/* * CCM: Counter with CBC-MAC * * (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include <crypto/internal/aead.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include "internal.h" struct ccm_instance_ctx { struct crypto_skcipher_spawn ctr; struct crypto_spawn cipher; }; struct crypto_ccm_ctx { struct crypto_cipher *cipher; struct crypto_ablkcipher *ctr; }; struct crypto_rfc4309_ctx { struct crypto_aead *child; u8 nonce[3]; }; struct crypto_ccm_req_priv_ctx { u8 odata[16]; u8 idata[16]; u8 auth_tag[16]; u32 ilen; u32 flags; struct scatterlist src[2]; struct scatterlist dst[2]; struct ablkcipher_request abreq; }; static inline struct crypto_ccm_req_priv_ctx *crypto_ccm_reqctx( struct aead_request *req) { unsigned long align = crypto_aead_alignmask(crypto_aead_reqtfm(req)); return (void *)PTR_ALIGN((u8 *)aead_request_ctx(req), align + 1); } static int set_msg_len(u8 *block, unsigned int msglen, int csize) { __be32 data; memset(block, 0, csize); block += csize; if (csize >= 4) csize = 4; else if (msglen > (1 << (8 * csize))) return -EOVERFLOW; data = cpu_to_be32(msglen); memcpy(block - csize, (u8 *)&data + 4 - csize, csize); return 0; } static int crypto_ccm_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead); struct crypto_ablkcipher *ctr = ctx->ctr; struct crypto_cipher *tfm = ctx->cipher; int err = 0; crypto_ablkcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK); crypto_ablkcipher_set_flags(ctr, crypto_aead_get_flags(aead) & CRYPTO_TFM_REQ_MASK); err = crypto_ablkcipher_setkey(ctr, key, keylen); crypto_aead_set_flags(aead, crypto_ablkcipher_get_flags(ctr) & CRYPTO_TFM_RES_MASK); if (err) goto out; crypto_cipher_clear_flags(tfm, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(tfm, crypto_aead_get_flags(aead) & CRYPTO_TFM_REQ_MASK); err = crypto_cipher_setkey(tfm, key, keylen); crypto_aead_set_flags(aead, crypto_cipher_get_flags(tfm) & CRYPTO_TFM_RES_MASK); out: return err; } static int crypto_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } return 0; } static int format_input(u8 *info, struct aead_request *req, unsigned int cryptlen) { struct crypto_aead *aead = crypto_aead_reqtfm(req); unsigned int lp = req->iv[0]; unsigned int l = lp + 1; unsigned int m; m = crypto_aead_authsize(aead); memcpy(info, req->iv, 16); /* format control info per RFC 3610 and * NIST Special Publication 800-38C */ *info |= (8 * ((m - 2) / 2)); if (req->assoclen) *info |= 64; return set_msg_len(info + 16 - l, cryptlen, l); } static int format_adata(u8 *adata, unsigned int a) { int len = 0; /* add control info for associated data * RFC 3610 and NIST Special Publication 800-38C */ if (a < 65280) { *(__be16 *)adata = cpu_to_be16(a); len = 2; } else { *(__be16 *)adata = cpu_to_be16(0xfffe); *(__be32 *)&adata[2] = cpu_to_be32(a); len = 6; } return len; } static void compute_mac(struct crypto_cipher *tfm, u8 *data, int n, struct crypto_ccm_req_priv_ctx *pctx) { unsigned int bs = 16; u8 *odata = pctx->odata; u8 *idata = pctx->idata; int datalen, getlen; datalen = n; /* first time in here, block may be partially filled. */ getlen = bs - pctx->ilen; if (datalen >= getlen) { memcpy(idata + pctx->ilen, data, getlen); crypto_xor(odata, idata, bs); crypto_cipher_encrypt_one(tfm, odata, odata); datalen -= getlen; data += getlen; pctx->ilen = 0; } /* now encrypt rest of data */ while (datalen >= bs) { crypto_xor(odata, data, bs); crypto_cipher_encrypt_one(tfm, odata, odata); datalen -= bs; data += bs; } /* check and see if there's leftover data that wasn't * enough to fill a block. */ if (datalen) { memcpy(idata + pctx->ilen, data, datalen); pctx->ilen += datalen; } } static void get_data_to_compute(struct crypto_cipher *tfm, struct crypto_ccm_req_priv_ctx *pctx, struct scatterlist *sg, unsigned int len) { struct scatter_walk walk; u8 *data_src; int n; scatterwalk_start(&walk, sg); while (len) { n = scatterwalk_clamp(&walk, len); if (!n) { scatterwalk_start(&walk, sg_next(walk.sg)); n = scatterwalk_clamp(&walk, len); } data_src = scatterwalk_map(&walk); compute_mac(tfm, data_src, n, pctx); len -= n; scatterwalk_unmap(data_src); scatterwalk_advance(&walk, n); scatterwalk_done(&walk, 0, len); if (len) crypto_yield(pctx->flags); } /* any leftover needs padding and then encrypted */ if (pctx->ilen) { int padlen; u8 *odata = pctx->odata; u8 *idata = pctx->idata; padlen = 16 - pctx->ilen; memset(idata + pctx->ilen, 0, padlen); crypto_xor(odata, idata, 16); crypto_cipher_encrypt_one(tfm, odata, odata); pctx->ilen = 0; } } static int crypto_ccm_auth(struct aead_request *req, struct scatterlist *plain, unsigned int cryptlen) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead); struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req); struct crypto_cipher *cipher = ctx->cipher; unsigned int assoclen = req->assoclen; u8 *odata = pctx->odata; u8 *idata = pctx->idata; int err; /* format control data for input */ err = format_input(odata, req, cryptlen); if (err) goto out; /* encrypt first block to use as start in computing mac */ crypto_cipher_encrypt_one(cipher, odata, odata); /* format associated data and compute into mac */ if (assoclen) { pctx->ilen = format_adata(idata, assoclen); get_data_to_compute(cipher, pctx, req->assoc, req->assoclen); } else { pctx->ilen = 0; } /* compute plaintext into mac */ get_data_to_compute(cipher, pctx, plain, cryptlen); out: return err; } static void crypto_ccm_encrypt_done(struct crypto_async_request *areq, int err) { struct aead_request *req = areq->data; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req); u8 *odata = pctx->odata; if (!err) scatterwalk_map_and_copy(odata, req->dst, req->cryptlen, crypto_aead_authsize(aead), 1); aead_request_complete(req, err); } static inline int crypto_ccm_check_iv(const u8 *iv) { /* 2 <= L <= 8, so 1 <= L' <= 7. */ if (1 > iv[0] || iv[0] > 7) return -EINVAL; return 0; } static int crypto_ccm_encrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead); struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req); struct ablkcipher_request *abreq = &pctx->abreq; struct scatterlist *dst; unsigned int cryptlen = req->cryptlen; u8 *odata = pctx->odata; u8 *iv = req->iv; int err; err = crypto_ccm_check_iv(iv); if (err) return err; pctx->flags = aead_request_flags(req); err = crypto_ccm_auth(req, req->src, cryptlen); if (err) return err; /* Note: rfc 3610 and NIST 800-38C require counter of * zero to encrypt auth tag. */ memset(iv + 15 - iv[0], 0, iv[0] + 1); sg_init_table(pctx->src, 2); sg_set_buf(pctx->src, odata, 16); scatterwalk_sg_chain(pctx->src, 2, req->src); dst = pctx->src; if (req->src != req->dst) { sg_init_table(pctx->dst, 2); sg_set_buf(pctx->dst, odata, 16); scatterwalk_sg_chain(pctx->dst, 2, req->dst); dst = pctx->dst; } ablkcipher_request_set_tfm(abreq, ctx->ctr); ablkcipher_request_set_callback(abreq, pctx->flags, crypto_ccm_encrypt_done, req); ablkcipher_request_set_crypt(abreq, pctx->src, dst, cryptlen + 16, iv); err = crypto_ablkcipher_encrypt(abreq); if (err) return err; /* copy authtag to end of dst */ scatterwalk_map_and_copy(odata, req->dst, cryptlen, crypto_aead_authsize(aead), 1); return err; } static void crypto_ccm_decrypt_done(struct crypto_async_request *areq, int err) { struct aead_request *req = areq->data; struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req); struct crypto_aead *aead = crypto_aead_reqtfm(req); unsigned int authsize = crypto_aead_authsize(aead); unsigned int cryptlen = req->cryptlen - authsize; if (!err) { err = crypto_ccm_auth(req, req->dst, cryptlen); if (!err && memcmp(pctx->auth_tag, pctx->odata, authsize)) err = -EBADMSG; } aead_request_complete(req, err); } static int crypto_ccm_decrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_ccm_ctx *ctx = crypto_aead_ctx(aead); struct crypto_ccm_req_priv_ctx *pctx = crypto_ccm_reqctx(req); struct ablkcipher_request *abreq = &pctx->abreq; struct scatterlist *dst; unsigned int authsize = crypto_aead_authsize(aead); unsigned int cryptlen = req->cryptlen; u8 *authtag = pctx->auth_tag; u8 *odata = pctx->odata; u8 *iv = req->iv; int err; if (cryptlen < authsize) return -EINVAL; cryptlen -= authsize; err = crypto_ccm_check_iv(iv); if (err) return err; pctx->flags = aead_request_flags(req); scatterwalk_map_and_copy(authtag, req->src, cryptlen, authsize, 0); memset(iv + 15 - iv[0], 0, iv[0] + 1); sg_init_table(pctx->src, 2); sg_set_buf(pctx->src, authtag, 16); scatterwalk_sg_chain(pctx->src, 2, req->src); dst = pctx->src; if (req->src != req->dst) { sg_init_table(pctx->dst, 2); sg_set_buf(pctx->dst, authtag, 16); scatterwalk_sg_chain(pctx->dst, 2, req->dst); dst = pctx->dst; } ablkcipher_request_set_tfm(abreq, ctx->ctr); ablkcipher_request_set_callback(abreq, pctx->flags, crypto_ccm_decrypt_done, req); ablkcipher_request_set_crypt(abreq, pctx->src, dst, cryptlen + 16, iv); err = crypto_ablkcipher_decrypt(abreq); if (err) return err; err = crypto_ccm_auth(req, req->dst, cryptlen); if (err) return err; /* verify */ if (memcmp(authtag, odata, authsize)) return -EBADMSG; return err; } static int crypto_ccm_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = (void *)tfm->__crt_alg; struct ccm_instance_ctx *ictx = crypto_instance_ctx(inst); struct crypto_ccm_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_cipher *cipher; struct crypto_ablkcipher *ctr; unsigned long align; int err; cipher = crypto_spawn_cipher(&ictx->cipher); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctr = crypto_spawn_skcipher(&ictx->ctr); err = PTR_ERR(ctr); if (IS_ERR(ctr)) goto err_free_cipher; ctx->cipher = cipher; ctx->ctr = ctr; align = crypto_tfm_alg_alignmask(tfm); align &= ~(crypto_tfm_ctx_alignment() - 1); tfm->crt_aead.reqsize = align + sizeof(struct crypto_ccm_req_priv_ctx) + crypto_ablkcipher_reqsize(ctr); return 0; err_free_cipher: crypto_free_cipher(cipher); return err; } static void crypto_ccm_exit_tfm(struct crypto_tfm *tfm) { struct crypto_ccm_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_cipher(ctx->cipher); crypto_free_ablkcipher(ctx->ctr); } static struct crypto_instance *crypto_ccm_alloc_common(struct rtattr **tb, const char *full_name, const char *ctr_name, const char *cipher_name) { struct crypto_attr_type *algt; struct crypto_instance *inst; struct crypto_alg *ctr; struct crypto_alg *cipher; struct ccm_instance_ctx *ictx; int err; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return ERR_CAST(algt); if ((algt->type ^ CRYPTO_ALG_TYPE_AEAD) & algt->mask) return ERR_PTR(-EINVAL); cipher = crypto_alg_mod_lookup(cipher_name, CRYPTO_ALG_TYPE_CIPHER, CRYPTO_ALG_TYPE_MASK); if (IS_ERR(cipher)) return ERR_CAST(cipher); err = -EINVAL; if (cipher->cra_blocksize != 16) goto out_put_cipher; inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); err = -ENOMEM; if (!inst) goto out_put_cipher; ictx = crypto_instance_ctx(inst); err = crypto_init_spawn(&ictx->cipher, cipher, inst, CRYPTO_ALG_TYPE_MASK); if (err) goto err_free_inst; crypto_set_skcipher_spawn(&ictx->ctr, inst); err = crypto_grab_skcipher(&ictx->ctr, ctr_name, 0, crypto_requires_sync(algt->type, algt->mask)); if (err) goto err_drop_cipher; ctr = crypto_skcipher_spawn_alg(&ictx->ctr); /* Not a stream cipher? */ err = -EINVAL; if (ctr->cra_blocksize != 1) goto err_drop_ctr; /* We want the real thing! */ if (ctr->cra_ablkcipher.ivsize != 16) goto err_drop_ctr; err = -ENAMETOOLONG; if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "ccm_base(%s,%s)", ctr->cra_driver_name, cipher->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto err_drop_ctr; memcpy(inst->alg.cra_name, full_name, CRYPTO_MAX_ALG_NAME); inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD; inst->alg.cra_flags |= ctr->cra_flags & CRYPTO_ALG_ASYNC; inst->alg.cra_priority = cipher->cra_priority + ctr->cra_priority; inst->alg.cra_blocksize = 1; inst->alg.cra_alignmask = cipher->cra_alignmask | ctr->cra_alignmask | (__alignof__(u32) - 1); inst->alg.cra_type = &crypto_aead_type; inst->alg.cra_aead.ivsize = 16; inst->alg.cra_aead.maxauthsize = 16; inst->alg.cra_ctxsize = sizeof(struct crypto_ccm_ctx); inst->alg.cra_init = crypto_ccm_init_tfm; inst->alg.cra_exit = crypto_ccm_exit_tfm; inst->alg.cra_aead.setkey = crypto_ccm_setkey; inst->alg.cra_aead.setauthsize = crypto_ccm_setauthsize; inst->alg.cra_aead.encrypt = crypto_ccm_encrypt; inst->alg.cra_aead.decrypt = crypto_ccm_decrypt; out: crypto_mod_put(cipher); return inst; err_drop_ctr: crypto_drop_skcipher(&ictx->ctr); err_drop_cipher: crypto_drop_spawn(&ictx->cipher); err_free_inst: kfree(inst); out_put_cipher: inst = ERR_PTR(err); goto out; } static struct crypto_instance *crypto_ccm_alloc(struct rtattr **tb) { const char *cipher_name; char ctr_name[CRYPTO_MAX_ALG_NAME]; char full_name[CRYPTO_MAX_ALG_NAME]; cipher_name = crypto_attr_alg_name(tb[1]); if (IS_ERR(cipher_name)) return ERR_CAST(cipher_name); if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)", cipher_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-ENAMETOOLONG); if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "ccm(%s)", cipher_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-ENAMETOOLONG); return crypto_ccm_alloc_common(tb, full_name, ctr_name, cipher_name); } static void crypto_ccm_free(struct crypto_instance *inst) { struct ccm_instance_ctx *ctx = crypto_instance_ctx(inst); crypto_drop_spawn(&ctx->cipher); crypto_drop_skcipher(&ctx->ctr); kfree(inst); } static struct crypto_template crypto_ccm_tmpl = { .name = "ccm", .alloc = crypto_ccm_alloc, .free = crypto_ccm_free, .module = THIS_MODULE, }; static struct crypto_instance *crypto_ccm_base_alloc(struct rtattr **tb) { const char *ctr_name; const char *cipher_name; char full_name[CRYPTO_MAX_ALG_NAME]; ctr_name = crypto_attr_alg_name(tb[1]); if (IS_ERR(ctr_name)) return ERR_CAST(ctr_name); cipher_name = crypto_attr_alg_name(tb[2]); if (IS_ERR(cipher_name)) return ERR_CAST(cipher_name); if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "ccm_base(%s,%s)", ctr_name, cipher_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-ENAMETOOLONG); return crypto_ccm_alloc_common(tb, full_name, ctr_name, cipher_name); } static struct crypto_template crypto_ccm_base_tmpl = { .name = "ccm_base", .alloc = crypto_ccm_base_alloc, .free = crypto_ccm_free, .module = THIS_MODULE, }; static int crypto_rfc4309_setkey(struct crypto_aead *parent, const u8 *key, unsigned int keylen) { struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(parent); struct crypto_aead *child = ctx->child; int err; if (keylen < 3) return -EINVAL; keylen -= 3; memcpy(ctx->nonce, key + keylen, 3); crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_aead_set_flags(child, crypto_aead_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_aead_setkey(child, key, keylen); crypto_aead_set_flags(parent, crypto_aead_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } static int crypto_rfc4309_setauthsize(struct crypto_aead *parent, unsigned int authsize) { struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(parent); switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return crypto_aead_setauthsize(ctx->child, authsize); } static struct aead_request *crypto_rfc4309_crypt(struct aead_request *req) { struct aead_request *subreq = aead_request_ctx(req); struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_rfc4309_ctx *ctx = crypto_aead_ctx(aead); struct crypto_aead *child = ctx->child; u8 *iv = PTR_ALIGN((u8 *)(subreq + 1) + crypto_aead_reqsize(child), crypto_aead_alignmask(child) + 1); /* L' */ iv[0] = 3; memcpy(iv + 1, ctx->nonce, 3); memcpy(iv + 4, req->iv, 8); aead_request_set_tfm(subreq, child); aead_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, iv); aead_request_set_assoc(subreq, req->assoc, req->assoclen); return subreq; } static int crypto_rfc4309_encrypt(struct aead_request *req) { req = crypto_rfc4309_crypt(req); return crypto_aead_encrypt(req); } static int crypto_rfc4309_decrypt(struct aead_request *req) { req = crypto_rfc4309_crypt(req); return crypto_aead_decrypt(req); } static int crypto_rfc4309_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = (void *)tfm->__crt_alg; struct crypto_aead_spawn *spawn = crypto_instance_ctx(inst); struct crypto_rfc4309_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_aead *aead; unsigned long align; aead = crypto_spawn_aead(spawn); if (IS_ERR(aead)) return PTR_ERR(aead); ctx->child = aead; align = crypto_aead_alignmask(aead); align &= ~(crypto_tfm_ctx_alignment() - 1); tfm->crt_aead.reqsize = sizeof(struct aead_request) + ALIGN(crypto_aead_reqsize(aead), crypto_tfm_ctx_alignment()) + align + 16; return 0; } static void crypto_rfc4309_exit_tfm(struct crypto_tfm *tfm) { struct crypto_rfc4309_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_aead(ctx->child); } static struct crypto_instance *crypto_rfc4309_alloc(struct rtattr **tb) { struct crypto_attr_type *algt; struct crypto_instance *inst; struct crypto_aead_spawn *spawn; struct crypto_alg *alg; const char *ccm_name; int err; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return ERR_CAST(algt); if ((algt->type ^ CRYPTO_ALG_TYPE_AEAD) & algt->mask) return ERR_PTR(-EINVAL); ccm_name = crypto_attr_alg_name(tb[1]); if (IS_ERR(ccm_name)) return ERR_CAST(ccm_name); inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); if (!inst) return ERR_PTR(-ENOMEM); spawn = crypto_instance_ctx(inst); crypto_set_aead_spawn(spawn, inst); err = crypto_grab_aead(spawn, ccm_name, 0, crypto_requires_sync(algt->type, algt->mask)); if (err) goto out_free_inst; alg = crypto_aead_spawn_alg(spawn); err = -EINVAL; /* We only support 16-byte blocks. */ if (alg->cra_aead.ivsize != 16) goto out_drop_alg; /* Not a stream cipher? */ if (alg->cra_blocksize != 1) goto out_drop_alg; err = -ENAMETOOLONG; if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, "rfc4309(%s)", alg->cra_name) >= CRYPTO_MAX_ALG_NAME || snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "rfc4309(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) goto out_drop_alg; inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD; inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC; inst->alg.cra_priority = alg->cra_priority; inst->alg.cra_blocksize = 1; inst->alg.cra_alignmask = alg->cra_alignmask; inst->alg.cra_type = &crypto_nivaead_type; inst->alg.cra_aead.ivsize = 8; inst->alg.cra_aead.maxauthsize = 16; inst->alg.cra_ctxsize = sizeof(struct crypto_rfc4309_ctx); inst->alg.cra_init = crypto_rfc4309_init_tfm; inst->alg.cra_exit = crypto_rfc4309_exit_tfm; inst->alg.cra_aead.setkey = crypto_rfc4309_setkey; inst->alg.cra_aead.setauthsize = crypto_rfc4309_setauthsize; inst->alg.cra_aead.encrypt = crypto_rfc4309_encrypt; inst->alg.cra_aead.decrypt = crypto_rfc4309_decrypt; inst->alg.cra_aead.geniv = "seqiv"; out: return inst; out_drop_alg: crypto_drop_aead(spawn); out_free_inst: kfree(inst); inst = ERR_PTR(err); goto out; } static void crypto_rfc4309_free(struct crypto_instance *inst) { crypto_drop_spawn(crypto_instance_ctx(inst)); kfree(inst); } static struct crypto_template crypto_rfc4309_tmpl = { .name = "rfc4309", .alloc = crypto_rfc4309_alloc, .free = crypto_rfc4309_free, .module = THIS_MODULE, }; static int __init crypto_ccm_module_init(void) { int err; err = crypto_register_template(&crypto_ccm_base_tmpl); if (err) goto out; err = crypto_register_template(&crypto_ccm_tmpl); if (err) goto out_undo_base; err = crypto_register_template(&crypto_rfc4309_tmpl); if (err) goto out_undo_ccm; out: return err; out_undo_ccm: crypto_unregister_template(&crypto_ccm_tmpl); out_undo_base: crypto_unregister_template(&crypto_ccm_base_tmpl); goto out; } static void __exit crypto_ccm_module_exit(void) { crypto_unregister_template(&crypto_rfc4309_tmpl); crypto_unregister_template(&crypto_ccm_tmpl); crypto_unregister_template(&crypto_ccm_base_tmpl); } module_init(crypto_ccm_module_init); module_exit(crypto_ccm_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Counter with CBC MAC"); MODULE_ALIAS("ccm_base"); MODULE_ALIAS("rfc4309");