// SPDX-License-Identifier: GPL-2.0-only /* * Ram backed block device driver. * * Copyright (C) 2007 Nick Piggin * Copyright (C) 2007 Novell Inc. * * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright * of their respective owners. */ #include <linux/init.h> #include <linux/initrd.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/major.h> #include <linux/blkdev.h> #include <linux/bio.h> #include <linux/highmem.h> #include <linux/mutex.h> #include <linux/pagemap.h> #include <linux/radix-tree.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/backing-dev.h> #include <linux/debugfs.h> #include <linux/uaccess.h> /* * Each block ramdisk device has a radix_tree brd_pages of pages that stores * the pages containing the block device's contents. A brd page's ->index is * its offset in PAGE_SIZE units. This is similar to, but in no way connected * with, the kernel's pagecache or buffer cache (which sit above our block * device). */ struct brd_device { int brd_number; struct gendisk *brd_disk; struct list_head brd_list; /* * Backing store of pages and lock to protect it. This is the contents * of the block device. */ spinlock_t brd_lock; struct radix_tree_root brd_pages; u64 brd_nr_pages; }; /* * Look up and return a brd's page for a given sector. */ static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) { pgoff_t idx; struct page *page; /* * The page lifetime is protected by the fact that we have opened the * device node -- brd pages will never be deleted under us, so we * don't need any further locking or refcounting. * * This is strictly true for the radix-tree nodes as well (ie. we * don't actually need the rcu_read_lock()), however that is not a * documented feature of the radix-tree API so it is better to be * safe here (we don't have total exclusion from radix tree updates * here, only deletes). */ rcu_read_lock(); idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ page = radix_tree_lookup(&brd->brd_pages, idx); rcu_read_unlock(); BUG_ON(page && page->index != idx); return page; } /* * Look up and return a brd's page for a given sector. * If one does not exist, allocate an empty page, and insert that. Then * return it. */ static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) { pgoff_t idx; struct page *page; gfp_t gfp_flags; page = brd_lookup_page(brd, sector); if (page) return page; /* * Must use NOIO because we don't want to recurse back into the * block or filesystem layers from page reclaim. */ gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; page = alloc_page(gfp_flags); if (!page) return NULL; if (radix_tree_preload(GFP_NOIO)) { __free_page(page); return NULL; } spin_lock(&brd->brd_lock); idx = sector >> PAGE_SECTORS_SHIFT; page->index = idx; if (radix_tree_insert(&brd->brd_pages, idx, page)) { __free_page(page); page = radix_tree_lookup(&brd->brd_pages, idx); BUG_ON(!page); BUG_ON(page->index != idx); } else { brd->brd_nr_pages++; } spin_unlock(&brd->brd_lock); radix_tree_preload_end(); return page; } /* * Free all backing store pages and radix tree. This must only be called when * there are no other users of the device. */ #define FREE_BATCH 16 static void brd_free_pages(struct brd_device *brd) { unsigned long pos = 0; struct page *pages[FREE_BATCH]; int nr_pages; do { int i; nr_pages = radix_tree_gang_lookup(&brd->brd_pages, (void **)pages, pos, FREE_BATCH); for (i = 0; i < nr_pages; i++) { void *ret; BUG_ON(pages[i]->index < pos); pos = pages[i]->index; ret = radix_tree_delete(&brd->brd_pages, pos); BUG_ON(!ret || ret != pages[i]); __free_page(pages[i]); } pos++; /* * It takes 3.4 seconds to remove 80GiB ramdisk. * So, we need cond_resched to avoid stalling the CPU. */ cond_resched(); /* * This assumes radix_tree_gang_lookup always returns as * many pages as possible. If the radix-tree code changes, * so will this have to. */ } while (nr_pages == FREE_BATCH); } /* * copy_to_brd_setup must be called before copy_to_brd. It may sleep. */ static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) { unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; size_t copy; copy = min_t(size_t, n, PAGE_SIZE - offset); if (!brd_insert_page(brd, sector)) return -ENOSPC; if (copy < n) { sector += copy >> SECTOR_SHIFT; if (!brd_insert_page(brd, sector)) return -ENOSPC; } return 0; } /* * Copy n bytes from src to the brd starting at sector. Does not sleep. */ static void copy_to_brd(struct brd_device *brd, const void *src, sector_t sector, size_t n) { struct page *page; void *dst; unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; size_t copy; copy = min_t(size_t, n, PAGE_SIZE - offset); page = brd_lookup_page(brd, sector); BUG_ON(!page); dst = kmap_atomic(page); memcpy(dst + offset, src, copy); kunmap_atomic(dst); if (copy < n) { src += copy; sector += copy >> SECTOR_SHIFT; copy = n - copy; page = brd_lookup_page(brd, sector); BUG_ON(!page); dst = kmap_atomic(page); memcpy(dst, src, copy); kunmap_atomic(dst); } } /* * Copy n bytes to dst from the brd starting at sector. Does not sleep. */ static void copy_from_brd(void *dst, struct brd_device *brd, sector_t sector, size_t n) { struct page *page; void *src; unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; size_t copy; copy = min_t(size_t, n, PAGE_SIZE - offset); page = brd_lookup_page(brd, sector); if (page) { src = kmap_atomic(page); memcpy(dst, src + offset, copy); kunmap_atomic(src); } else memset(dst, 0, copy); if (copy < n) { dst += copy; sector += copy >> SECTOR_SHIFT; copy = n - copy; page = brd_lookup_page(brd, sector); if (page) { src = kmap_atomic(page); memcpy(dst, src, copy); kunmap_atomic(src); } else memset(dst, 0, copy); } } /* * Process a single bvec of a bio. */ static int brd_do_bvec(struct brd_device *brd, struct page *page, unsigned int len, unsigned int off, unsigned int op, sector_t sector) { void *mem; int err = 0; if (op_is_write(op)) { err = copy_to_brd_setup(brd, sector, len); if (err) goto out; } mem = kmap_atomic(page); if (!op_is_write(op)) { copy_from_brd(mem + off, brd, sector, len); flush_dcache_page(page); } else { flush_dcache_page(page); copy_to_brd(brd, mem + off, sector, len); } kunmap_atomic(mem); out: return err; } static void brd_submit_bio(struct bio *bio) { struct brd_device *brd = bio->bi_bdev->bd_disk->private_data; sector_t sector = bio->bi_iter.bi_sector; struct bio_vec bvec; struct bvec_iter iter; bio_for_each_segment(bvec, bio, iter) { unsigned int len = bvec.bv_len; int err; /* Don't support un-aligned buffer */ WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) || (len & (SECTOR_SIZE - 1))); err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, bio_op(bio), sector); if (err) { bio_io_error(bio); return; } sector += len >> SECTOR_SHIFT; } bio_endio(bio); } static int brd_rw_page(struct block_device *bdev, sector_t sector, struct page *page, unsigned int op) { struct brd_device *brd = bdev->bd_disk->private_data; int err; if (PageTransHuge(page)) return -ENOTSUPP; err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector); page_endio(page, op_is_write(op), err); return err; } static const struct block_device_operations brd_fops = { .owner = THIS_MODULE, .submit_bio = brd_submit_bio, .rw_page = brd_rw_page, }; /* * And now the modules code and kernel interface. */ static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; module_param(rd_nr, int, 0444); MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE; module_param(rd_size, ulong, 0444); MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); static int max_part = 1; module_param(max_part, int, 0444); MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); MODULE_LICENSE("GPL"); MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); MODULE_ALIAS("rd"); #ifndef MODULE /* Legacy boot options - nonmodular */ static int __init ramdisk_size(char *str) { rd_size = simple_strtol(str, NULL, 0); return 1; } __setup("ramdisk_size=", ramdisk_size); #endif /* * The device scheme is derived from loop.c. Keep them in synch where possible * (should share code eventually). */ static LIST_HEAD(brd_devices); static DEFINE_MUTEX(brd_devices_mutex); static struct dentry *brd_debugfs_dir; static int brd_alloc(int i) { struct brd_device *brd; struct gendisk *disk; char buf[DISK_NAME_LEN]; int err = -ENOMEM; mutex_lock(&brd_devices_mutex); list_for_each_entry(brd, &brd_devices, brd_list) { if (brd->brd_number == i) { mutex_unlock(&brd_devices_mutex); return -EEXIST; } } brd = kzalloc(sizeof(*brd), GFP_KERNEL); if (!brd) { mutex_unlock(&brd_devices_mutex); return -ENOMEM; } brd->brd_number = i; list_add_tail(&brd->brd_list, &brd_devices); mutex_unlock(&brd_devices_mutex); spin_lock_init(&brd->brd_lock); INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); snprintf(buf, DISK_NAME_LEN, "ram%d", i); if (!IS_ERR_OR_NULL(brd_debugfs_dir)) debugfs_create_u64(buf, 0444, brd_debugfs_dir, &brd->brd_nr_pages); disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE); if (!disk) goto out_free_dev; disk->major = RAMDISK_MAJOR; disk->first_minor = i * max_part; disk->minors = max_part; disk->fops = &brd_fops; disk->private_data = brd; disk->flags = GENHD_FL_EXT_DEVT; strlcpy(disk->disk_name, buf, DISK_NAME_LEN); set_capacity(disk, rd_size * 2); /* * This is so fdisk will align partitions on 4k, because of * direct_access API needing 4k alignment, returning a PFN * (This is only a problem on very small devices <= 4M, * otherwise fdisk will align on 1M. Regardless this call * is harmless) */ blk_queue_physical_block_size(disk->queue, PAGE_SIZE); /* Tell the block layer that this is not a rotational device */ blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue); blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue); err = add_disk(disk); if (err) goto out_cleanup_disk; return 0; out_cleanup_disk: blk_cleanup_disk(disk); out_free_dev: mutex_lock(&brd_devices_mutex); list_del(&brd->brd_list); mutex_unlock(&brd_devices_mutex); kfree(brd); return err; } static void brd_probe(dev_t dev) { brd_alloc(MINOR(dev) / max_part); } static void brd_del_one(struct brd_device *brd) { del_gendisk(brd->brd_disk); blk_cleanup_disk(brd->brd_disk); brd_free_pages(brd); mutex_lock(&brd_devices_mutex); list_del(&brd->brd_list); mutex_unlock(&brd_devices_mutex); kfree(brd); } static inline void brd_check_and_reset_par(void) { if (unlikely(!max_part)) max_part = 1; /* * make sure 'max_part' can be divided exactly by (1U << MINORBITS), * otherwise, it is possiable to get same dev_t when adding partitions. */ if ((1U << MINORBITS) % max_part != 0) max_part = 1UL << fls(max_part); if (max_part > DISK_MAX_PARTS) { pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n", DISK_MAX_PARTS, DISK_MAX_PARTS); max_part = DISK_MAX_PARTS; } } static int __init brd_init(void) { struct brd_device *brd, *next; int err, i; /* * brd module now has a feature to instantiate underlying device * structure on-demand, provided that there is an access dev node. * * (1) if rd_nr is specified, create that many upfront. else * it defaults to CONFIG_BLK_DEV_RAM_COUNT * (2) User can further extend brd devices by create dev node themselves * and have kernel automatically instantiate actual device * on-demand. Example: * mknod /path/devnod_name b 1 X # 1 is the rd major * fdisk -l /path/devnod_name * If (X / max_part) was not already created it will be created * dynamically. */ if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) return -EIO; brd_check_and_reset_par(); brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL); for (i = 0; i < rd_nr; i++) { err = brd_alloc(i); if (err) goto out_free; } pr_info("brd: module loaded\n"); return 0; out_free: unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); debugfs_remove_recursive(brd_debugfs_dir); list_for_each_entry_safe(brd, next, &brd_devices, brd_list) brd_del_one(brd); pr_info("brd: module NOT loaded !!!\n"); return err; } static void __exit brd_exit(void) { struct brd_device *brd, *next; unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); debugfs_remove_recursive(brd_debugfs_dir); list_for_each_entry_safe(brd, next, &brd_devices, brd_list) brd_del_one(brd); pr_info("brd: module unloaded\n"); } module_init(brd_init); module_exit(brd_exit);