// SPDX-License-Identifier: GPL-2.0-or-later /* * * Common boot and setup code. * * Copyright (C) 2001 PPC64 Team, IBM Corp */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "setup.h" int spinning_secondaries; u64 ppc64_pft_size; struct ppc64_caches ppc64_caches = { .l1d = { .block_size = 0x40, .log_block_size = 6, }, .l1i = { .block_size = 0x40, .log_block_size = 6 }, }; EXPORT_SYMBOL_GPL(ppc64_caches); #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) void __init setup_tlb_core_data(void) { int cpu; BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); for_each_possible_cpu(cpu) { int first = cpu_first_thread_sibling(cpu); /* * If we boot via kdump on a non-primary thread, * make sure we point at the thread that actually * set up this TLB. */ if (cpu_first_thread_sibling(boot_cpuid) == first) first = boot_cpuid; paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; /* * If we have threads, we need either tlbsrx. * or e6500 tablewalk mode, or else TLB handlers * will be racy and could produce duplicate entries. * Should we panic instead? */ WARN_ONCE(smt_enabled_at_boot >= 2 && !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && book3e_htw_mode != PPC_HTW_E6500, "%s: unsupported MMU configuration\n", __func__); } } #endif #ifdef CONFIG_SMP static char *smt_enabled_cmdline; /* Look for ibm,smt-enabled OF option */ void __init check_smt_enabled(void) { struct device_node *dn; const char *smt_option; /* Default to enabling all threads */ smt_enabled_at_boot = threads_per_core; /* Allow the command line to overrule the OF option */ if (smt_enabled_cmdline) { if (!strcmp(smt_enabled_cmdline, "on")) smt_enabled_at_boot = threads_per_core; else if (!strcmp(smt_enabled_cmdline, "off")) smt_enabled_at_boot = 0; else { int smt; int rc; rc = kstrtoint(smt_enabled_cmdline, 10, &smt); if (!rc) smt_enabled_at_boot = min(threads_per_core, smt); } } else { dn = of_find_node_by_path("/options"); if (dn) { smt_option = of_get_property(dn, "ibm,smt-enabled", NULL); if (smt_option) { if (!strcmp(smt_option, "on")) smt_enabled_at_boot = threads_per_core; else if (!strcmp(smt_option, "off")) smt_enabled_at_boot = 0; } of_node_put(dn); } } } /* Look for smt-enabled= cmdline option */ static int __init early_smt_enabled(char *p) { smt_enabled_cmdline = p; return 0; } early_param("smt-enabled", early_smt_enabled); #endif /* CONFIG_SMP */ /** Fix up paca fields required for the boot cpu */ static void __init fixup_boot_paca(void) { /* The boot cpu is started */ get_paca()->cpu_start = 1; /* Allow percpu accesses to work until we setup percpu data */ get_paca()->data_offset = 0; /* Mark interrupts disabled in PACA */ irq_soft_mask_set(IRQS_DISABLED); } static void __init configure_exceptions(void) { /* * Setup the trampolines from the lowmem exception vectors * to the kdump kernel when not using a relocatable kernel. */ setup_kdump_trampoline(); /* Under a PAPR hypervisor, we need hypercalls */ if (firmware_has_feature(FW_FEATURE_SET_MODE)) { /* Enable AIL if possible */ pseries_enable_reloc_on_exc(); /* * Tell the hypervisor that we want our exceptions to * be taken in little endian mode. * * We don't call this for big endian as our calling convention * makes us always enter in BE, and the call may fail under * some circumstances with kdump. */ #ifdef __LITTLE_ENDIAN__ pseries_little_endian_exceptions(); #endif } else { /* Set endian mode using OPAL */ if (firmware_has_feature(FW_FEATURE_OPAL)) opal_configure_cores(); /* AIL on native is done in cpu_ready_for_interrupts() */ } } static void cpu_ready_for_interrupts(void) { /* * Enable AIL if supported, and we are in hypervisor mode. This * is called once for every processor. * * If we are not in hypervisor mode the job is done once for * the whole partition in configure_exceptions(). */ if (cpu_has_feature(CPU_FTR_HVMODE) && cpu_has_feature(CPU_FTR_ARCH_207S)) { unsigned long lpcr = mfspr(SPRN_LPCR); mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); } /* * Set HFSCR:TM based on CPU features: * In the special case of TM no suspend (P9N DD2.1), Linux is * told TM is off via the dt-ftrs but told to (partially) use * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM] * will be off from dt-ftrs but we need to turn it on for the * no suspend case. */ if (cpu_has_feature(CPU_FTR_HVMODE)) { if (cpu_has_feature(CPU_FTR_TM_COMP)) mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM); else mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); } /* Set IR and DR in PACA MSR */ get_paca()->kernel_msr = MSR_KERNEL; } unsigned long spr_default_dscr = 0; void __init record_spr_defaults(void) { if (early_cpu_has_feature(CPU_FTR_DSCR)) spr_default_dscr = mfspr(SPRN_DSCR); } /* * Early initialization entry point. This is called by head.S * with MMU translation disabled. We rely on the "feature" of * the CPU that ignores the top 2 bits of the address in real * mode so we can access kernel globals normally provided we * only toy with things in the RMO region. From here, we do * some early parsing of the device-tree to setup out MEMBLOCK * data structures, and allocate & initialize the hash table * and segment tables so we can start running with translation * enabled. * * It is this function which will call the probe() callback of * the various platform types and copy the matching one to the * global ppc_md structure. Your platform can eventually do * some very early initializations from the probe() routine, but * this is not recommended, be very careful as, for example, the * device-tree is not accessible via normal means at this point. */ void __init __nostackprotector early_setup(unsigned long dt_ptr) { static __initdata struct paca_struct boot_paca; /* -------- printk is _NOT_ safe to use here ! ------- */ /* * Assume we're on cpu 0 for now. * * We need to load a PACA very early for a few reasons. * * The stack protector canary is stored in the paca, so as soon as we * call any stack protected code we need r13 pointing somewhere valid. * * If we are using kcov it will call in_task() in its instrumentation, * which relies on the current task from the PACA. * * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as * printk(), which can trigger both stack protector and kcov. * * percpu variables and spin locks also use the paca. * * So set up a temporary paca. It will be replaced below once we know * what CPU we are on. */ initialise_paca(&boot_paca, 0); setup_paca(&boot_paca); fixup_boot_paca(); /* -------- printk is now safe to use ------- */ /* Try new device tree based feature discovery ... */ if (!dt_cpu_ftrs_init(__va(dt_ptr))) /* Otherwise use the old style CPU table */ identify_cpu(0, mfspr(SPRN_PVR)); /* Enable early debugging if any specified (see udbg.h) */ udbg_early_init(); udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr); /* * Do early initialization using the flattened device * tree, such as retrieving the physical memory map or * calculating/retrieving the hash table size. */ early_init_devtree(__va(dt_ptr)); /* Now we know the logical id of our boot cpu, setup the paca. */ if (boot_cpuid != 0) { /* Poison paca_ptrs[0] again if it's not the boot cpu */ memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); } setup_paca(paca_ptrs[boot_cpuid]); fixup_boot_paca(); /* * Configure exception handlers. This include setting up trampolines * if needed, setting exception endian mode, etc... */ configure_exceptions(); /* * Configure Kernel Userspace Protection. This needs to happen before * feature fixups for platforms that implement this using features. */ setup_kup(); /* Apply all the dynamic patching */ apply_feature_fixups(); setup_feature_keys(); early_ioremap_setup(); /* Initialize the hash table or TLB handling */ early_init_mmu(); /* * After firmware and early platform setup code has set things up, * we note the SPR values for configurable control/performance * registers, and use those as initial defaults. */ record_spr_defaults(); /* * At this point, we can let interrupts switch to virtual mode * (the MMU has been setup), so adjust the MSR in the PACA to * have IR and DR set and enable AIL if it exists */ cpu_ready_for_interrupts(); /* * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it * will only actually get enabled on the boot cpu much later once * ftrace itself has been initialized. */ this_cpu_enable_ftrace(); udbg_printf(" <- %s()\n", __func__); #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX /* * This needs to be done *last* (after the above udbg_printf() even) * * Right after we return from this function, we turn on the MMU * which means the real-mode access trick that btext does will * no longer work, it needs to switch to using a real MMU * mapping. This call will ensure that it does */ btext_map(); #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ } #ifdef CONFIG_SMP void early_setup_secondary(void) { /* Mark interrupts disabled in PACA */ irq_soft_mask_set(IRQS_DISABLED); /* Initialize the hash table or TLB handling */ early_init_mmu_secondary(); /* Perform any KUP setup that is per-cpu */ setup_kup(); /* * At this point, we can let interrupts switch to virtual mode * (the MMU has been setup), so adjust the MSR in the PACA to * have IR and DR set. */ cpu_ready_for_interrupts(); } #endif /* CONFIG_SMP */ void panic_smp_self_stop(void) { hard_irq_disable(); spin_begin(); while (1) spin_cpu_relax(); } #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) static bool use_spinloop(void) { if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { /* * See comments in head_64.S -- not all platforms insert * secondaries at __secondary_hold and wait at the spin * loop. */ if (firmware_has_feature(FW_FEATURE_OPAL)) return false; return true; } /* * When book3e boots from kexec, the ePAPR spin table does * not get used. */ return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); } void smp_release_cpus(void) { unsigned long *ptr; int i; if (!use_spinloop()) return; /* All secondary cpus are spinning on a common spinloop, release them * all now so they can start to spin on their individual paca * spinloops. For non SMP kernels, the secondary cpus never get out * of the common spinloop. */ ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop - PHYSICAL_START); *ptr = ppc_function_entry(generic_secondary_smp_init); /* And wait a bit for them to catch up */ for (i = 0; i < 100000; i++) { mb(); HMT_low(); if (spinning_secondaries == 0) break; udelay(1); } pr_debug("spinning_secondaries = %d\n", spinning_secondaries); } #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ /* * Initialize some remaining members of the ppc64_caches and systemcfg * structures * (at least until we get rid of them completely). This is mostly some * cache informations about the CPU that will be used by cache flush * routines and/or provided to userland */ static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, u32 bsize, u32 sets) { info->size = size; info->sets = sets; info->line_size = lsize; info->block_size = bsize; info->log_block_size = __ilog2(bsize); if (bsize) info->blocks_per_page = PAGE_SIZE / bsize; else info->blocks_per_page = 0; if (sets == 0) info->assoc = 0xffff; else info->assoc = size / (sets * lsize); } static bool __init parse_cache_info(struct device_node *np, bool icache, struct ppc_cache_info *info) { static const char *ipropnames[] __initdata = { "i-cache-size", "i-cache-sets", "i-cache-block-size", "i-cache-line-size", }; static const char *dpropnames[] __initdata = { "d-cache-size", "d-cache-sets", "d-cache-block-size", "d-cache-line-size", }; const char **propnames = icache ? ipropnames : dpropnames; const __be32 *sizep, *lsizep, *bsizep, *setsp; u32 size, lsize, bsize, sets; bool success = true; size = 0; sets = -1u; lsize = bsize = cur_cpu_spec->dcache_bsize; sizep = of_get_property(np, propnames[0], NULL); if (sizep != NULL) size = be32_to_cpu(*sizep); setsp = of_get_property(np, propnames[1], NULL); if (setsp != NULL) sets = be32_to_cpu(*setsp); bsizep = of_get_property(np, propnames[2], NULL); lsizep = of_get_property(np, propnames[3], NULL); if (bsizep == NULL) bsizep = lsizep; if (lsizep != NULL) lsize = be32_to_cpu(*lsizep); if (bsizep != NULL) bsize = be32_to_cpu(*bsizep); if (sizep == NULL || bsizep == NULL || lsizep == NULL) success = false; /* * OF is weird .. it represents fully associative caches * as "1 way" which doesn't make much sense and doesn't * leave room for direct mapped. We'll assume that 0 * in OF means direct mapped for that reason. */ if (sets == 1) sets = 0; else if (sets == 0) sets = 1; init_cache_info(info, size, lsize, bsize, sets); return success; } void __init initialize_cache_info(void) { struct device_node *cpu = NULL, *l2, *l3 = NULL; u32 pvr; /* * All shipping POWER8 machines have a firmware bug that * puts incorrect information in the device-tree. This will * be (hopefully) fixed for future chips but for now hard * code the values if we are running on one of these */ pvr = PVR_VER(mfspr(SPRN_PVR)); if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || pvr == PVR_POWER8NVL) { /* size lsize blk sets */ init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); } else cpu = of_find_node_by_type(NULL, "cpu"); /* * We're assuming *all* of the CPUs have the same * d-cache and i-cache sizes... -Peter */ if (cpu) { if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) pr_warn("Argh, can't find dcache properties !\n"); if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) pr_warn("Argh, can't find icache properties !\n"); /* * Try to find the L2 and L3 if any. Assume they are * unified and use the D-side properties. */ l2 = of_find_next_cache_node(cpu); of_node_put(cpu); if (l2) { parse_cache_info(l2, false, &ppc64_caches.l2); l3 = of_find_next_cache_node(l2); of_node_put(l2); } if (l3) { parse_cache_info(l3, false, &ppc64_caches.l3); of_node_put(l3); } } /* For use by binfmt_elf */ dcache_bsize = ppc64_caches.l1d.block_size; icache_bsize = ppc64_caches.l1i.block_size; cur_cpu_spec->dcache_bsize = dcache_bsize; cur_cpu_spec->icache_bsize = icache_bsize; } /* * This returns the limit below which memory accesses to the linear * mapping are guarnateed not to cause an architectural exception (e.g., * TLB or SLB miss fault). * * This is used to allocate PACAs and various interrupt stacks that * that are accessed early in interrupt handlers that must not cause * re-entrant interrupts. */ __init u64 ppc64_bolted_size(void) { #ifdef CONFIG_PPC_BOOK3E /* Freescale BookE bolts the entire linear mapping */ /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) return linear_map_top; /* Other BookE, we assume the first GB is bolted */ return 1ul << 30; #else /* BookS radix, does not take faults on linear mapping */ if (early_radix_enabled()) return ULONG_MAX; /* BookS hash, the first segment is bolted */ if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) return 1UL << SID_SHIFT_1T; return 1UL << SID_SHIFT; #endif } static void *__init alloc_stack(unsigned long limit, int cpu) { void *ptr; BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16); ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN, MEMBLOCK_LOW_LIMIT, limit, early_cpu_to_node(cpu)); if (!ptr) panic("cannot allocate stacks"); return ptr; } void __init irqstack_early_init(void) { u64 limit = ppc64_bolted_size(); unsigned int i; /* * Interrupt stacks must be in the first segment since we * cannot afford to take SLB misses on them. They are not * accessed in realmode. */ for_each_possible_cpu(i) { softirq_ctx[i] = alloc_stack(limit, i); hardirq_ctx[i] = alloc_stack(limit, i); } } #ifdef CONFIG_PPC_BOOK3E void __init exc_lvl_early_init(void) { unsigned int i; for_each_possible_cpu(i) { void *sp; sp = alloc_stack(ULONG_MAX, i); critirq_ctx[i] = sp; paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; sp = alloc_stack(ULONG_MAX, i); dbgirq_ctx[i] = sp; paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; sp = alloc_stack(ULONG_MAX, i); mcheckirq_ctx[i] = sp; paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; } if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) patch_exception(0x040, exc_debug_debug_book3e); } #endif /* * Stack space used when we detect a bad kernel stack pointer, and * early in SMP boots before relocation is enabled. Exclusive emergency * stack for machine checks. */ void __init emergency_stack_init(void) { u64 limit, mce_limit; unsigned int i; /* * Emergency stacks must be under 256MB, we cannot afford to take * SLB misses on them. The ABI also requires them to be 128-byte * aligned. * * Since we use these as temporary stacks during secondary CPU * bringup, machine check, system reset, and HMI, we need to get * at them in real mode. This means they must also be within the RMO * region. * * The IRQ stacks allocated elsewhere in this file are zeroed and * initialized in kernel/irq.c. These are initialized here in order * to have emergency stacks available as early as possible. */ limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size); /* * Machine check on pseries calls rtas, but can't use the static * rtas_args due to a machine check hitting while the lock is held. * rtas args have to be under 4GB, so the machine check stack is * limited to 4GB so args can be put on stack. */ if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G) mce_limit = SZ_4G; for_each_possible_cpu(i) { paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; #ifdef CONFIG_PPC_BOOK3S_64 /* emergency stack for NMI exception handling. */ paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; /* emergency stack for machine check exception handling. */ paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE; #endif } } #ifdef CONFIG_SMP #define PCPU_DYN_SIZE () static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) { return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, early_cpu_to_node(cpu)); } static void __init pcpu_fc_free(void *ptr, size_t size) { memblock_free(__pa(ptr), size); } static int pcpu_cpu_distance(unsigned int from, unsigned int to) { if (early_cpu_to_node(from) == early_cpu_to_node(to)) return LOCAL_DISTANCE; else return REMOTE_DISTANCE; } unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; EXPORT_SYMBOL(__per_cpu_offset); void __init setup_per_cpu_areas(void) { const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; size_t atom_size; unsigned long delta; unsigned int cpu; int rc; /* * Linear mapping is one of 4K, 1M and 16M. For 4K, no need * to group units. For larger mappings, use 1M atom which * should be large enough to contain a number of units. */ if (mmu_linear_psize == MMU_PAGE_4K) atom_size = PAGE_SIZE; else atom_size = 1 << 20; rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, pcpu_fc_alloc, pcpu_fc_free); if (rc < 0) panic("cannot initialize percpu area (err=%d)", rc); delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; for_each_possible_cpu(cpu) { __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; } } #endif #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE unsigned long memory_block_size_bytes(void) { if (ppc_md.memory_block_size) return ppc_md.memory_block_size(); return MIN_MEMORY_BLOCK_SIZE; } #endif #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) struct ppc_pci_io ppc_pci_io; EXPORT_SYMBOL(ppc_pci_io); #endif #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF u64 hw_nmi_get_sample_period(int watchdog_thresh) { return ppc_proc_freq * watchdog_thresh; } #endif /* * The perf based hardlockup detector breaks PMU event based branches, so * disable it by default. Book3S has a soft-nmi hardlockup detector based * on the decrementer interrupt, so it does not suffer from this problem. * * It is likely to get false positives in VM guests, so disable it there * by default too. */ static int __init disable_hardlockup_detector(void) { #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF hardlockup_detector_disable(); #else if (firmware_has_feature(FW_FEATURE_LPAR)) hardlockup_detector_disable(); #endif return 0; } early_initcall(disable_hardlockup_detector); #ifdef CONFIG_PPC_BOOK3S_64 static enum l1d_flush_type enabled_flush_types; static void *l1d_flush_fallback_area; static bool no_rfi_flush; bool rfi_flush; static int __init handle_no_rfi_flush(char *p) { pr_info("rfi-flush: disabled on command line."); no_rfi_flush = true; return 0; } early_param("no_rfi_flush", handle_no_rfi_flush); /* * The RFI flush is not KPTI, but because users will see doco that says to use * nopti we hijack that option here to also disable the RFI flush. */ static int __init handle_no_pti(char *p) { pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); handle_no_rfi_flush(NULL); return 0; } early_param("nopti", handle_no_pti); static void do_nothing(void *unused) { /* * We don't need to do the flush explicitly, just enter+exit kernel is * sufficient, the RFI exit handlers will do the right thing. */ } void rfi_flush_enable(bool enable) { if (enable) { do_rfi_flush_fixups(enabled_flush_types); on_each_cpu(do_nothing, NULL, 1); } else do_rfi_flush_fixups(L1D_FLUSH_NONE); rfi_flush = enable; } static void __ref init_fallback_flush(void) { u64 l1d_size, limit; int cpu; /* Only allocate the fallback flush area once (at boot time). */ if (l1d_flush_fallback_area) return; l1d_size = ppc64_caches.l1d.size; /* * If there is no d-cache-size property in the device tree, l1d_size * could be zero. That leads to the loop in the asm wrapping around to * 2^64-1, and then walking off the end of the fallback area and * eventually causing a page fault which is fatal. Just default to * something vaguely sane. */ if (!l1d_size) l1d_size = (64 * 1024); limit = min(ppc64_bolted_size(), ppc64_rma_size); /* * Align to L1d size, and size it at 2x L1d size, to catch possible * hardware prefetch runoff. We don't have a recipe for load patterns to * reliably avoid the prefetcher. */ l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2, l1d_size, MEMBLOCK_LOW_LIMIT, limit, NUMA_NO_NODE); if (!l1d_flush_fallback_area) panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n", __func__, l1d_size * 2, l1d_size, &limit); for_each_possible_cpu(cpu) { struct paca_struct *paca = paca_ptrs[cpu]; paca->rfi_flush_fallback_area = l1d_flush_fallback_area; paca->l1d_flush_size = l1d_size; } } void setup_rfi_flush(enum l1d_flush_type types, bool enable) { if (types & L1D_FLUSH_FALLBACK) { pr_info("rfi-flush: fallback displacement flush available\n"); init_fallback_flush(); } if (types & L1D_FLUSH_ORI) pr_info("rfi-flush: ori type flush available\n"); if (types & L1D_FLUSH_MTTRIG) pr_info("rfi-flush: mttrig type flush available\n"); enabled_flush_types = types; if (!no_rfi_flush && !cpu_mitigations_off()) rfi_flush_enable(enable); } #ifdef CONFIG_DEBUG_FS static int rfi_flush_set(void *data, u64 val) { bool enable; if (val == 1) enable = true; else if (val == 0) enable = false; else return -EINVAL; /* Only do anything if we're changing state */ if (enable != rfi_flush) rfi_flush_enable(enable); return 0; } static int rfi_flush_get(void *data, u64 *val) { *val = rfi_flush ? 1 : 0; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); static __init int rfi_flush_debugfs_init(void) { debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); return 0; } device_initcall(rfi_flush_debugfs_init); #endif #endif /* CONFIG_PPC_BOOK3S_64 */