/* * Kernel Probes Jump Optimization (Optprobes) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * Copyright (C) Hitachi Ltd., 2012 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" unsigned long __recover_optprobed_insn(kprobe_opcode_t *buf, unsigned long addr) { struct optimized_kprobe *op; struct kprobe *kp; long offs; int i; for (i = 0; i < RELATIVEJUMP_SIZE; i++) { kp = get_kprobe((void *)addr - i); /* This function only handles jump-optimized kprobe */ if (kp && kprobe_optimized(kp)) { op = container_of(kp, struct optimized_kprobe, kp); /* If op->list is not empty, op is under optimizing */ if (list_empty(&op->list)) goto found; } } return addr; found: /* * If the kprobe can be optimized, original bytes which can be * overwritten by jump destination address. In this case, original * bytes must be recovered from op->optinsn.copied_insn buffer. */ memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); if (addr == (unsigned long)kp->addr) { buf[0] = kp->opcode; memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE); } else { offs = addr - (unsigned long)kp->addr - 1; memcpy(buf, op->optinsn.copied_insn + offs, RELATIVE_ADDR_SIZE - offs); } return (unsigned long)buf; } /* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */ static void synthesize_set_arg1(kprobe_opcode_t *addr, unsigned long val) { #ifdef CONFIG_X86_64 *addr++ = 0x48; *addr++ = 0xbf; #else *addr++ = 0xb8; #endif *(unsigned long *)addr = val; } asm ( ".global optprobe_template_entry\n" "optprobe_template_entry:\n" #ifdef CONFIG_X86_64 /* We don't bother saving the ss register */ " pushq %rsp\n" " pushfq\n" SAVE_REGS_STRING " movq %rsp, %rsi\n" ".global optprobe_template_val\n" "optprobe_template_val:\n" ASM_NOP5 ASM_NOP5 ".global optprobe_template_call\n" "optprobe_template_call:\n" ASM_NOP5 /* Move flags to rsp */ " movq 144(%rsp), %rdx\n" " movq %rdx, 152(%rsp)\n" RESTORE_REGS_STRING /* Skip flags entry */ " addq $8, %rsp\n" " popfq\n" #else /* CONFIG_X86_32 */ " pushf\n" SAVE_REGS_STRING " movl %esp, %edx\n" ".global optprobe_template_val\n" "optprobe_template_val:\n" ASM_NOP5 ".global optprobe_template_call\n" "optprobe_template_call:\n" ASM_NOP5 RESTORE_REGS_STRING " addl $4, %esp\n" /* skip cs */ " popf\n" #endif ".global optprobe_template_end\n" "optprobe_template_end:\n"); #define TMPL_MOVE_IDX \ ((long)&optprobe_template_val - (long)&optprobe_template_entry) #define TMPL_CALL_IDX \ ((long)&optprobe_template_call - (long)&optprobe_template_entry) #define TMPL_END_IDX \ ((long)&optprobe_template_end - (long)&optprobe_template_entry) #define INT3_SIZE sizeof(kprobe_opcode_t) /* Optimized kprobe call back function: called from optinsn */ static void optimized_callback(struct optimized_kprobe *op, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); unsigned long flags; /* This is possible if op is under delayed unoptimizing */ if (kprobe_disabled(&op->kp)) return; local_irq_save(flags); if (kprobe_running()) { kprobes_inc_nmissed_count(&op->kp); } else { /* Save skipped registers */ #ifdef CONFIG_X86_64 regs->cs = __KERNEL_CS; #else regs->cs = __KERNEL_CS | get_kernel_rpl(); regs->gs = 0; #endif regs->ip = (unsigned long)op->kp.addr + INT3_SIZE; regs->orig_ax = ~0UL; __this_cpu_write(current_kprobe, &op->kp); kcb->kprobe_status = KPROBE_HIT_ACTIVE; opt_pre_handler(&op->kp, regs); __this_cpu_write(current_kprobe, NULL); } local_irq_restore(flags); } NOKPROBE_SYMBOL(optimized_callback); static int copy_optimized_instructions(u8 *dest, u8 *src) { int len = 0, ret; while (len < RELATIVEJUMP_SIZE) { ret = __copy_instruction(dest + len, src + len); if (!ret || !can_boost(dest + len, src + len)) return -EINVAL; len += ret; } /* Check whether the address range is reserved */ if (ftrace_text_reserved(src, src + len - 1) || alternatives_text_reserved(src, src + len - 1) || jump_label_text_reserved(src, src + len - 1)) return -EBUSY; return len; } /* Check whether insn is indirect jump */ static int insn_is_indirect_jump(struct insn *insn) { return ((insn->opcode.bytes[0] == 0xff && (X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */ insn->opcode.bytes[0] == 0xea); /* Segment based jump */ } /* Check whether insn jumps into specified address range */ static int insn_jump_into_range(struct insn *insn, unsigned long start, int len) { unsigned long target = 0; switch (insn->opcode.bytes[0]) { case 0xe0: /* loopne */ case 0xe1: /* loope */ case 0xe2: /* loop */ case 0xe3: /* jcxz */ case 0xe9: /* near relative jump */ case 0xeb: /* short relative jump */ break; case 0x0f: if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */ break; return 0; default: if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */ break; return 0; } target = (unsigned long)insn->next_byte + insn->immediate.value; return (start <= target && target <= start + len); } /* Decode whole function to ensure any instructions don't jump into target */ static int can_optimize(unsigned long paddr) { unsigned long addr, size = 0, offset = 0; struct insn insn; kprobe_opcode_t buf[MAX_INSN_SIZE]; /* Lookup symbol including addr */ if (!kallsyms_lookup_size_offset(paddr, &size, &offset)) return 0; /* * Do not optimize in the entry code due to the unstable * stack handling. */ if ((paddr >= (unsigned long)__entry_text_start) && (paddr < (unsigned long)__entry_text_end)) return 0; /* Check there is enough space for a relative jump. */ if (size - offset < RELATIVEJUMP_SIZE) return 0; /* Decode instructions */ addr = paddr - offset; while (addr < paddr - offset + size) { /* Decode until function end */ unsigned long recovered_insn; if (search_exception_tables(addr)) /* * Since some fixup code will jumps into this function, * we can't optimize kprobe in this function. */ return 0; recovered_insn = recover_probed_instruction(buf, addr); if (!recovered_insn) return 0; kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE); insn_get_length(&insn); /* Another subsystem puts a breakpoint */ if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) return 0; /* Recover address */ insn.kaddr = (void *)addr; insn.next_byte = (void *)(addr + insn.length); /* Check any instructions don't jump into target */ if (insn_is_indirect_jump(&insn) || insn_jump_into_range(&insn, paddr + INT3_SIZE, RELATIVE_ADDR_SIZE)) return 0; addr += insn.length; } return 1; } /* Check optimized_kprobe can actually be optimized. */ int arch_check_optimized_kprobe(struct optimized_kprobe *op) { int i; struct kprobe *p; for (i = 1; i < op->optinsn.size; i++) { p = get_kprobe(op->kp.addr + i); if (p && !kprobe_disabled(p)) return -EEXIST; } return 0; } /* Check the addr is within the optimized instructions. */ int arch_within_optimized_kprobe(struct optimized_kprobe *op, unsigned long addr) { return ((unsigned long)op->kp.addr <= addr && (unsigned long)op->kp.addr + op->optinsn.size > addr); } /* Free optimized instruction slot */ static void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty) { if (op->optinsn.insn) { free_optinsn_slot(op->optinsn.insn, dirty); op->optinsn.insn = NULL; op->optinsn.size = 0; } } void arch_remove_optimized_kprobe(struct optimized_kprobe *op) { __arch_remove_optimized_kprobe(op, 1); } /* * Copy replacing target instructions * Target instructions MUST be relocatable (checked inside) * This is called when new aggr(opt)probe is allocated or reused. */ int arch_prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *__unused) { u8 *buf; int ret; long rel; if (!can_optimize((unsigned long)op->kp.addr)) return -EILSEQ; op->optinsn.insn = get_optinsn_slot(); if (!op->optinsn.insn) return -ENOMEM; /* * Verify if the address gap is in 2GB range, because this uses * a relative jump. */ rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE; if (abs(rel) > 0x7fffffff) { __arch_remove_optimized_kprobe(op, 0); return -ERANGE; } buf = (u8 *)op->optinsn.insn; set_memory_rw((unsigned long)buf & PAGE_MASK, 1); /* Copy instructions into the out-of-line buffer */ ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr); if (ret < 0) { __arch_remove_optimized_kprobe(op, 0); return ret; } op->optinsn.size = ret; /* Copy arch-dep-instance from template */ memcpy(buf, &optprobe_template_entry, TMPL_END_IDX); /* Set probe information */ synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op); /* Set probe function call */ synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback); /* Set returning jmp instruction at the tail of out-of-line buffer */ synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size, (u8 *)op->kp.addr + op->optinsn.size); set_memory_ro((unsigned long)buf & PAGE_MASK, 1); flush_icache_range((unsigned long) buf, (unsigned long) buf + TMPL_END_IDX + op->optinsn.size + RELATIVEJUMP_SIZE); return 0; } /* * Replace breakpoints (int3) with relative jumps. * Caller must call with locking kprobe_mutex and text_mutex. */ void arch_optimize_kprobes(struct list_head *oplist) { struct optimized_kprobe *op, *tmp; u8 insn_buf[RELATIVEJUMP_SIZE]; list_for_each_entry_safe(op, tmp, oplist, list) { s32 rel = (s32)((long)op->optinsn.insn - ((long)op->kp.addr + RELATIVEJUMP_SIZE)); WARN_ON(kprobe_disabled(&op->kp)); /* Backup instructions which will be replaced by jump address */ memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE, RELATIVE_ADDR_SIZE); insn_buf[0] = RELATIVEJUMP_OPCODE; *(s32 *)(&insn_buf[1]) = rel; text_poke_bp(op->kp.addr, insn_buf, RELATIVEJUMP_SIZE, op->optinsn.insn); list_del_init(&op->list); } } /* Replace a relative jump with a breakpoint (int3). */ void arch_unoptimize_kprobe(struct optimized_kprobe *op) { u8 insn_buf[RELATIVEJUMP_SIZE]; /* Set int3 to first byte for kprobes */ insn_buf[0] = BREAKPOINT_INSTRUCTION; memcpy(insn_buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE); text_poke_bp(op->kp.addr, insn_buf, RELATIVEJUMP_SIZE, op->optinsn.insn); } /* * Recover original instructions and breakpoints from relative jumps. * Caller must call with locking kprobe_mutex. */ extern void arch_unoptimize_kprobes(struct list_head *oplist, struct list_head *done_list) { struct optimized_kprobe *op, *tmp; list_for_each_entry_safe(op, tmp, oplist, list) { arch_unoptimize_kprobe(op); list_move(&op->list, done_list); } } int setup_detour_execution(struct kprobe *p, struct pt_regs *regs, int reenter) { struct optimized_kprobe *op; if (p->flags & KPROBE_FLAG_OPTIMIZED) { /* This kprobe is really able to run optimized path. */ op = container_of(p, struct optimized_kprobe, kp); /* Detour through copied instructions */ regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX; if (!reenter) reset_current_kprobe(); preempt_enable_no_resched(); return 1; } return 0; } NOKPROBE_SYMBOL(setup_detour_execution);