// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine -- Performance Monitoring Unit support * * Copyright 2015 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Gleb Natapov * Wei Huang */ #include #include #include #include #include "x86.h" #include "cpuid.h" #include "lapic.h" #include "pmu.h" /* This is enough to filter the vast majority of currently defined events. */ #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 /* NOTE: * - Each perf counter is defined as "struct kvm_pmc"; * - There are two types of perf counters: general purpose (gp) and fixed. * gp counters are stored in gp_counters[] and fixed counters are stored * in fixed_counters[] respectively. Both of them are part of "struct * kvm_pmu"; * - pmu.c understands the difference between gp counters and fixed counters. * However AMD doesn't support fixed-counters; * - There are three types of index to access perf counters (PMC): * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD * has MSR_K7_PERFCTRn. * 2. MSR Index (named idx): This normally is used by RDPMC instruction. * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except * that it also supports fixed counters. idx can be used to as index to * gp and fixed counters. * 3. Global PMC Index (named pmc): pmc is an index specific to PMU * code. Each pmc, stored in kvm_pmc.idx field, is unique across * all perf counters (both gp and fixed). The mapping relationship * between pmc and perf counters is as the following: * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters */ static void kvm_pmi_trigger_fn(struct irq_work *irq_work) { struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); kvm_pmu_deliver_pmi(vcpu); } static void kvm_perf_overflow(struct perf_event *perf_event, struct perf_sample_data *data, struct pt_regs *regs) { struct kvm_pmc *pmc = perf_event->overflow_handler_context; struct kvm_pmu *pmu = pmc_to_pmu(pmc); if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) { __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); kvm_make_request(KVM_REQ_PMU, pmc->vcpu); } } static void kvm_perf_overflow_intr(struct perf_event *perf_event, struct perf_sample_data *data, struct pt_regs *regs) { struct kvm_pmc *pmc = perf_event->overflow_handler_context; struct kvm_pmu *pmu = pmc_to_pmu(pmc); if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) { __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); kvm_make_request(KVM_REQ_PMU, pmc->vcpu); /* * Inject PMI. If vcpu was in a guest mode during NMI PMI * can be ejected on a guest mode re-entry. Otherwise we can't * be sure that vcpu wasn't executing hlt instruction at the * time of vmexit and is not going to re-enter guest mode until * woken up. So we should wake it, but this is impossible from * NMI context. Do it from irq work instead. */ if (!kvm_handling_nmi_from_guest(pmc->vcpu)) irq_work_queue(&pmc_to_pmu(pmc)->irq_work); else kvm_make_request(KVM_REQ_PMI, pmc->vcpu); } } static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, unsigned config, bool exclude_user, bool exclude_kernel, bool intr, bool in_tx, bool in_tx_cp) { struct perf_event *event; struct perf_event_attr attr = { .type = type, .size = sizeof(attr), .pinned = true, .exclude_idle = true, .exclude_host = 1, .exclude_user = exclude_user, .exclude_kernel = exclude_kernel, .config = config, }; attr.sample_period = get_sample_period(pmc, pmc->counter); if (in_tx) attr.config |= HSW_IN_TX; if (in_tx_cp) { /* * HSW_IN_TX_CHECKPOINTED is not supported with nonzero * period. Just clear the sample period so at least * allocating the counter doesn't fail. */ attr.sample_period = 0; attr.config |= HSW_IN_TX_CHECKPOINTED; } event = perf_event_create_kernel_counter(&attr, -1, current, intr ? kvm_perf_overflow_intr : kvm_perf_overflow, pmc); if (IS_ERR(event)) { pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", PTR_ERR(event), pmc->idx); return; } pmc->perf_event = event; pmc_to_pmu(pmc)->event_count++; clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi); pmc->is_paused = false; } static void pmc_pause_counter(struct kvm_pmc *pmc) { u64 counter = pmc->counter; if (!pmc->perf_event || pmc->is_paused) return; /* update counter, reset event value to avoid redundant accumulation */ counter += perf_event_pause(pmc->perf_event, true); pmc->counter = counter & pmc_bitmask(pmc); pmc->is_paused = true; } static bool pmc_resume_counter(struct kvm_pmc *pmc) { if (!pmc->perf_event) return false; /* recalibrate sample period and check if it's accepted by perf core */ if (perf_event_period(pmc->perf_event, get_sample_period(pmc, pmc->counter))) return false; /* reuse perf_event to serve as pmc_reprogram_counter() does*/ perf_event_enable(pmc->perf_event); pmc->is_paused = false; clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); return true; } void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel) { unsigned config, type = PERF_TYPE_RAW; u8 event_select, unit_mask; struct kvm *kvm = pmc->vcpu->kvm; struct kvm_pmu_event_filter *filter; int i; bool allow_event = true; if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) printk_once("kvm pmu: pin control bit is ignored\n"); pmc->eventsel = eventsel; pmc_pause_counter(pmc); if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc)) return; filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); if (filter) { for (i = 0; i < filter->nevents; i++) if (filter->events[i] == (eventsel & AMD64_RAW_EVENT_MASK_NB)) break; if (filter->action == KVM_PMU_EVENT_ALLOW && i == filter->nevents) allow_event = false; if (filter->action == KVM_PMU_EVENT_DENY && i < filter->nevents) allow_event = false; } if (!allow_event) return; event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT; unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE | ARCH_PERFMON_EVENTSEL_INV | ARCH_PERFMON_EVENTSEL_CMASK | HSW_IN_TX | HSW_IN_TX_CHECKPOINTED))) { config = kvm_x86_ops.pmu_ops->find_arch_event(pmc_to_pmu(pmc), event_select, unit_mask); if (config != PERF_COUNT_HW_MAX) type = PERF_TYPE_HARDWARE; } if (type == PERF_TYPE_RAW) config = eventsel & X86_RAW_EVENT_MASK; if (pmc->current_config == eventsel && pmc_resume_counter(pmc)) return; pmc_release_perf_event(pmc); pmc->current_config = eventsel; pmc_reprogram_counter(pmc, type, config, !(eventsel & ARCH_PERFMON_EVENTSEL_USR), !(eventsel & ARCH_PERFMON_EVENTSEL_OS), eventsel & ARCH_PERFMON_EVENTSEL_INT, (eventsel & HSW_IN_TX), (eventsel & HSW_IN_TX_CHECKPOINTED)); } EXPORT_SYMBOL_GPL(reprogram_gp_counter); void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx) { unsigned en_field = ctrl & 0x3; bool pmi = ctrl & 0x8; struct kvm_pmu_event_filter *filter; struct kvm *kvm = pmc->vcpu->kvm; pmc_pause_counter(pmc); if (!en_field || !pmc_is_enabled(pmc)) return; filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); if (filter) { if (filter->action == KVM_PMU_EVENT_DENY && test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) return; if (filter->action == KVM_PMU_EVENT_ALLOW && !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) return; } if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc)) return; pmc_release_perf_event(pmc); pmc->current_config = (u64)ctrl; pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE, kvm_x86_ops.pmu_ops->find_fixed_event(idx), !(en_field & 0x2), /* exclude user */ !(en_field & 0x1), /* exclude kernel */ pmi, false, false); } EXPORT_SYMBOL_GPL(reprogram_fixed_counter); void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx) { struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx); if (!pmc) return; if (pmc_is_gp(pmc)) reprogram_gp_counter(pmc, pmc->eventsel); else { int idx = pmc_idx - INTEL_PMC_IDX_FIXED; u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx); reprogram_fixed_counter(pmc, ctrl, idx); } } EXPORT_SYMBOL_GPL(reprogram_counter); void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); int bit; for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit); if (unlikely(!pmc || !pmc->perf_event)) { clear_bit(bit, pmu->reprogram_pmi); continue; } reprogram_counter(pmu, bit); } /* * Unused perf_events are only released if the corresponding MSRs * weren't accessed during the last vCPU time slice. kvm_arch_sched_in * triggers KVM_REQ_PMU if cleanup is needed. */ if (unlikely(pmu->need_cleanup)) kvm_pmu_cleanup(vcpu); } /* check if idx is a valid index to access PMU */ bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) { return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx); } bool is_vmware_backdoor_pmc(u32 pmc_idx) { switch (pmc_idx) { case VMWARE_BACKDOOR_PMC_HOST_TSC: case VMWARE_BACKDOOR_PMC_REAL_TIME: case VMWARE_BACKDOOR_PMC_APPARENT_TIME: return true; } return false; } static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) { u64 ctr_val; switch (idx) { case VMWARE_BACKDOOR_PMC_HOST_TSC: ctr_val = rdtsc(); break; case VMWARE_BACKDOOR_PMC_REAL_TIME: ctr_val = ktime_get_boottime_ns(); break; case VMWARE_BACKDOOR_PMC_APPARENT_TIME: ctr_val = ktime_get_boottime_ns() + vcpu->kvm->arch.kvmclock_offset; break; default: return 1; } *data = ctr_val; return 0; } int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) { bool fast_mode = idx & (1u << 31); struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct kvm_pmc *pmc; u64 mask = fast_mode ? ~0u : ~0ull; if (!pmu->version) return 1; if (is_vmware_backdoor_pmc(idx)) return kvm_pmu_rdpmc_vmware(vcpu, idx, data); pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask); if (!pmc) return 1; if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) && (static_call(kvm_x86_get_cpl)(vcpu) != 0) && (kvm_read_cr0(vcpu) & X86_CR0_PE)) return 1; *data = pmc_read_counter(pmc) & mask; return 0; } void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) { if (lapic_in_kernel(vcpu)) { if (kvm_x86_ops.pmu_ops->deliver_pmi) kvm_x86_ops.pmu_ops->deliver_pmi(vcpu); kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); } } bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) { return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) || kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr); } static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr); if (pmc) __set_bit(pmc->idx, pmu->pmc_in_use); } int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info); } int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info); } /* refresh PMU settings. This function generally is called when underlying * settings are changed (such as changes of PMU CPUID by guest VMs), which * should rarely happen. */ void kvm_pmu_refresh(struct kvm_vcpu *vcpu) { kvm_x86_ops.pmu_ops->refresh(vcpu); } void kvm_pmu_reset(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); irq_work_sync(&pmu->irq_work); kvm_x86_ops.pmu_ops->reset(vcpu); } void kvm_pmu_init(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); memset(pmu, 0, sizeof(*pmu)); kvm_x86_ops.pmu_ops->init(vcpu); init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); pmu->event_count = 0; pmu->need_cleanup = false; kvm_pmu_refresh(vcpu); } static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc) { struct kvm_pmu *pmu = pmc_to_pmu(pmc); if (pmc_is_fixed(pmc)) return fixed_ctrl_field(pmu->fixed_ctr_ctrl, pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3; return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE; } /* Release perf_events for vPMCs that have been unused for a full time slice. */ void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct kvm_pmc *pmc = NULL; DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); int i; pmu->need_cleanup = false; bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, pmu->pmc_in_use, X86_PMC_IDX_MAX); for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i); if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) pmc_stop_counter(pmc); } if (kvm_x86_ops.pmu_ops->cleanup) kvm_x86_ops.pmu_ops->cleanup(vcpu); bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); } void kvm_pmu_destroy(struct kvm_vcpu *vcpu) { kvm_pmu_reset(vcpu); } int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) { struct kvm_pmu_event_filter tmp, *filter; size_t size; int r; if (copy_from_user(&tmp, argp, sizeof(tmp))) return -EFAULT; if (tmp.action != KVM_PMU_EVENT_ALLOW && tmp.action != KVM_PMU_EVENT_DENY) return -EINVAL; if (tmp.flags != 0) return -EINVAL; if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) return -E2BIG; size = struct_size(filter, events, tmp.nevents); filter = kmalloc(size, GFP_KERNEL_ACCOUNT); if (!filter) return -ENOMEM; r = -EFAULT; if (copy_from_user(filter, argp, size)) goto cleanup; /* Ensure nevents can't be changed between the user copies. */ *filter = tmp; mutex_lock(&kvm->lock); filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, mutex_is_locked(&kvm->lock)); mutex_unlock(&kvm->lock); synchronize_srcu_expedited(&kvm->srcu); r = 0; cleanup: kfree(filter); return r; }