/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * MMU support * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Yaniv Kamay * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ /* * We need the mmu code to access both 32-bit and 64-bit guest ptes, * so the code in this file is compiled twice, once per pte size. */ /* * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro * uses for EPT without A/D paging type. */ extern u64 __pure __using_nonexistent_pte_bit(void) __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT"); #if PTTYPE == 64 #define pt_element_t u64 #define guest_walker guest_walker64 #define FNAME(name) paging##64_##name #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) #define PT_INDEX(addr, level) PT64_INDEX(addr, level) #define PT_LEVEL_BITS PT64_LEVEL_BITS #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT #ifdef CONFIG_X86_64 #define PT_MAX_FULL_LEVELS 4 #define CMPXCHG cmpxchg #else #define CMPXCHG cmpxchg64 #define PT_MAX_FULL_LEVELS 2 #endif #elif PTTYPE == 32 #define pt_element_t u32 #define guest_walker guest_walker32 #define FNAME(name) paging##32_##name #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) #define PT_INDEX(addr, level) PT32_INDEX(addr, level) #define PT_LEVEL_BITS PT32_LEVEL_BITS #define PT_MAX_FULL_LEVELS 2 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT #define CMPXCHG cmpxchg #elif PTTYPE == PTTYPE_EPT #define pt_element_t u64 #define guest_walker guest_walkerEPT #define FNAME(name) ept_##name #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) #define PT_INDEX(addr, level) PT64_INDEX(addr, level) #define PT_LEVEL_BITS PT64_LEVEL_BITS #define PT_GUEST_ACCESSED_MASK 0 #define PT_GUEST_DIRTY_MASK 0 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit() #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit() #define CMPXCHG cmpxchg64 #define PT_MAX_FULL_LEVELS 4 #else #error Invalid PTTYPE value #endif #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) /* * The guest_walker structure emulates the behavior of the hardware page * table walker. */ struct guest_walker { int level; unsigned max_level; gfn_t table_gfn[PT_MAX_FULL_LEVELS]; pt_element_t ptes[PT_MAX_FULL_LEVELS]; pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; bool pte_writable[PT_MAX_FULL_LEVELS]; unsigned pt_access; unsigned pte_access; gfn_t gfn; struct x86_exception fault; }; static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) { return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; } static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte) { unsigned mask; /* dirty bit is not supported, so no need to track it */ if (!PT_GUEST_DIRTY_MASK) return; BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); mask = (unsigned)~ACC_WRITE_MASK; /* Allow write access to dirty gptes */ mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK; *access &= mask; } static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) { int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f; return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) | ((mmu->bad_mt_xwr & (1ull << low6)) != 0); } static inline int FNAME(is_present_gpte)(unsigned long pte) { #if PTTYPE != PTTYPE_EPT return is_present_gpte(pte); #else return pte & 7; #endif } static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, pt_element_t __user *ptep_user, unsigned index, pt_element_t orig_pte, pt_element_t new_pte) { int npages; pt_element_t ret; pt_element_t *table; struct page *page; npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page); /* Check if the user is doing something meaningless. */ if (unlikely(npages != 1)) return -EFAULT; table = kmap_atomic(page); ret = CMPXCHG(&table[index], orig_pte, new_pte); kunmap_atomic(table); kvm_release_page_dirty(page); return (ret != orig_pte); } static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, u64 gpte) { if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) goto no_present; if (!FNAME(is_present_gpte)(gpte)) goto no_present; /* if accessed bit is not supported prefetch non accessed gpte */ if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK)) goto no_present; return false; no_present: drop_spte(vcpu->kvm, spte); return true; } static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte) { unsigned access; #if PTTYPE == PTTYPE_EPT access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | ACC_USER_MASK; #else access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK; access &= ~(gpte >> PT64_NX_SHIFT); #endif return access; } static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, struct guest_walker *walker, int write_fault) { unsigned level, index; pt_element_t pte, orig_pte; pt_element_t __user *ptep_user; gfn_t table_gfn; int ret; /* dirty/accessed bits are not supported, so no need to update them */ if (!PT_GUEST_DIRTY_MASK) return 0; for (level = walker->max_level; level >= walker->level; --level) { pte = orig_pte = walker->ptes[level - 1]; table_gfn = walker->table_gfn[level - 1]; ptep_user = walker->ptep_user[level - 1]; index = offset_in_page(ptep_user) / sizeof(pt_element_t); if (!(pte & PT_GUEST_ACCESSED_MASK)) { trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); pte |= PT_GUEST_ACCESSED_MASK; } if (level == walker->level && write_fault && !(pte & PT_GUEST_DIRTY_MASK)) { trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); pte |= PT_GUEST_DIRTY_MASK; } if (pte == orig_pte) continue; /* * If the slot is read-only, simply do not process the accessed * and dirty bits. This is the correct thing to do if the slot * is ROM, and page tables in read-as-ROM/write-as-MMIO slots * are only supported if the accessed and dirty bits are already * set in the ROM (so that MMIO writes are never needed). * * Note that NPT does not allow this at all and faults, since * it always wants nested page table entries for the guest * page tables to be writable. And EPT works but will simply * overwrite the read-only memory to set the accessed and dirty * bits. */ if (unlikely(!walker->pte_writable[level - 1])) continue; ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); if (ret) return ret; mark_page_dirty(vcpu->kvm, table_gfn); walker->ptes[level] = pte; } return 0; } /* * Fetch a guest pte for a guest virtual address */ static int FNAME(walk_addr_generic)(struct guest_walker *walker, struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gva_t addr, u32 access) { int ret; pt_element_t pte; pt_element_t __user *uninitialized_var(ptep_user); gfn_t table_gfn; unsigned index, pt_access, pte_access, accessed_dirty; gpa_t pte_gpa; int offset; const int write_fault = access & PFERR_WRITE_MASK; const int user_fault = access & PFERR_USER_MASK; const int fetch_fault = access & PFERR_FETCH_MASK; u16 errcode = 0; gpa_t real_gpa; gfn_t gfn; trace_kvm_mmu_pagetable_walk(addr, access); retry_walk: walker->level = mmu->root_level; pte = mmu->get_cr3(vcpu); #if PTTYPE == 64 if (walker->level == PT32E_ROOT_LEVEL) { pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); trace_kvm_mmu_paging_element(pte, walker->level); if (!FNAME(is_present_gpte)(pte)) goto error; --walker->level; } #endif walker->max_level = walker->level; ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0); accessed_dirty = PT_GUEST_ACCESSED_MASK; pt_access = pte_access = ACC_ALL; ++walker->level; do { gfn_t real_gfn; unsigned long host_addr; pt_access &= pte_access; --walker->level; index = PT_INDEX(addr, walker->level); table_gfn = gpte_to_gfn(pte); offset = index * sizeof(pt_element_t); pte_gpa = gfn_to_gpa(table_gfn) + offset; walker->table_gfn[walker->level - 1] = table_gfn; walker->pte_gpa[walker->level - 1] = pte_gpa; real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), PFERR_USER_MASK|PFERR_WRITE_MASK); /* * FIXME: This can happen if emulation (for of an INS/OUTS * instruction) triggers a nested page fault. The exit * qualification / exit info field will incorrectly have * "guest page access" as the nested page fault's cause, * instead of "guest page structure access". To fix this, * the x86_exception struct should be augmented with enough * information to fix the exit_qualification or exit_info_1 * fields. */ if (unlikely(real_gfn == UNMAPPED_GVA)) goto error; real_gfn = gpa_to_gfn(real_gfn); host_addr = gfn_to_hva_prot(vcpu->kvm, real_gfn, &walker->pte_writable[walker->level - 1]); if (unlikely(kvm_is_error_hva(host_addr))) goto error; ptep_user = (pt_element_t __user *)((void *)host_addr + offset); if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) goto error; walker->ptep_user[walker->level - 1] = ptep_user; trace_kvm_mmu_paging_element(pte, walker->level); if (unlikely(!FNAME(is_present_gpte)(pte))) goto error; if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK; goto error; } accessed_dirty &= pte; pte_access = pt_access & FNAME(gpte_access)(vcpu, pte); walker->ptes[walker->level - 1] = pte; } while (!is_last_gpte(mmu, walker->level, pte)); if (unlikely(permission_fault(vcpu, mmu, pte_access, access))) { errcode |= PFERR_PRESENT_MASK; goto error; } gfn = gpte_to_gfn_lvl(pte, walker->level); gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) gfn += pse36_gfn_delta(pte); real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access); if (real_gpa == UNMAPPED_GVA) return 0; walker->gfn = real_gpa >> PAGE_SHIFT; if (!write_fault) FNAME(protect_clean_gpte)(&pte_access, pte); else /* * On a write fault, fold the dirty bit into accessed_dirty. * For modes without A/D bits support accessed_dirty will be * always clear. */ accessed_dirty &= pte >> (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); if (unlikely(!accessed_dirty)) { ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); if (unlikely(ret < 0)) goto error; else if (ret) goto retry_walk; } walker->pt_access = pt_access; walker->pte_access = pte_access; pgprintk("%s: pte %llx pte_access %x pt_access %x\n", __func__, (u64)pte, pte_access, pt_access); return 1; error: errcode |= write_fault | user_fault; if (fetch_fault && (mmu->nx || kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) errcode |= PFERR_FETCH_MASK; walker->fault.vector = PF_VECTOR; walker->fault.error_code_valid = true; walker->fault.error_code = errcode; #if PTTYPE == PTTYPE_EPT /* * Use PFERR_RSVD_MASK in error_code to to tell if EPT * misconfiguration requires to be injected. The detection is * done by is_rsvd_bits_set() above. * * We set up the value of exit_qualification to inject: * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation * [5:3] - Calculated by the page walk of the guest EPT page tables * [7:8] - Derived from [7:8] of real exit_qualification * * The other bits are set to 0. */ if (!(errcode & PFERR_RSVD_MASK)) { vcpu->arch.exit_qualification &= 0x187; vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3; } #endif walker->fault.address = addr; walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; trace_kvm_mmu_walker_error(walker->fault.error_code); return 0; } static int FNAME(walk_addr)(struct guest_walker *walker, struct kvm_vcpu *vcpu, gva_t addr, u32 access) { return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, access); } #if PTTYPE != PTTYPE_EPT static int FNAME(walk_addr_nested)(struct guest_walker *walker, struct kvm_vcpu *vcpu, gva_t addr, u32 access) { return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, addr, access); } #endif static bool FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, pt_element_t gpte, bool no_dirty_log) { unsigned pte_access; gfn_t gfn; pfn_t pfn; if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) return false; pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); gfn = gpte_to_gfn(gpte); pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); FNAME(protect_clean_gpte)(&pte_access, gpte); pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, no_dirty_log && (pte_access & ACC_WRITE_MASK)); if (is_error_pfn(pfn)) return false; /* * we call mmu_set_spte() with host_writable = true because * pte_prefetch_gfn_to_pfn always gets a writable pfn. */ mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL, gfn, pfn, true, true); return true; } static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, const void *pte) { pt_element_t gpte = *(const pt_element_t *)pte; FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); } static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, struct guest_walker *gw, int level) { pt_element_t curr_pte; gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; u64 mask; int r, index; if (level == PT_PAGE_TABLE_LEVEL) { mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; base_gpa = pte_gpa & ~mask; index = (pte_gpa - base_gpa) / sizeof(pt_element_t); r = kvm_read_guest_atomic(vcpu->kvm, base_gpa, gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); curr_pte = gw->prefetch_ptes[index]; } else r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &curr_pte, sizeof(curr_pte)); return r || curr_pte != gw->ptes[level - 1]; } static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, u64 *sptep) { struct kvm_mmu_page *sp; pt_element_t *gptep = gw->prefetch_ptes; u64 *spte; int i; sp = page_header(__pa(sptep)); if (sp->role.level > PT_PAGE_TABLE_LEVEL) return; if (sp->role.direct) return __direct_pte_prefetch(vcpu, sp, sptep); i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); spte = sp->spt + i; for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { if (spte == sptep) continue; if (is_shadow_present_pte(*spte)) continue; if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) break; } } /* * Fetch a shadow pte for a specific level in the paging hierarchy. * If the guest tries to write a write-protected page, we need to * emulate this operation, return 1 to indicate this case. */ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, struct guest_walker *gw, int write_fault, int hlevel, pfn_t pfn, bool map_writable, bool prefault) { struct kvm_mmu_page *sp = NULL; struct kvm_shadow_walk_iterator it; unsigned direct_access, access = gw->pt_access; int top_level, emulate = 0; direct_access = gw->pte_access; top_level = vcpu->arch.mmu.root_level; if (top_level == PT32E_ROOT_LEVEL) top_level = PT32_ROOT_LEVEL; /* * Verify that the top-level gpte is still there. Since the page * is a root page, it is either write protected (and cannot be * changed from now on) or it is invalid (in which case, we don't * really care if it changes underneath us after this point). */ if (FNAME(gpte_changed)(vcpu, gw, top_level)) goto out_gpte_changed; if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) goto out_gpte_changed; for (shadow_walk_init(&it, vcpu, addr); shadow_walk_okay(&it) && it.level > gw->level; shadow_walk_next(&it)) { gfn_t table_gfn; clear_sp_write_flooding_count(it.sptep); drop_large_spte(vcpu, it.sptep); sp = NULL; if (!is_shadow_present_pte(*it.sptep)) { table_gfn = gw->table_gfn[it.level - 2]; sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, false, access, it.sptep); } /* * Verify that the gpte in the page we've just write * protected is still there. */ if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) goto out_gpte_changed; if (sp) link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK); } for (; shadow_walk_okay(&it) && it.level > hlevel; shadow_walk_next(&it)) { gfn_t direct_gfn; clear_sp_write_flooding_count(it.sptep); validate_direct_spte(vcpu, it.sptep, direct_access); drop_large_spte(vcpu, it.sptep); if (is_shadow_present_pte(*it.sptep)) continue; direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1, true, direct_access, it.sptep); link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK); } clear_sp_write_flooding_count(it.sptep); mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate, it.level, gw->gfn, pfn, prefault, map_writable); FNAME(pte_prefetch)(vcpu, gw, it.sptep); return emulate; out_gpte_changed: if (sp) kvm_mmu_put_page(sp, it.sptep); kvm_release_pfn_clean(pfn); return 0; } /* * To see whether the mapped gfn can write its page table in the current * mapping. * * It is the helper function of FNAME(page_fault). When guest uses large page * size to map the writable gfn which is used as current page table, we should * force kvm to use small page size to map it because new shadow page will be * created when kvm establishes shadow page table that stop kvm using large * page size. Do it early can avoid unnecessary #PF and emulation. * * @write_fault_to_shadow_pgtable will return true if the fault gfn is * currently used as its page table. * * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok * since the PDPT is always shadowed, that means, we can not use large page * size to map the gfn which is used as PDPT. */ static bool FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, struct guest_walker *walker, int user_fault, bool *write_fault_to_shadow_pgtable) { int level; gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); bool self_changed = false; if (!(walker->pte_access & ACC_WRITE_MASK || (!is_write_protection(vcpu) && !user_fault))) return false; for (level = walker->level; level <= walker->max_level; level++) { gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; self_changed |= !(gfn & mask); *write_fault_to_shadow_pgtable |= !gfn; } return self_changed; } /* * Page fault handler. There are several causes for a page fault: * - there is no shadow pte for the guest pte * - write access through a shadow pte marked read only so that we can set * the dirty bit * - write access to a shadow pte marked read only so we can update the page * dirty bitmap, when userspace requests it * - mmio access; in this case we will never install a present shadow pte * - normal guest page fault due to the guest pte marked not present, not * writable, or not executable * * Returns: 1 if we need to emulate the instruction, 0 otherwise, or * a negative value on error. */ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, bool prefault) { int write_fault = error_code & PFERR_WRITE_MASK; int user_fault = error_code & PFERR_USER_MASK; struct guest_walker walker; int r; pfn_t pfn; int level = PT_PAGE_TABLE_LEVEL; int force_pt_level; unsigned long mmu_seq; bool map_writable, is_self_change_mapping; pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); if (unlikely(error_code & PFERR_RSVD_MASK)) { r = handle_mmio_page_fault(vcpu, addr, error_code, mmu_is_nested(vcpu)); if (likely(r != RET_MMIO_PF_INVALID)) return r; }; r = mmu_topup_memory_caches(vcpu); if (r) return r; /* * Look up the guest pte for the faulting address. */ r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); /* * The page is not mapped by the guest. Let the guest handle it. */ if (!r) { pgprintk("%s: guest page fault\n", __func__); if (!prefault) inject_page_fault(vcpu, &walker.fault); return 0; } vcpu->arch.write_fault_to_shadow_pgtable = false; is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); if (walker.level >= PT_DIRECTORY_LEVEL) force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn) || is_self_change_mapping; else force_pt_level = 1; if (!force_pt_level) { level = min(walker.level, mapping_level(vcpu, walker.gfn)); walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); } mmu_seq = vcpu->kvm->mmu_notifier_seq; smp_rmb(); if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, &map_writable)) return 0; if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr, walker.gfn, pfn, walker.pte_access, &r)) return r; /* * Do not change pte_access if the pfn is a mmio page, otherwise * we will cache the incorrect access into mmio spte. */ if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && !is_write_protection(vcpu) && !user_fault && !is_noslot_pfn(pfn)) { walker.pte_access |= ACC_WRITE_MASK; walker.pte_access &= ~ACC_USER_MASK; /* * If we converted a user page to a kernel page, * so that the kernel can write to it when cr0.wp=0, * then we should prevent the kernel from executing it * if SMEP is enabled. */ if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) walker.pte_access &= ~ACC_EXEC_MASK; } spin_lock(&vcpu->kvm->mmu_lock); if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) goto out_unlock; kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); make_mmu_pages_available(vcpu); if (!force_pt_level) transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level); r = FNAME(fetch)(vcpu, addr, &walker, write_fault, level, pfn, map_writable, prefault); ++vcpu->stat.pf_fixed; kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); spin_unlock(&vcpu->kvm->mmu_lock); return r; out_unlock: spin_unlock(&vcpu->kvm->mmu_lock); kvm_release_pfn_clean(pfn); return 0; } static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) { int offset = 0; WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); if (PTTYPE == 32) offset = sp->role.quadrant << PT64_LEVEL_BITS; return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); } static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva) { struct kvm_shadow_walk_iterator iterator; struct kvm_mmu_page *sp; int level; u64 *sptep; vcpu_clear_mmio_info(vcpu, gva); /* * No need to check return value here, rmap_can_add() can * help us to skip pte prefetch later. */ mmu_topup_memory_caches(vcpu); if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) { WARN_ON(1); return; } spin_lock(&vcpu->kvm->mmu_lock); for_each_shadow_entry(vcpu, gva, iterator) { level = iterator.level; sptep = iterator.sptep; sp = page_header(__pa(sptep)); if (is_last_spte(*sptep, level)) { pt_element_t gpte; gpa_t pte_gpa; if (!sp->unsync) break; pte_gpa = FNAME(get_level1_sp_gpa)(sp); pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) kvm_flush_remote_tlbs(vcpu->kvm); if (!rmap_can_add(vcpu)) break; if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte, sizeof(pt_element_t))) break; FNAME(update_pte)(vcpu, sp, sptep, &gpte); } if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) break; } spin_unlock(&vcpu->kvm->mmu_lock); } static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, struct x86_exception *exception) { struct guest_walker walker; gpa_t gpa = UNMAPPED_GVA; int r; r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); if (r) { gpa = gfn_to_gpa(walker.gfn); gpa |= vaddr & ~PAGE_MASK; } else if (exception) *exception = walker.fault; return gpa; } #if PTTYPE != PTTYPE_EPT static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, struct x86_exception *exception) { struct guest_walker walker; gpa_t gpa = UNMAPPED_GVA; int r; r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); if (r) { gpa = gfn_to_gpa(walker.gfn); gpa |= vaddr & ~PAGE_MASK; } else if (exception) *exception = walker.fault; return gpa; } #endif /* * Using the cached information from sp->gfns is safe because: * - The spte has a reference to the struct page, so the pfn for a given gfn * can't change unless all sptes pointing to it are nuked first. * * Note: * We should flush all tlbs if spte is dropped even though guest is * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't * used by guest then tlbs are not flushed, so guest is allowed to access the * freed pages. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. */ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) { int i, nr_present = 0; bool host_writable; gpa_t first_pte_gpa; /* direct kvm_mmu_page can not be unsync. */ BUG_ON(sp->role.direct); first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); for (i = 0; i < PT64_ENT_PER_PAGE; i++) { unsigned pte_access; pt_element_t gpte; gpa_t pte_gpa; gfn_t gfn; if (!sp->spt[i]) continue; pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte, sizeof(pt_element_t))) return -EINVAL; if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { vcpu->kvm->tlbs_dirty++; continue; } gfn = gpte_to_gfn(gpte); pte_access = sp->role.access; pte_access &= FNAME(gpte_access)(vcpu, gpte); FNAME(protect_clean_gpte)(&pte_access, gpte); if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access, &nr_present)) continue; if (gfn != sp->gfns[i]) { drop_spte(vcpu->kvm, &sp->spt[i]); vcpu->kvm->tlbs_dirty++; continue; } nr_present++; host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; set_spte(vcpu, &sp->spt[i], pte_access, PT_PAGE_TABLE_LEVEL, gfn, spte_to_pfn(sp->spt[i]), true, false, host_writable); } return !nr_present; } #undef pt_element_t #undef guest_walker #undef FNAME #undef PT_BASE_ADDR_MASK #undef PT_INDEX #undef PT_LVL_ADDR_MASK #undef PT_LVL_OFFSET_MASK #undef PT_LEVEL_BITS #undef PT_MAX_FULL_LEVELS #undef gpte_to_gfn #undef gpte_to_gfn_lvl #undef CMPXCHG #undef PT_GUEST_ACCESSED_MASK #undef PT_GUEST_DIRTY_MASK #undef PT_GUEST_DIRTY_SHIFT #undef PT_GUEST_ACCESSED_SHIFT