_MAX_LUN; j++) { struct gendisk *disk = hba[i]->gendisk[j]; if (disk) { struct request_queue *q = disk->queue; if (disk->flags & GENHD_FL_UP) { cciss_destroy_ld_sysfs_entry(hba[i], j, 1); del_gendisk(disk); } if (q) blk_cleanup_queue(q); } } #ifdef CONFIG_CISS_SCSI_TAPE cciss_unregister_scsi(i); /* unhook from SCSI subsystem */ #endif cciss_shutdown(pdev); #ifdef CONFIG_PCI_MSI if (hba[i]->msix_vector) pci_disable_msix(hba[i]->pdev); else if (hba[i]->msi_vector) pci_disable_msi(hba[i]->pdev); #endif /* CONFIG_PCI_MSI */ iounmap(hba[i]->vaddr); pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct), hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle); pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct), hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle); kfree(hba[i]->cmd_pool_bits); /* * Deliberately omit pci_disable_device(): it does something nasty to * Smart Array controllers that pci_enable_device does not undo */ pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); cciss_destroy_hba_sysfs_entry(hba[i]); mutex_unlock(&hba[i]->busy_shutting_down); free_hba(i); } static struct pci_driver cciss_pci_driver = { .name = "cciss", .probe = cciss_init_one, .remove = __devexit_p(cciss_remove_one), .id_table = cciss_pci_device_id, /* id_table */ .shutdown = cciss_shutdown, }; /* * This is it. Register the PCI driver information for the cards we control * the OS will call our registered routines when it finds one of our cards. */ static int __init cciss_init(void) { int err; /* * The hardware requires that commands are aligned on a 64-bit * boundary. Given that we use pci_alloc_consistent() to allocate an * array of them, the size must be a multiple of 8 bytes. */ BUILD_BUG_ON(sizeof(CommandList_struct) % 8); printk(KERN_INFO DRIVER_NAME "\n"); err = bus_register(&cciss_bus_type); if (err) return err; /* Start the scan thread */ cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan"); if (IS_ERR(cciss_scan_thread)) { err = PTR_ERR(cciss_scan_thread); goto err_bus_unregister; } /* Register for our PCI devices */ err = pci_register_driver(&cciss_pci_driver); if (err) goto err_thread_stop; return err; err_thread_stop: kthread_stop(cciss_scan_thread); err_bus_unregister: bus_unregister(&cciss_bus_type); return err; } static void __exit cciss_cleanup(void) { int i; pci_unregister_driver(&cciss_pci_driver); /* double check that all controller entrys have been removed */ for (i = 0; i < MAX_CTLR; i++) { if (hba[i] != NULL) { printk(KERN_WARNING "cciss: had to remove" " controller %d\n", i); cciss_remove_one(hba[i]->pdev); } } kthread_stop(cciss_scan_thread); remove_proc_entry("driver/cciss", NULL); bus_unregister(&cciss_bus_type); } static void fail_all_cmds(unsigned long ctlr) { /* If we get here, the board is apparently dead. */ ctlr_info_t *h = hba[ctlr]; CommandList_struct *c; unsigned long flags; printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr); h->alive = 0; /* the controller apparently died... */ spin_lock_irqsave(CCISS_LOCK(ctlr), flags); pci_disable_device(h->pdev); /* Make sure it is really dead. */ /* move everything off the request queue onto the completed queue */ while (!hlist_empty(&h->reqQ)) { c = hlist_entry(h->reqQ.first, CommandList_struct, list); removeQ(c); h->Qdepth--; addQ(&h->cmpQ, c); } /* Now, fail everything on the completed queue with a HW error */ while (!hlist_empty(&h->cmpQ)) { c = hlist_entry(h->cmpQ.first, CommandList_struct, list); removeQ(c); if (c->cmd_type != CMD_MSG_STALE) c->err_info->CommandStatus = CMD_HARDWARE_ERR; if (c->cmd_type == CMD_RWREQ) { complete_command(h, c, 0); } else if (c->cmd_type == CMD_IOCTL_PEND) complete(c->waiting); #ifdef CONFIG_CISS_SCSI_TAPE else if (c->cmd_type == CMD_SCSI) complete_scsi_command(c, 0, 0); #endif } spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags); return; } module_init(cciss_init); module_exit(cciss_cleanup);