// SPDX-License-Identifier: GPL-2.0-only /* * ACPI device specific properties support. * * Copyright (C) 2014, Intel Corporation * All rights reserved. * * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> * Darren Hart <dvhart@linux.intel.com> * Rafael J. Wysocki <rafael.j.wysocki@intel.com> */ #include <linux/acpi.h> #include <linux/device.h> #include <linux/export.h> #include "internal.h" static int acpi_data_get_property_array(const struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj); /* * The GUIDs here are made equivalent to each other in order to avoid extra * complexity in the properties handling code, with the caveat that the * kernel will accept certain combinations of GUID and properties that are * not defined without a warning. For instance if any of the properties * from different GUID appear in a property list of another, it will be * accepted by the kernel. Firmware validation tools should catch these. */ static const guid_t prp_guids[] = { /* ACPI _DSD device properties GUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301 */ GUID_INIT(0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91, 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01), /* Hotplug in D3 GUID: 6211e2c0-58a3-4af3-90e1-927a4e0c55a4 */ GUID_INIT(0x6211e2c0, 0x58a3, 0x4af3, 0x90, 0xe1, 0x92, 0x7a, 0x4e, 0x0c, 0x55, 0xa4), /* External facing port GUID: efcc06cc-73ac-4bc3-bff0-76143807c389 */ GUID_INIT(0xefcc06cc, 0x73ac, 0x4bc3, 0xbf, 0xf0, 0x76, 0x14, 0x38, 0x07, 0xc3, 0x89), /* Thunderbolt GUID for IMR_VALID: c44d002f-69f9-4e7d-a904-a7baabdf43f7 */ GUID_INIT(0xc44d002f, 0x69f9, 0x4e7d, 0xa9, 0x04, 0xa7, 0xba, 0xab, 0xdf, 0x43, 0xf7), /* Thunderbolt GUID for WAKE_SUPPORTED: 6c501103-c189-4296-ba72-9bf5a26ebe5d */ GUID_INIT(0x6c501103, 0xc189, 0x4296, 0xba, 0x72, 0x9b, 0xf5, 0xa2, 0x6e, 0xbe, 0x5d), /* Storage device needs D3 GUID: 5025030f-842f-4ab4-a561-99a5189762d0 */ GUID_INIT(0x5025030f, 0x842f, 0x4ab4, 0xa5, 0x61, 0x99, 0xa5, 0x18, 0x97, 0x62, 0xd0), }; /* ACPI _DSD data subnodes GUID: dbb8e3e6-5886-4ba6-8795-1319f52a966b */ static const guid_t ads_guid = GUID_INIT(0xdbb8e3e6, 0x5886, 0x4ba6, 0x87, 0x95, 0x13, 0x19, 0xf5, 0x2a, 0x96, 0x6b); static const guid_t buffer_prop_guid = GUID_INIT(0xedb12dd0, 0x363d, 0x4085, 0xa3, 0xd2, 0x49, 0x52, 0x2c, 0xa1, 0x60, 0xc4); static bool acpi_enumerate_nondev_subnodes(acpi_handle scope, union acpi_object *desc, struct acpi_device_data *data, struct fwnode_handle *parent); static bool acpi_extract_properties(acpi_handle handle, union acpi_object *desc, struct acpi_device_data *data); static bool acpi_nondev_subnode_extract(union acpi_object *desc, acpi_handle handle, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { struct acpi_data_node *dn; bool result; dn = kzalloc(sizeof(*dn), GFP_KERNEL); if (!dn) return false; dn->name = link->package.elements[0].string.pointer; fwnode_init(&dn->fwnode, &acpi_data_fwnode_ops); dn->parent = parent; INIT_LIST_HEAD(&dn->data.properties); INIT_LIST_HEAD(&dn->data.subnodes); result = acpi_extract_properties(handle, desc, &dn->data); if (handle) { acpi_handle scope; acpi_status status; /* * The scope for the subnode object lookup is the one of the * namespace node (device) containing the object that has * returned the package. That is, it's the scope of that * object's parent. */ status = acpi_get_parent(handle, &scope); if (ACPI_SUCCESS(status) && acpi_enumerate_nondev_subnodes(scope, desc, &dn->data, &dn->fwnode)) result = true; } else if (acpi_enumerate_nondev_subnodes(NULL, desc, &dn->data, &dn->fwnode)) { result = true; } if (result) { dn->handle = handle; dn->data.pointer = desc; list_add_tail(&dn->sibling, list); return true; } kfree(dn); acpi_handle_debug(handle, "Invalid properties/subnodes data, skipping\n"); return false; } static bool acpi_nondev_subnode_data_ok(acpi_handle handle, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; acpi_status status; status = acpi_evaluate_object_typed(handle, NULL, NULL, &buf, ACPI_TYPE_PACKAGE); if (ACPI_FAILURE(status)) return false; if (acpi_nondev_subnode_extract(buf.pointer, handle, link, list, parent)) return true; ACPI_FREE(buf.pointer); return false; } static bool acpi_nondev_subnode_ok(acpi_handle scope, const union acpi_object *link, struct list_head *list, struct fwnode_handle *parent) { acpi_handle handle; acpi_status status; if (!scope) return false; status = acpi_get_handle(scope, link->package.elements[1].string.pointer, &handle); if (ACPI_FAILURE(status)) return false; return acpi_nondev_subnode_data_ok(handle, link, list, parent); } static bool acpi_add_nondev_subnodes(acpi_handle scope, union acpi_object *links, struct list_head *list, struct fwnode_handle *parent) { bool ret = false; int i; for (i = 0; i < links->package.count; i++) { union acpi_object *link, *desc; acpi_handle handle; bool result; link = &links->package.elements[i]; /* Only two elements allowed. */ if (link->package.count != 2) continue; /* The first one must be a string. */ if (link->package.elements[0].type != ACPI_TYPE_STRING) continue; /* The second one may be a string, a reference or a package. */ switch (link->package.elements[1].type) { case ACPI_TYPE_STRING: result = acpi_nondev_subnode_ok(scope, link, list, parent); break; case ACPI_TYPE_LOCAL_REFERENCE: handle = link->package.elements[1].reference.handle; result = acpi_nondev_subnode_data_ok(handle, link, list, parent); break; case ACPI_TYPE_PACKAGE: desc = &link->package.elements[1]; result = acpi_nondev_subnode_extract(desc, NULL, link, list, parent); break; default: result = false; break; } ret = ret || result; } return ret; } static bool acpi_enumerate_nondev_subnodes(acpi_handle scope, union acpi_object *desc, struct acpi_device_data *data, struct fwnode_handle *parent) { int i; /* Look for the ACPI data subnodes GUID. */ for (i = 0; i < desc->package.count; i += 2) { const union acpi_object *guid; union acpi_object *links; guid = &desc->package.elements[i]; links = &desc->package.elements[i + 1]; /* * The first element must be a GUID and the second one must be * a package. */ if (guid->type != ACPI_TYPE_BUFFER || guid->buffer.length != 16 || links->type != ACPI_TYPE_PACKAGE) break; if (!guid_equal((guid_t *)guid->buffer.pointer, &ads_guid)) continue; return acpi_add_nondev_subnodes(scope, links, &data->subnodes, parent); } return false; } static bool acpi_property_value_ok(const union acpi_object *value) { int j; /* * The value must be an integer, a string, a reference, or a package * whose every element must be an integer, a string, or a reference. */ switch (value->type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_LOCAL_REFERENCE: return true; case ACPI_TYPE_PACKAGE: for (j = 0; j < value->package.count; j++) switch (value->package.elements[j].type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_LOCAL_REFERENCE: continue; default: return false; } return true; } return false; } static bool acpi_properties_format_valid(const union acpi_object *properties) { int i; for (i = 0; i < properties->package.count; i++) { const union acpi_object *property; property = &properties->package.elements[i]; /* * Only two elements allowed, the first one must be a string and * the second one has to satisfy certain conditions. */ if (property->package.count != 2 || property->package.elements[0].type != ACPI_TYPE_STRING || !acpi_property_value_ok(&property->package.elements[1])) return false; } return true; } static void acpi_init_of_compatible(struct acpi_device *adev) { const union acpi_object *of_compatible; int ret; ret = acpi_data_get_property_array(&adev->data, "compatible", ACPI_TYPE_STRING, &of_compatible); if (ret) { ret = acpi_dev_get_property(adev, "compatible", ACPI_TYPE_STRING, &of_compatible); if (ret) { struct acpi_device *parent; parent = acpi_dev_parent(adev); if (parent && parent->flags.of_compatible_ok) goto out; return; } } adev->data.of_compatible = of_compatible; out: adev->flags.of_compatible_ok = 1; } static bool acpi_is_property_guid(const guid_t *guid) { int i; for (i = 0; i < ARRAY_SIZE(prp_guids); i++) { if (guid_equal(guid, &prp_guids[i])) return true; } return false; } struct acpi_device_properties * acpi_data_add_props(struct acpi_device_data *data, const guid_t *guid, union acpi_object *properties) { struct acpi_device_properties *props; props = kzalloc(sizeof(*props), GFP_KERNEL); if (props) { INIT_LIST_HEAD(&props->list); props->guid = guid; props->properties = properties; list_add_tail(&props->list, &data->properties); } return props; } static void acpi_nondev_subnode_tag(acpi_handle handle, void *context) { } static void acpi_untie_nondev_subnodes(struct acpi_device_data *data) { struct acpi_data_node *dn; list_for_each_entry(dn, &data->subnodes, sibling) { acpi_detach_data(dn->handle, acpi_nondev_subnode_tag); acpi_untie_nondev_subnodes(&dn->data); } } static bool acpi_tie_nondev_subnodes(struct acpi_device_data *data) { struct acpi_data_node *dn; list_for_each_entry(dn, &data->subnodes, sibling) { acpi_status status; bool ret; status = acpi_attach_data(dn->handle, acpi_nondev_subnode_tag, dn); if (ACPI_FAILURE(status) && status != AE_ALREADY_EXISTS) { acpi_handle_err(dn->handle, "Can't tag data node\n"); return false; } ret = acpi_tie_nondev_subnodes(&dn->data); if (!ret) return ret; } return true; } static void acpi_data_add_buffer_props(acpi_handle handle, struct acpi_device_data *data, union acpi_object *properties) { struct acpi_device_properties *props; union acpi_object *package; size_t alloc_size; unsigned int i; u32 *count; if (check_mul_overflow((size_t)properties->package.count, sizeof(*package) + sizeof(void *), &alloc_size) || check_add_overflow(sizeof(*props) + sizeof(*package), alloc_size, &alloc_size)) { acpi_handle_warn(handle, "can't allocate memory for %u buffer props", properties->package.count); return; } props = kvzalloc(alloc_size, GFP_KERNEL); if (!props) return; props->guid = &buffer_prop_guid; props->bufs = (void *)(props + 1); props->properties = (void *)(props->bufs + properties->package.count); /* Outer package */ package = props->properties; package->type = ACPI_TYPE_PACKAGE; package->package.elements = package + 1; count = &package->package.count; *count = 0; /* Inner packages */ package++; for (i = 0; i < properties->package.count; i++) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; union acpi_object *property = &properties->package.elements[i]; union acpi_object *prop, *obj, *buf_obj; acpi_status status; if (property->type != ACPI_TYPE_PACKAGE || property->package.count != 2) { acpi_handle_warn(handle, "buffer property %u has %u entries\n", i, property->package.count); continue; } prop = &property->package.elements[0]; obj = &property->package.elements[1]; if (prop->type != ACPI_TYPE_STRING || obj->type != ACPI_TYPE_STRING) { acpi_handle_warn(handle, "wrong object types %u and %u\n", prop->type, obj->type); continue; } status = acpi_evaluate_object_typed(handle, obj->string.pointer, NULL, &buf, ACPI_TYPE_BUFFER); if (ACPI_FAILURE(status)) { acpi_handle_warn(handle, "can't evaluate \"%*pE\" as buffer\n", obj->string.length, obj->string.pointer); continue; } package->type = ACPI_TYPE_PACKAGE; package->package.elements = prop; package->package.count = 2; buf_obj = buf.pointer; /* Replace the string object with a buffer object */ obj->type = ACPI_TYPE_BUFFER; obj->buffer.length = buf_obj->buffer.length; obj->buffer.pointer = buf_obj->buffer.pointer; props->bufs[i] = buf.pointer; package++; (*count)++; } if (*count) list_add(&props->list, &data->properties); else kvfree(props); } static bool acpi_extract_properties(acpi_handle scope, union acpi_object *desc, struct acpi_device_data *data) { int i; if (desc->package.count % 2) return false; /* Look for the device properties GUID. */ for (i = 0; i < desc->package.count; i += 2) { const union acpi_object *guid; union acpi_object *properties; guid = &desc->package.elements[i]; properties = &desc->package.elements[i + 1]; /* * The first element must be a GUID and the second one must be * a package. */ if (guid->type != ACPI_TYPE_BUFFER || guid->buffer.length != 16 || properties->type != ACPI_TYPE_PACKAGE) break; if (guid_equal((guid_t *)guid->buffer.pointer, &buffer_prop_guid)) { acpi_data_add_buffer_props(scope, data, properties); continue; } if (!acpi_is_property_guid((guid_t *)guid->buffer.pointer)) continue; /* * We found the matching GUID. Now validate the format of the * package immediately following it. */ if (!acpi_properties_format_valid(properties)) continue; acpi_data_add_props(data, (const guid_t *)guid->buffer.pointer, properties); } return !list_empty(&data->properties); } void acpi_init_properties(struct acpi_device *adev) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER }; struct acpi_hardware_id *hwid; acpi_status status; bool acpi_of = false; INIT_LIST_HEAD(&adev->data.properties); INIT_LIST_HEAD(&adev->data.subnodes); if (!adev->handle) return; /* * Check if ACPI_DT_NAMESPACE_HID is present and inthat case we fill in * Device Tree compatible properties for this device. */ list_for_each_entry(hwid, &adev->pnp.ids, list) { if (!strcmp(hwid->id, ACPI_DT_NAMESPACE_HID)) { acpi_of = true; break; } } status = acpi_evaluate_object_typed(adev->handle, "_DSD", NULL, &buf, ACPI_TYPE_PACKAGE); if (ACPI_FAILURE(status)) goto out; if (acpi_extract_properties(adev->handle, buf.pointer, &adev->data)) { adev->data.pointer = buf.pointer; if (acpi_of) acpi_init_of_compatible(adev); } if (acpi_enumerate_nondev_subnodes(adev->handle, buf.pointer, &adev->data, acpi_fwnode_handle(adev))) adev->data.pointer = buf.pointer; if (!adev->data.pointer) { acpi_handle_debug(adev->handle, "Invalid _DSD data, skipping\n"); ACPI_FREE(buf.pointer); } else { if (!acpi_tie_nondev_subnodes(&adev->data)) acpi_untie_nondev_subnodes(&adev->data); } out: if (acpi_of && !adev->flags.of_compatible_ok) acpi_handle_info(adev->handle, ACPI_DT_NAMESPACE_HID " requires 'compatible' property\n"); if (!adev->data.pointer) acpi_extract_apple_properties(adev); } static void acpi_free_device_properties(struct list_head *list) { struct acpi_device_properties *props, *tmp; list_for_each_entry_safe(props, tmp, list, list) { u32 i; list_del(&props->list); /* Buffer data properties were separately allocated */ if (props->bufs) for (i = 0; i < props->properties->package.count; i++) ACPI_FREE(props->bufs[i]); kvfree(props); } } static void acpi_destroy_nondev_subnodes(struct list_head *list) { struct acpi_data_node *dn, *next; if (list_empty(list)) return; list_for_each_entry_safe_reverse(dn, next, list, sibling) { acpi_destroy_nondev_subnodes(&dn->data.subnodes); wait_for_completion(&dn->kobj_done); list_del(&dn->sibling); ACPI_FREE((void *)dn->data.pointer); acpi_free_device_properties(&dn->data.properties); kfree(dn); } } void acpi_free_properties(struct acpi_device *adev) { acpi_untie_nondev_subnodes(&adev->data); acpi_destroy_nondev_subnodes(&adev->data.subnodes); ACPI_FREE((void *)adev->data.pointer); adev->data.of_compatible = NULL; adev->data.pointer = NULL; acpi_free_device_properties(&adev->data.properties); } /** * acpi_data_get_property - return an ACPI property with given name * @data: ACPI device deta object to get the property from * @name: Name of the property * @type: Expected property type * @obj: Location to store the property value (if not %NULL) * * Look up a property with @name and store a pointer to the resulting ACPI * object at the location pointed to by @obj if found. * * Callers must not attempt to free the returned objects. These objects will be * freed by the ACPI core automatically during the removal of @data. * * Return: %0 if property with @name has been found (success), * %-EINVAL if the arguments are invalid, * %-EINVAL if the property doesn't exist, * %-EPROTO if the property value type doesn't match @type. */ static int acpi_data_get_property(const struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj) { const struct acpi_device_properties *props; if (!data || !name) return -EINVAL; if (!data->pointer || list_empty(&data->properties)) return -EINVAL; list_for_each_entry(props, &data->properties, list) { const union acpi_object *properties; unsigned int i; properties = props->properties; for (i = 0; i < properties->package.count; i++) { const union acpi_object *propname, *propvalue; const union acpi_object *property; property = &properties->package.elements[i]; propname = &property->package.elements[0]; propvalue = &property->package.elements[1]; if (!strcmp(name, propname->string.pointer)) { if (type != ACPI_TYPE_ANY && propvalue->type != type) return -EPROTO; if (obj) *obj = propvalue; return 0; } } } return -EINVAL; } /** * acpi_dev_get_property - return an ACPI property with given name. * @adev: ACPI device to get the property from. * @name: Name of the property. * @type: Expected property type. * @obj: Location to store the property value (if not %NULL). */ int acpi_dev_get_property(const struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj) { return adev ? acpi_data_get_property(&adev->data, name, type, obj) : -EINVAL; } EXPORT_SYMBOL_GPL(acpi_dev_get_property); static const struct acpi_device_data * acpi_device_data_of_node(const struct fwnode_handle *fwnode) { if (is_acpi_device_node(fwnode)) { const struct acpi_device *adev = to_acpi_device_node(fwnode); return &adev->data; } if (is_acpi_data_node(fwnode)) { const struct acpi_data_node *dn = to_acpi_data_node(fwnode); return &dn->data; } return NULL; } /** * acpi_node_prop_get - return an ACPI property with given name. * @fwnode: Firmware node to get the property from. * @propname: Name of the property. * @valptr: Location to store a pointer to the property value (if not %NULL). */ int acpi_node_prop_get(const struct fwnode_handle *fwnode, const char *propname, void **valptr) { return acpi_data_get_property(acpi_device_data_of_node(fwnode), propname, ACPI_TYPE_ANY, (const union acpi_object **)valptr); } /** * acpi_data_get_property_array - return an ACPI array property with given name * @data: ACPI data object to get the property from * @name: Name of the property * @type: Expected type of array elements * @obj: Location to store a pointer to the property value (if not NULL) * * Look up an array property with @name and store a pointer to the resulting * ACPI object at the location pointed to by @obj if found. * * Callers must not attempt to free the returned objects. Those objects will be * freed by the ACPI core automatically during the removal of @data. * * Return: %0 if array property (package) with @name has been found (success), * %-EINVAL if the arguments are invalid, * %-EINVAL if the property doesn't exist, * %-EPROTO if the property is not a package or the type of its elements * doesn't match @type. */ static int acpi_data_get_property_array(const struct acpi_device_data *data, const char *name, acpi_object_type type, const union acpi_object **obj) { const union acpi_object *prop; int ret, i; ret = acpi_data_get_property(data, name, ACPI_TYPE_PACKAGE, &prop); if (ret) return ret; if (type != ACPI_TYPE_ANY) { /* Check that all elements are of correct type. */ for (i = 0; i < prop->package.count; i++) if (prop->package.elements[i].type != type) return -EPROTO; } if (obj) *obj = prop; return 0; } static struct fwnode_handle * acpi_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, const char *childname) { struct fwnode_handle *child; fwnode_for_each_child_node(fwnode, child) { if (is_acpi_data_node(child)) { if (acpi_data_node_match(child, childname)) return child; continue; } if (!strncmp(acpi_device_bid(to_acpi_device_node(child)), childname, ACPI_NAMESEG_SIZE)) return child; } return NULL; } static int acpi_get_ref_args(struct fwnode_reference_args *args, struct fwnode_handle *ref_fwnode, const union acpi_object **element, const union acpi_object *end, size_t num_args) { u32 nargs = 0, i; /* * Find the referred data extension node under the * referred device node. */ for (; *element < end && (*element)->type == ACPI_TYPE_STRING; (*element)++) { const char *child_name = (*element)->string.pointer; ref_fwnode = acpi_fwnode_get_named_child_node(ref_fwnode, child_name); if (!ref_fwnode) return -EINVAL; } /* * Assume the following integer elements are all args. Stop counting on * the first reference or end of the package arguments. In case of * neither reference, nor integer, return an error, we can't parse it. */ for (i = 0; (*element) + i < end && i < num_args; i++) { acpi_object_type type = (*element)[i].type; if (type == ACPI_TYPE_LOCAL_REFERENCE) break; if (type == ACPI_TYPE_INTEGER) nargs++; else return -EINVAL; } if (nargs > NR_FWNODE_REFERENCE_ARGS) return -EINVAL; if (args) { args->fwnode = ref_fwnode; args->nargs = nargs; for (i = 0; i < nargs; i++) args->args[i] = (*element)[i].integer.value; } (*element) += nargs; return 0; } /** * __acpi_node_get_property_reference - returns handle to the referenced object * @fwnode: Firmware node to get the property from * @propname: Name of the property * @index: Index of the reference to return * @num_args: Maximum number of arguments after each reference * @args: Location to store the returned reference with optional arguments * * Find property with @name, verifify that it is a package containing at least * one object reference and if so, store the ACPI device object pointer to the * target object in @args->adev. If the reference includes arguments, store * them in the @args->args[] array. * * If there's more than one reference in the property value package, @index is * used to select the one to return. * * It is possible to leave holes in the property value set like in the * example below: * * Package () { * "cs-gpios", * Package () { * ^GPIO, 19, 0, 0, * ^GPIO, 20, 0, 0, * 0, * ^GPIO, 21, 0, 0, * } * } * * Calling this function with index %2 or index %3 return %-ENOENT. If the * property does not contain any more values %-ENOENT is returned. The NULL * entry must be single integer and preferably contain value %0. * * Return: %0 on success, negative error code on failure. */ int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *propname, size_t index, size_t num_args, struct fwnode_reference_args *args) { const union acpi_object *element, *end; const union acpi_object *obj; const struct acpi_device_data *data; struct acpi_device *device; int ret, idx = 0; data = acpi_device_data_of_node(fwnode); if (!data) return -ENOENT; ret = acpi_data_get_property(data, propname, ACPI_TYPE_ANY, &obj); if (ret) return ret == -EINVAL ? -ENOENT : -EINVAL; switch (obj->type) { case ACPI_TYPE_LOCAL_REFERENCE: /* Plain single reference without arguments. */ if (index) return -ENOENT; device = acpi_fetch_acpi_dev(obj->reference.handle); if (!device) return -EINVAL; args->fwnode = acpi_fwnode_handle(device); args->nargs = 0; return 0; case ACPI_TYPE_PACKAGE: /* * If it is not a single reference, then it is a package of * references followed by number of ints as follows: * * Package () { REF, INT, REF, INT, INT } * * The index argument is then used to determine which reference * the caller wants (along with the arguments). */ break; default: return -EINVAL; } if (index >= obj->package.count) return -ENOENT; element = obj->package.elements; end = element + obj->package.count; while (element < end) { switch (element->type) { case ACPI_TYPE_LOCAL_REFERENCE: device = acpi_fetch_acpi_dev(element->reference.handle); if (!device) return -EINVAL; element++; ret = acpi_get_ref_args(idx == index ? args : NULL, acpi_fwnode_handle(device), &element, end, num_args); if (ret < 0) return ret; if (idx == index) return 0; break; case ACPI_TYPE_INTEGER: if (idx == index) return -ENOENT; element++; break; default: return -EINVAL; } idx++; } return -ENOENT; } EXPORT_SYMBOL_GPL(__acpi_node_get_property_reference); static int acpi_data_prop_read_single(const struct acpi_device_data *data, const char *propname, enum dev_prop_type proptype, void *val) { const union acpi_object *obj; int ret = 0; if (proptype >= DEV_PROP_U8 && proptype <= DEV_PROP_U64) ret = acpi_data_get_property(data, propname, ACPI_TYPE_INTEGER, &obj); else if (proptype == DEV_PROP_STRING) ret = acpi_data_get_property(data, propname, ACPI_TYPE_STRING, &obj); if (ret) return ret; switch (proptype) { case DEV_PROP_U8: if (obj->integer.value > U8_MAX) return -EOVERFLOW; if (val) *(u8 *)val = obj->integer.value; break; case DEV_PROP_U16: if (obj->integer.value > U16_MAX) return -EOVERFLOW; if (val) *(u16 *)val = obj->integer.value; break; case DEV_PROP_U32: if (obj->integer.value > U32_MAX) return -EOVERFLOW; if (val) *(u32 *)val = obj->integer.value; break; case DEV_PROP_U64: if (val) *(u64 *)val = obj->integer.value; break; case DEV_PROP_STRING: if (val) *(char **)val = obj->string.pointer; return 1; default: return -EINVAL; } /* When no storage provided return number of available values */ return val ? 0 : 1; } #define acpi_copy_property_array_uint(items, val, nval) \ ({ \ typeof(items) __items = items; \ typeof(val) __val = val; \ typeof(nval) __nval = nval; \ size_t i; \ int ret = 0; \ \ for (i = 0; i < __nval; i++) { \ if (__items->type == ACPI_TYPE_BUFFER) { \ __val[i] = __items->buffer.pointer[i]; \ continue; \ } \ if (__items[i].type != ACPI_TYPE_INTEGER) { \ ret = -EPROTO; \ break; \ } \ if (__items[i].integer.value > _Generic(__val, \ u8 *: U8_MAX, \ u16 *: U16_MAX, \ u32 *: U32_MAX, \ u64 *: U64_MAX)) { \ ret = -EOVERFLOW; \ break; \ } \ \ __val[i] = __items[i].integer.value; \ } \ ret; \ }) static int acpi_copy_property_array_string(const union acpi_object *items, char **val, size_t nval) { int i; for (i = 0; i < nval; i++) { if (items[i].type != ACPI_TYPE_STRING) return -EPROTO; val[i] = items[i].string.pointer; } return nval; } static int acpi_data_prop_read(const struct acpi_device_data *data, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { const union acpi_object *obj; const union acpi_object *items; int ret; if (nval == 1 || !val) { ret = acpi_data_prop_read_single(data, propname, proptype, val); /* * The overflow error means that the property is there and it is * single-value, but its type does not match, so return. */ if (ret >= 0 || ret == -EOVERFLOW) return ret; /* * Reading this property as a single-value one failed, but its * value may still be represented as one-element array, so * continue. */ } ret = acpi_data_get_property_array(data, propname, ACPI_TYPE_ANY, &obj); if (ret && proptype >= DEV_PROP_U8 && proptype <= DEV_PROP_U64) ret = acpi_data_get_property(data, propname, ACPI_TYPE_BUFFER, &obj); if (ret) return ret; if (!val) { if (obj->type == ACPI_TYPE_BUFFER) return obj->buffer.length; return obj->package.count; } switch (proptype) { case DEV_PROP_STRING: break; case DEV_PROP_U8 ... DEV_PROP_U64: if (obj->type == ACPI_TYPE_BUFFER) { if (nval > obj->buffer.length) return -EOVERFLOW; break; } fallthrough; default: if (nval > obj->package.count) return -EOVERFLOW; break; } if (nval == 0) return -EINVAL; if (obj->type != ACPI_TYPE_BUFFER) items = obj->package.elements; else items = obj; switch (proptype) { case DEV_PROP_U8: ret = acpi_copy_property_array_uint(items, (u8 *)val, nval); break; case DEV_PROP_U16: ret = acpi_copy_property_array_uint(items, (u16 *)val, nval); break; case DEV_PROP_U32: ret = acpi_copy_property_array_uint(items, (u32 *)val, nval); break; case DEV_PROP_U64: ret = acpi_copy_property_array_uint(items, (u64 *)val, nval); break; case DEV_PROP_STRING: ret = acpi_copy_property_array_string( items, (char **)val, min_t(u32, nval, obj->package.count)); break; default: ret = -EINVAL; break; } return ret; } /** * acpi_node_prop_read - retrieve the value of an ACPI property with given name. * @fwnode: Firmware node to get the property from. * @propname: Name of the property. * @proptype: Expected property type. * @val: Location to store the property value (if not %NULL). * @nval: Size of the array pointed to by @val. * * If @val is %NULL, return the number of array elements comprising the value * of the property. Otherwise, read at most @nval values to the array at the * location pointed to by @val. */ static int acpi_node_prop_read(const struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return acpi_data_prop_read(acpi_device_data_of_node(fwnode), propname, proptype, val, nval); } static int stop_on_next(struct acpi_device *adev, void *data) { struct acpi_device **ret_p = data; if (!*ret_p) { *ret_p = adev; return 1; } /* Skip until the "previous" object is found. */ if (*ret_p == adev) *ret_p = NULL; return 0; } /** * acpi_get_next_subnode - Return the next child node handle for a fwnode * @fwnode: Firmware node to find the next child node for. * @child: Handle to one of the device's child nodes or a null handle. */ struct fwnode_handle *acpi_get_next_subnode(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { struct acpi_device *adev = to_acpi_device_node(fwnode); if ((!child || is_acpi_device_node(child)) && adev) { struct acpi_device *child_adev = to_acpi_device_node(child); acpi_dev_for_each_child(adev, stop_on_next, &child_adev); if (child_adev) return acpi_fwnode_handle(child_adev); child = NULL; } if (!child || is_acpi_data_node(child)) { const struct acpi_data_node *data = to_acpi_data_node(fwnode); const struct list_head *head; struct list_head *next; struct acpi_data_node *dn; /* * We can have a combination of device and data nodes, e.g. with * hierarchical _DSD properties. Make sure the adev pointer is * restored before going through data nodes, otherwise we will * be looking for data_nodes below the last device found instead * of the common fwnode shared by device_nodes and data_nodes. */ adev = to_acpi_device_node(fwnode); if (adev) head = &adev->data.subnodes; else if (data) head = &data->data.subnodes; else return NULL; if (list_empty(head)) return NULL; if (child) { dn = to_acpi_data_node(child); next = dn->sibling.next; if (next == head) return NULL; dn = list_entry(next, struct acpi_data_node, sibling); } else { dn = list_first_entry(head, struct acpi_data_node, sibling); } return &dn->fwnode; } return NULL; } /** * acpi_node_get_parent - Return parent fwnode of this fwnode * @fwnode: Firmware node whose parent to get * * Returns parent node of an ACPI device or data firmware node or %NULL if * not available. */ static struct fwnode_handle * acpi_node_get_parent(const struct fwnode_handle *fwnode) { if (is_acpi_data_node(fwnode)) { /* All data nodes have parent pointer so just return that */ return to_acpi_data_node(fwnode)->parent; } if (is_acpi_device_node(fwnode)) { struct acpi_device *parent; parent = acpi_dev_parent(to_acpi_device_node(fwnode)); if (parent) return acpi_fwnode_handle(parent); } return NULL; } /* * Return true if the node is an ACPI graph node. Called on either ports * or endpoints. */ static bool is_acpi_graph_node(struct fwnode_handle *fwnode, const char *str) { unsigned int len = strlen(str); const char *name; if (!len || !is_acpi_data_node(fwnode)) return false; name = to_acpi_data_node(fwnode)->name; return (fwnode_property_present(fwnode, "reg") && !strncmp(name, str, len) && name[len] == '@') || fwnode_property_present(fwnode, str); } /** * acpi_graph_get_next_endpoint - Get next endpoint ACPI firmware node * @fwnode: Pointer to the parent firmware node * @prev: Previous endpoint node or %NULL to get the first * * Looks up next endpoint ACPI firmware node below a given @fwnode. Returns * %NULL if there is no next endpoint or in case of error. In case of success * the next endpoint is returned. */ static struct fwnode_handle *acpi_graph_get_next_endpoint( const struct fwnode_handle *fwnode, struct fwnode_handle *prev) { struct fwnode_handle *port = NULL; struct fwnode_handle *endpoint; if (!prev) { do { port = fwnode_get_next_child_node(fwnode, port); /* * The names of the port nodes begin with "port@" * followed by the number of the port node and they also * have a "reg" property that also has the number of the * port node. For compatibility reasons a node is also * recognised as a port node from the "port" property. */ if (is_acpi_graph_node(port, "port")) break; } while (port); } else { port = fwnode_get_parent(prev); } if (!port) return NULL; endpoint = fwnode_get_next_child_node(port, prev); while (!endpoint) { port = fwnode_get_next_child_node(fwnode, port); if (!port) break; if (is_acpi_graph_node(port, "port")) endpoint = fwnode_get_next_child_node(port, NULL); } /* * The names of the endpoint nodes begin with "endpoint@" followed by * the number of the endpoint node and they also have a "reg" property * that also has the number of the endpoint node. For compatibility * reasons a node is also recognised as an endpoint node from the * "endpoint" property. */ if (!is_acpi_graph_node(endpoint, "endpoint")) return NULL; return endpoint; } /** * acpi_graph_get_child_prop_value - Return a child with a given property value * @fwnode: device fwnode * @prop_name: The name of the property to look for * @val: the desired property value * * Return the port node corresponding to a given port number. Returns * the child node on success, NULL otherwise. */ static struct fwnode_handle *acpi_graph_get_child_prop_value( const struct fwnode_handle *fwnode, const char *prop_name, unsigned int val) { struct fwnode_handle *child; fwnode_for_each_child_node(fwnode, child) { u32 nr; if (fwnode_property_read_u32(child, prop_name, &nr)) continue; if (val == nr) return child; } return NULL; } /** * acpi_graph_get_remote_endpoint - Parses and returns remote end of an endpoint * @__fwnode: Endpoint firmware node pointing to a remote device * * Returns the remote endpoint corresponding to @__fwnode. NULL on error. */ static struct fwnode_handle * acpi_graph_get_remote_endpoint(const struct fwnode_handle *__fwnode) { struct fwnode_handle *fwnode; unsigned int port_nr, endpoint_nr; struct fwnode_reference_args args; int ret; memset(&args, 0, sizeof(args)); ret = acpi_node_get_property_reference(__fwnode, "remote-endpoint", 0, &args); if (ret) return NULL; /* Direct endpoint reference? */ if (!is_acpi_device_node(args.fwnode)) return args.nargs ? NULL : args.fwnode; /* * Always require two arguments with the reference: port and * endpoint indices. */ if (args.nargs != 2) return NULL; fwnode = args.fwnode; port_nr = args.args[0]; endpoint_nr = args.args[1]; fwnode = acpi_graph_get_child_prop_value(fwnode, "port", port_nr); return acpi_graph_get_child_prop_value(fwnode, "endpoint", endpoint_nr); } static bool acpi_fwnode_device_is_available(const struct fwnode_handle *fwnode) { if (!is_acpi_device_node(fwnode)) return false; return acpi_device_is_present(to_acpi_device_node(fwnode)); } static const void * acpi_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, const struct device *dev) { return acpi_device_get_match_data(dev); } static bool acpi_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) { return acpi_dma_supported(to_acpi_device_node(fwnode)); } static enum dev_dma_attr acpi_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) { return acpi_get_dma_attr(to_acpi_device_node(fwnode)); } static bool acpi_fwnode_property_present(const struct fwnode_handle *fwnode, const char *propname) { return !acpi_node_prop_get(fwnode, propname, NULL); } static int acpi_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, const char *propname, unsigned int elem_size, void *val, size_t nval) { enum dev_prop_type type; switch (elem_size) { case sizeof(u8): type = DEV_PROP_U8; break; case sizeof(u16): type = DEV_PROP_U16; break; case sizeof(u32): type = DEV_PROP_U32; break; case sizeof(u64): type = DEV_PROP_U64; break; default: return -ENXIO; } return acpi_node_prop_read(fwnode, propname, type, val, nval); } static int acpi_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, const char *propname, const char **val, size_t nval) { return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING, val, nval); } static int acpi_fwnode_get_reference_args(const struct fwnode_handle *fwnode, const char *prop, const char *nargs_prop, unsigned int args_count, unsigned int index, struct fwnode_reference_args *args) { return __acpi_node_get_property_reference(fwnode, prop, index, args_count, args); } static const char *acpi_fwnode_get_name(const struct fwnode_handle *fwnode) { const struct acpi_device *adev; struct fwnode_handle *parent; /* Is this the root node? */ parent = fwnode_get_parent(fwnode); if (!parent) return "\\"; fwnode_handle_put(parent); if (is_acpi_data_node(fwnode)) { const struct acpi_data_node *dn = to_acpi_data_node(fwnode); return dn->name; } adev = to_acpi_device_node(fwnode); if (WARN_ON(!adev)) return NULL; return acpi_device_bid(adev); } static const char * acpi_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) { struct fwnode_handle *parent; /* Is this the root node? */ parent = fwnode_get_parent(fwnode); if (!parent) return ""; /* Is this 2nd node from the root? */ parent = fwnode_get_next_parent(parent); if (!parent) return ""; fwnode_handle_put(parent); /* ACPI device or data node. */ return "."; } static struct fwnode_handle * acpi_fwnode_get_parent(struct fwnode_handle *fwnode) { return acpi_node_get_parent(fwnode); } static int acpi_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, struct fwnode_endpoint *endpoint) { struct fwnode_handle *port_fwnode = fwnode_get_parent(fwnode); endpoint->local_fwnode = fwnode; if (fwnode_property_read_u32(port_fwnode, "reg", &endpoint->port)) fwnode_property_read_u32(port_fwnode, "port", &endpoint->port); if (fwnode_property_read_u32(fwnode, "reg", &endpoint->id)) fwnode_property_read_u32(fwnode, "endpoint", &endpoint->id); return 0; } static int acpi_fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index) { struct resource res; int ret; ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res); if (ret) return ret; return res.start; } #define DECLARE_ACPI_FWNODE_OPS(ops) \ const struct fwnode_operations ops = { \ .device_is_available = acpi_fwnode_device_is_available, \ .device_get_match_data = acpi_fwnode_device_get_match_data, \ .device_dma_supported = \ acpi_fwnode_device_dma_supported, \ .device_get_dma_attr = acpi_fwnode_device_get_dma_attr, \ .property_present = acpi_fwnode_property_present, \ .property_read_int_array = \ acpi_fwnode_property_read_int_array, \ .property_read_string_array = \ acpi_fwnode_property_read_string_array, \ .get_parent = acpi_node_get_parent, \ .get_next_child_node = acpi_get_next_subnode, \ .get_named_child_node = acpi_fwnode_get_named_child_node, \ .get_name = acpi_fwnode_get_name, \ .get_name_prefix = acpi_fwnode_get_name_prefix, \ .get_reference_args = acpi_fwnode_get_reference_args, \ .graph_get_next_endpoint = \ acpi_graph_get_next_endpoint, \ .graph_get_remote_endpoint = \ acpi_graph_get_remote_endpoint, \ .graph_get_port_parent = acpi_fwnode_get_parent, \ .graph_parse_endpoint = acpi_fwnode_graph_parse_endpoint, \ .irq_get = acpi_fwnode_irq_get, \ }; \ EXPORT_SYMBOL_GPL(ops) DECLARE_ACPI_FWNODE_OPS(acpi_device_fwnode_ops); DECLARE_ACPI_FWNODE_OPS(acpi_data_fwnode_ops); const struct fwnode_operations acpi_static_fwnode_ops; bool is_acpi_device_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_device_fwnode_ops; } EXPORT_SYMBOL(is_acpi_device_node); bool is_acpi_data_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_data_fwnode_ops; } EXPORT_SYMBOL(is_acpi_data_node);