/* * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Communication to userspace based on kernel/printk.c */ #include <linux/types.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/poll.h> #include <linux/proc_fs.h> #include <linux/init.h> #include <linux/vmalloc.h> #include <linux/spinlock.h> #include <linux/cpu.h> #include <linux/workqueue.h> #include <linux/slab.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/rtas.h> #include <asm/prom.h> #include <asm/nvram.h> #include <linux/atomic.h> #include <asm/machdep.h> #include <asm/topology.h> static DEFINE_SPINLOCK(rtasd_log_lock); static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); static char *rtas_log_buf; static unsigned long rtas_log_start; static unsigned long rtas_log_size; static int surveillance_timeout = -1; static unsigned int rtas_error_log_max; static unsigned int rtas_error_log_buffer_max; /* RTAS service tokens */ static unsigned int event_scan; static unsigned int rtas_event_scan_rate; static int full_rtas_msgs = 0; /* Stop logging to nvram after first fatal error */ static int logging_enabled; /* Until we initialize everything, * make sure we don't try logging * anything */ static int error_log_cnt; /* * Since we use 32 bit RTAS, the physical address of this must be below * 4G or else bad things happen. Allocate this in the kernel data and * make it big enough. */ static unsigned char logdata[RTAS_ERROR_LOG_MAX]; static char *rtas_type[] = { "Unknown", "Retry", "TCE Error", "Internal Device Failure", "Timeout", "Data Parity", "Address Parity", "Cache Parity", "Address Invalid", "ECC Uncorrected", "ECC Corrupted", }; static char *rtas_event_type(int type) { if ((type > 0) && (type < 11)) return rtas_type[type]; switch (type) { case RTAS_TYPE_EPOW: return "EPOW"; case RTAS_TYPE_PLATFORM: return "Platform Error"; case RTAS_TYPE_IO: return "I/O Event"; case RTAS_TYPE_INFO: return "Platform Information Event"; case RTAS_TYPE_DEALLOC: return "Resource Deallocation Event"; case RTAS_TYPE_DUMP: return "Dump Notification Event"; case RTAS_TYPE_PRRN: return "Platform Resource Reassignment Event"; } return rtas_type[0]; } /* To see this info, grep RTAS /var/log/messages and each entry * will be collected together with obvious begin/end. * There will be a unique identifier on the begin and end lines. * This will persist across reboots. * * format of error logs returned from RTAS: * bytes (size) : contents * -------------------------------------------------------- * 0-7 (8) : rtas_error_log * 8-47 (40) : extended info * 48-51 (4) : vendor id * 52-1023 (vendor specific) : location code and debug data */ static void printk_log_rtas(char *buf, int len) { int i,j,n = 0; int perline = 16; char buffer[64]; char * str = "RTAS event"; if (full_rtas_msgs) { printk(RTAS_DEBUG "%d -------- %s begin --------\n", error_log_cnt, str); /* * Print perline bytes on each line, each line will start * with RTAS and a changing number, so syslogd will * print lines that are otherwise the same. Separate every * 4 bytes with a space. */ for (i = 0; i < len; i++) { j = i % perline; if (j == 0) { memset(buffer, 0, sizeof(buffer)); n = sprintf(buffer, "RTAS %d:", i/perline); } if ((i % 4) == 0) n += sprintf(buffer+n, " "); n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); if (j == (perline-1)) printk(KERN_DEBUG "%s\n", buffer); } if ((i % perline) != 0) printk(KERN_DEBUG "%s\n", buffer); printk(RTAS_DEBUG "%d -------- %s end ----------\n", error_log_cnt, str); } else { struct rtas_error_log *errlog = (struct rtas_error_log *)buf; printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", error_log_cnt, rtas_event_type(rtas_error_type(errlog)), rtas_error_severity(errlog)); } } static int log_rtas_len(char * buf) { int len; struct rtas_error_log *err; uint32_t extended_log_length; /* rtas fixed header */ len = 8; err = (struct rtas_error_log *)buf; extended_log_length = rtas_error_extended_log_length(err); if (rtas_error_extended(err) && extended_log_length) { /* extended header */ len += extended_log_length; } if (rtas_error_log_max == 0) rtas_error_log_max = rtas_get_error_log_max(); if (len > rtas_error_log_max) len = rtas_error_log_max; return len; } /* * First write to nvram, if fatal error, that is the only * place we log the info. The error will be picked up * on the next reboot by rtasd. If not fatal, run the * method for the type of error. Currently, only RTAS * errors have methods implemented, but in the future * there might be a need to store data in nvram before a * call to panic(). * * XXX We write to nvram periodically, to indicate error has * been written and sync'd, but there is a possibility * that if we don't shutdown correctly, a duplicate error * record will be created on next reboot. */ void pSeries_log_error(char *buf, unsigned int err_type, int fatal) { unsigned long offset; unsigned long s; int len = 0; pr_debug("rtasd: logging event\n"); if (buf == NULL) return; spin_lock_irqsave(&rtasd_log_lock, s); /* get length and increase count */ switch (err_type & ERR_TYPE_MASK) { case ERR_TYPE_RTAS_LOG: len = log_rtas_len(buf); if (!(err_type & ERR_FLAG_BOOT)) error_log_cnt++; break; case ERR_TYPE_KERNEL_PANIC: default: WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ spin_unlock_irqrestore(&rtasd_log_lock, s); return; } #ifdef CONFIG_PPC64 /* Write error to NVRAM */ if (logging_enabled && !(err_type & ERR_FLAG_BOOT)) nvram_write_error_log(buf, len, err_type, error_log_cnt); #endif /* CONFIG_PPC64 */ /* * rtas errors can occur during boot, and we do want to capture * those somewhere, even if nvram isn't ready (why not?), and even * if rtasd isn't ready. Put them into the boot log, at least. */ if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) printk_log_rtas(buf, len); /* Check to see if we need to or have stopped logging */ if (fatal || !logging_enabled) { logging_enabled = 0; WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ spin_unlock_irqrestore(&rtasd_log_lock, s); return; } /* call type specific method for error */ switch (err_type & ERR_TYPE_MASK) { case ERR_TYPE_RTAS_LOG: offset = rtas_error_log_buffer_max * ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); /* First copy over sequence number */ memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); /* Second copy over error log data */ offset += sizeof(int); memcpy(&rtas_log_buf[offset], buf, len); if (rtas_log_size < LOG_NUMBER) rtas_log_size += 1; else rtas_log_start += 1; WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ spin_unlock_irqrestore(&rtasd_log_lock, s); wake_up_interruptible(&rtas_log_wait); break; case ERR_TYPE_KERNEL_PANIC: default: WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ spin_unlock_irqrestore(&rtasd_log_lock, s); return; } } #ifdef CONFIG_PPC_PSERIES static s32 prrn_update_scope; static void prrn_work_fn(struct work_struct *work) { /* * For PRRN, we must pass the negative of the scope value in * the RTAS event. */ pseries_devicetree_update(-prrn_update_scope); } static DECLARE_WORK(prrn_work, prrn_work_fn); static void prrn_schedule_update(u32 scope) { flush_work(&prrn_work); prrn_update_scope = scope; schedule_work(&prrn_work); } static void handle_rtas_event(const struct rtas_error_log *log) { if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled()) return; /* For PRRN Events the extended log length is used to denote * the scope for calling rtas update-nodes. */ prrn_schedule_update(rtas_error_extended_log_length(log)); } #else static void handle_rtas_event(const struct rtas_error_log *log) { return; } #endif static int rtas_log_open(struct inode * inode, struct file * file) { return 0; } static int rtas_log_release(struct inode * inode, struct file * file) { return 0; } /* This will check if all events are logged, if they are then, we * know that we can safely clear the events in NVRAM. * Next we'll sit and wait for something else to log. */ static ssize_t rtas_log_read(struct file * file, char __user * buf, size_t count, loff_t *ppos) { int error; char *tmp; unsigned long s; unsigned long offset; if (!buf || count < rtas_error_log_buffer_max) return -EINVAL; count = rtas_error_log_buffer_max; if (!access_ok(VERIFY_WRITE, buf, count)) return -EFAULT; tmp = kmalloc(count, GFP_KERNEL); if (!tmp) return -ENOMEM; spin_lock_irqsave(&rtasd_log_lock, s); /* if it's 0, then we know we got the last one (the one in NVRAM) */ while (rtas_log_size == 0) { if (file->f_flags & O_NONBLOCK) { spin_unlock_irqrestore(&rtasd_log_lock, s); error = -EAGAIN; goto out; } if (!logging_enabled) { spin_unlock_irqrestore(&rtasd_log_lock, s); error = -ENODATA; goto out; } #ifdef CONFIG_PPC64 nvram_clear_error_log(); #endif /* CONFIG_PPC64 */ spin_unlock_irqrestore(&rtasd_log_lock, s); error = wait_event_interruptible(rtas_log_wait, rtas_log_size); if (error) goto out; spin_lock_irqsave(&rtasd_log_lock, s); } offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); memcpy(tmp, &rtas_log_buf[offset], count); rtas_log_start += 1; rtas_log_size -= 1; spin_unlock_irqrestore(&rtasd_log_lock, s); error = copy_to_user(buf, tmp, count) ? -EFAULT : count; out: kfree(tmp); return error; } static unsigned int rtas_log_poll(struct file *file, poll_table * wait) { poll_wait(file, &rtas_log_wait, wait); if (rtas_log_size) return POLLIN | POLLRDNORM; return 0; } static const struct file_operations proc_rtas_log_operations = { .read = rtas_log_read, .poll = rtas_log_poll, .open = rtas_log_open, .release = rtas_log_release, .llseek = noop_llseek, }; static int enable_surveillance(int timeout) { int error; error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); if (error == 0) return 0; if (error == -EINVAL) { printk(KERN_DEBUG "rtasd: surveillance not supported\n"); return 0; } printk(KERN_ERR "rtasd: could not update surveillance\n"); return -1; } static void do_event_scan(void) { int error; do { memset(logdata, 0, rtas_error_log_max); error = rtas_call(event_scan, 4, 1, NULL, RTAS_EVENT_SCAN_ALL_EVENTS, 0, __pa(logdata), rtas_error_log_max); if (error == -1) { printk(KERN_ERR "event-scan failed\n"); break; } if (error == 0) { pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0); handle_rtas_event((struct rtas_error_log *)logdata); } } while(error == 0); } static void rtas_event_scan(struct work_struct *w); DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan); /* * Delay should be at least one second since some machines have problems if * we call event-scan too quickly. */ static unsigned long event_scan_delay = 1*HZ; static int first_pass = 1; static void rtas_event_scan(struct work_struct *w) { unsigned int cpu; do_event_scan(); get_online_cpus(); /* raw_ OK because just using CPU as starting point. */ cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); if (cpu >= nr_cpu_ids) { cpu = cpumask_first(cpu_online_mask); if (first_pass) { first_pass = 0; event_scan_delay = 30*HZ/rtas_event_scan_rate; if (surveillance_timeout != -1) { pr_debug("rtasd: enabling surveillance\n"); enable_surveillance(surveillance_timeout); pr_debug("rtasd: surveillance enabled\n"); } } } schedule_delayed_work_on(cpu, &event_scan_work, __round_jiffies_relative(event_scan_delay, cpu)); put_online_cpus(); } #ifdef CONFIG_PPC64 static void retreive_nvram_error_log(void) { unsigned int err_type ; int rc ; /* See if we have any error stored in NVRAM */ memset(logdata, 0, rtas_error_log_max); rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type, &error_log_cnt); /* We can use rtas_log_buf now */ logging_enabled = 1; if (!rc) { if (err_type != ERR_FLAG_ALREADY_LOGGED) { pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); } } } #else /* CONFIG_PPC64 */ static void retreive_nvram_error_log(void) { } #endif /* CONFIG_PPC64 */ static void start_event_scan(void) { printk(KERN_DEBUG "RTAS daemon started\n"); pr_debug("rtasd: will sleep for %d milliseconds\n", (30000 / rtas_event_scan_rate)); /* Retrieve errors from nvram if any */ retreive_nvram_error_log(); schedule_delayed_work_on(cpumask_first(cpu_online_mask), &event_scan_work, event_scan_delay); } /* Cancel the rtas event scan work */ void rtas_cancel_event_scan(void) { cancel_delayed_work_sync(&event_scan_work); } EXPORT_SYMBOL_GPL(rtas_cancel_event_scan); static int __init rtas_init(void) { struct proc_dir_entry *entry; if (!machine_is(pseries) && !machine_is(chrp)) return 0; /* No RTAS */ event_scan = rtas_token("event-scan"); if (event_scan == RTAS_UNKNOWN_SERVICE) { printk(KERN_INFO "rtasd: No event-scan on system\n"); return -ENODEV; } rtas_event_scan_rate = rtas_token("rtas-event-scan-rate"); if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) { printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n"); return -ENODEV; } if (!rtas_event_scan_rate) { /* Broken firmware: take a rate of zero to mean don't scan */ printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n"); return 0; } /* Make room for the sequence number */ rtas_error_log_max = rtas_get_error_log_max(); rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER); if (!rtas_log_buf) { printk(KERN_ERR "rtasd: no memory\n"); return -ENOMEM; } entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL, &proc_rtas_log_operations); if (!entry) printk(KERN_ERR "Failed to create error_log proc entry\n"); start_event_scan(); return 0; } __initcall(rtas_init); static int __init surveillance_setup(char *str) { int i; /* We only do surveillance on pseries */ if (!machine_is(pseries)) return 0; if (get_option(&str,&i)) { if (i >= 0 && i <= 255) surveillance_timeout = i; } return 1; } __setup("surveillance=", surveillance_setup); static int __init rtasmsgs_setup(char *str) { if (strcmp(str, "on") == 0) full_rtas_msgs = 1; else if (strcmp(str, "off") == 0) full_rtas_msgs = 0; return 1; } __setup("rtasmsgs=", rtasmsgs_setup);