// SPDX-License-Identifier: GPL-2.0-only /* * arch/sh/mm/cache.c * * Copyright (C) 1999, 2000, 2002 Niibe Yutaka * Copyright (C) 2002 - 2010 Paul Mundt */ #include <linux/mm.h> #include <linux/init.h> #include <linux/mutex.h> #include <linux/fs.h> #include <linux/smp.h> #include <linux/highmem.h> #include <linux/module.h> #include <asm/mmu_context.h> #include <asm/cacheflush.h> void (*local_flush_cache_all)(void *args) = cache_noop; void (*local_flush_cache_mm)(void *args) = cache_noop; void (*local_flush_cache_dup_mm)(void *args) = cache_noop; void (*local_flush_cache_page)(void *args) = cache_noop; void (*local_flush_cache_range)(void *args) = cache_noop; void (*local_flush_dcache_page)(void *args) = cache_noop; void (*local_flush_icache_range)(void *args) = cache_noop; void (*local_flush_icache_page)(void *args) = cache_noop; void (*local_flush_cache_sigtramp)(void *args) = cache_noop; void (*__flush_wback_region)(void *start, int size); EXPORT_SYMBOL(__flush_wback_region); void (*__flush_purge_region)(void *start, int size); EXPORT_SYMBOL(__flush_purge_region); void (*__flush_invalidate_region)(void *start, int size); EXPORT_SYMBOL(__flush_invalidate_region); static inline void noop__flush_region(void *start, int size) { } static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info, int wait) { preempt_disable(); /* Needing IPI for cross-core flush is SHX3-specific. */ #ifdef CONFIG_CPU_SHX3 /* * It's possible that this gets called early on when IRQs are * still disabled due to ioremapping by the boot CPU, so don't * even attempt IPIs unless there are other CPUs online. */ if (num_online_cpus() > 1) smp_call_function(func, info, wait); #endif func(info); preempt_enable(); } void copy_to_user_page(struct vm_area_struct *vma, struct page *page, unsigned long vaddr, void *dst, const void *src, unsigned long len) { if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) && test_bit(PG_dcache_clean, &page->flags)) { void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); memcpy(vto, src, len); kunmap_coherent(vto); } else { memcpy(dst, src, len); if (boot_cpu_data.dcache.n_aliases) clear_bit(PG_dcache_clean, &page->flags); } if (vma->vm_flags & VM_EXEC) flush_cache_page(vma, vaddr, page_to_pfn(page)); } void copy_from_user_page(struct vm_area_struct *vma, struct page *page, unsigned long vaddr, void *dst, const void *src, unsigned long len) { if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) && test_bit(PG_dcache_clean, &page->flags)) { void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); memcpy(dst, vfrom, len); kunmap_coherent(vfrom); } else { memcpy(dst, src, len); if (boot_cpu_data.dcache.n_aliases) clear_bit(PG_dcache_clean, &page->flags); } } void copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { void *vfrom, *vto; vto = kmap_atomic(to); if (boot_cpu_data.dcache.n_aliases && page_mapcount(from) && test_bit(PG_dcache_clean, &from->flags)) { vfrom = kmap_coherent(from, vaddr); copy_page(vto, vfrom); kunmap_coherent(vfrom); } else { vfrom = kmap_atomic(from); copy_page(vto, vfrom); kunmap_atomic(vfrom); } if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) || (vma->vm_flags & VM_EXEC)) __flush_purge_region(vto, PAGE_SIZE); kunmap_atomic(vto); /* Make sure this page is cleared on other CPU's too before using it */ smp_wmb(); } EXPORT_SYMBOL(copy_user_highpage); void clear_user_highpage(struct page *page, unsigned long vaddr) { void *kaddr = kmap_atomic(page); clear_page(kaddr); if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK)) __flush_purge_region(kaddr, PAGE_SIZE); kunmap_atomic(kaddr); } EXPORT_SYMBOL(clear_user_highpage); void __update_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { struct page *page; unsigned long pfn = pte_pfn(pte); if (!boot_cpu_data.dcache.n_aliases) return; page = pfn_to_page(pfn); if (pfn_valid(pfn)) { int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags); if (dirty) __flush_purge_region(page_address(page), PAGE_SIZE); } } void __flush_anon_page(struct page *page, unsigned long vmaddr) { unsigned long addr = (unsigned long) page_address(page); if (pages_do_alias(addr, vmaddr)) { if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) && test_bit(PG_dcache_clean, &page->flags)) { void *kaddr; kaddr = kmap_coherent(page, vmaddr); /* XXX.. For now kunmap_coherent() does a purge */ /* __flush_purge_region((void *)kaddr, PAGE_SIZE); */ kunmap_coherent(kaddr); } else __flush_purge_region((void *)addr, PAGE_SIZE); } } void flush_cache_all(void) { cacheop_on_each_cpu(local_flush_cache_all, NULL, 1); } EXPORT_SYMBOL(flush_cache_all); void flush_cache_mm(struct mm_struct *mm) { if (boot_cpu_data.dcache.n_aliases == 0) return; cacheop_on_each_cpu(local_flush_cache_mm, mm, 1); } void flush_cache_dup_mm(struct mm_struct *mm) { if (boot_cpu_data.dcache.n_aliases == 0) return; cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1); } void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { struct flusher_data data; data.vma = vma; data.addr1 = addr; data.addr2 = pfn; cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1); } void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct flusher_data data; data.vma = vma; data.addr1 = start; data.addr2 = end; cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1); } EXPORT_SYMBOL(flush_cache_range); void flush_dcache_page(struct page *page) { cacheop_on_each_cpu(local_flush_dcache_page, page, 1); } EXPORT_SYMBOL(flush_dcache_page); void flush_icache_range(unsigned long start, unsigned long end) { struct flusher_data data; data.vma = NULL; data.addr1 = start; data.addr2 = end; cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1); } EXPORT_SYMBOL(flush_icache_range); void flush_icache_page(struct vm_area_struct *vma, struct page *page) { /* Nothing uses the VMA, so just pass the struct page along */ cacheop_on_each_cpu(local_flush_icache_page, page, 1); } void flush_cache_sigtramp(unsigned long address) { cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1); } static void compute_alias(struct cache_info *c) { #ifdef CONFIG_MMU c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1); #else c->alias_mask = 0; #endif c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0; } static void __init emit_cache_params(void) { printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n", boot_cpu_data.icache.ways, boot_cpu_data.icache.sets, boot_cpu_data.icache.way_incr); printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", boot_cpu_data.icache.entry_mask, boot_cpu_data.icache.alias_mask, boot_cpu_data.icache.n_aliases); printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n", boot_cpu_data.dcache.ways, boot_cpu_data.dcache.sets, boot_cpu_data.dcache.way_incr); printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", boot_cpu_data.dcache.entry_mask, boot_cpu_data.dcache.alias_mask, boot_cpu_data.dcache.n_aliases); /* * Emit Secondary Cache parameters if the CPU has a probed L2. */ if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) { printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n", boot_cpu_data.scache.ways, boot_cpu_data.scache.sets, boot_cpu_data.scache.way_incr); printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n", boot_cpu_data.scache.entry_mask, boot_cpu_data.scache.alias_mask, boot_cpu_data.scache.n_aliases); } } void __init cpu_cache_init(void) { unsigned int cache_disabled = 0; #ifdef SH_CCR cache_disabled = !(__raw_readl(SH_CCR) & CCR_CACHE_ENABLE); #endif compute_alias(&boot_cpu_data.icache); compute_alias(&boot_cpu_data.dcache); compute_alias(&boot_cpu_data.scache); __flush_wback_region = noop__flush_region; __flush_purge_region = noop__flush_region; __flush_invalidate_region = noop__flush_region; /* * No flushing is necessary in the disabled cache case so we can * just keep the noop functions in local_flush_..() and __flush_..() */ if (unlikely(cache_disabled)) goto skip; if (boot_cpu_data.type == CPU_J2) { extern void __weak j2_cache_init(void); j2_cache_init(); } else if (boot_cpu_data.family == CPU_FAMILY_SH2) { extern void __weak sh2_cache_init(void); sh2_cache_init(); } if (boot_cpu_data.family == CPU_FAMILY_SH2A) { extern void __weak sh2a_cache_init(void); sh2a_cache_init(); } if (boot_cpu_data.family == CPU_FAMILY_SH3) { extern void __weak sh3_cache_init(void); sh3_cache_init(); if ((boot_cpu_data.type == CPU_SH7705) && (boot_cpu_data.dcache.sets == 512)) { extern void __weak sh7705_cache_init(void); sh7705_cache_init(); } } if ((boot_cpu_data.family == CPU_FAMILY_SH4) || (boot_cpu_data.family == CPU_FAMILY_SH4A) || (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) { extern void __weak sh4_cache_init(void); sh4_cache_init(); if ((boot_cpu_data.type == CPU_SH7786) || (boot_cpu_data.type == CPU_SHX3)) { extern void __weak shx3_cache_init(void); shx3_cache_init(); } } skip: emit_cache_params(); }