/* * PowerPC backend to the KGDB stub. * * 1998 (c) Michael AK Tesch (tesch@cs.wisc.edu) * Copyright (C) 2003 Timesys Corporation. * Copyright (C) 2004-2006 MontaVista Software, Inc. * PPC64 Mods (C) 2005 Frank Rowand (frowand@mvista.com) * PPC32 support restored by Vitaly Wool <vwool@ru.mvista.com> and * Sergei Shtylyov <sshtylyov@ru.mvista.com> * Copyright (C) 2007-2008 Wind River Systems, Inc. * * This file is licensed under the terms of the GNU General Public License * version 2. This program as licensed "as is" without any warranty of any * kind, whether express or implied. */ #include <linux/kernel.h> #include <linux/kgdb.h> #include <linux/smp.h> #include <linux/signal.h> #include <linux/ptrace.h> #include <linux/kdebug.h> #include <asm/current.h> #include <asm/processor.h> #include <asm/machdep.h> #include <asm/debug.h> #include <linux/slab.h> /* * This table contains the mapping between PowerPC hardware trap types, and * signals, which are primarily what GDB understands. GDB and the kernel * don't always agree on values, so we use constants taken from gdb-6.2. */ static struct hard_trap_info { unsigned int tt; /* Trap type code for powerpc */ unsigned char signo; /* Signal that we map this trap into */ } hard_trap_info[] = { { 0x0100, 0x02 /* SIGINT */ }, /* system reset */ { 0x0200, 0x0b /* SIGSEGV */ }, /* machine check */ { 0x0300, 0x0b /* SIGSEGV */ }, /* data access */ { 0x0400, 0x0b /* SIGSEGV */ }, /* instruction access */ { 0x0500, 0x02 /* SIGINT */ }, /* external interrupt */ { 0x0600, 0x0a /* SIGBUS */ }, /* alignment */ { 0x0700, 0x05 /* SIGTRAP */ }, /* program check */ { 0x0800, 0x08 /* SIGFPE */ }, /* fp unavailable */ { 0x0900, 0x0e /* SIGALRM */ }, /* decrementer */ { 0x0c00, 0x14 /* SIGCHLD */ }, /* system call */ #if defined(CONFIG_40x) || defined(CONFIG_BOOKE) { 0x2002, 0x05 /* SIGTRAP */ }, /* debug */ #if defined(CONFIG_FSL_BOOKE) { 0x2010, 0x08 /* SIGFPE */ }, /* spe unavailable */ { 0x2020, 0x08 /* SIGFPE */ }, /* spe unavailable */ { 0x2030, 0x08 /* SIGFPE */ }, /* spe fp data */ { 0x2040, 0x08 /* SIGFPE */ }, /* spe fp data */ { 0x2050, 0x08 /* SIGFPE */ }, /* spe fp round */ { 0x2060, 0x0e /* SIGILL */ }, /* performance monitor */ { 0x2900, 0x08 /* SIGFPE */ }, /* apu unavailable */ { 0x3100, 0x0e /* SIGALRM */ }, /* fixed interval timer */ { 0x3200, 0x02 /* SIGINT */ }, /* watchdog */ #else /* ! CONFIG_FSL_BOOKE */ { 0x1000, 0x0e /* SIGALRM */ }, /* prog interval timer */ { 0x1010, 0x0e /* SIGALRM */ }, /* fixed interval timer */ { 0x1020, 0x02 /* SIGINT */ }, /* watchdog */ { 0x2010, 0x08 /* SIGFPE */ }, /* fp unavailable */ { 0x2020, 0x08 /* SIGFPE */ }, /* ap unavailable */ #endif #else /* ! (defined(CONFIG_40x) || defined(CONFIG_BOOKE)) */ { 0x0d00, 0x05 /* SIGTRAP */ }, /* single-step */ #if defined(CONFIG_PPC_8xx) { 0x1000, 0x04 /* SIGILL */ }, /* software emulation */ #else /* ! CONFIG_PPC_8xx */ { 0x0f00, 0x04 /* SIGILL */ }, /* performance monitor */ { 0x0f20, 0x08 /* SIGFPE */ }, /* altivec unavailable */ { 0x1300, 0x05 /* SIGTRAP */ }, /* instruction address break */ #if defined(CONFIG_PPC64) { 0x1200, 0x05 /* SIGILL */ }, /* system error */ { 0x1500, 0x04 /* SIGILL */ }, /* soft patch */ { 0x1600, 0x04 /* SIGILL */ }, /* maintenance */ { 0x1700, 0x08 /* SIGFPE */ }, /* altivec assist */ { 0x1800, 0x04 /* SIGILL */ }, /* thermal */ #else /* ! CONFIG_PPC64 */ { 0x1400, 0x02 /* SIGINT */ }, /* SMI */ { 0x1600, 0x08 /* SIGFPE */ }, /* altivec assist */ { 0x1700, 0x04 /* SIGILL */ }, /* TAU */ { 0x2000, 0x05 /* SIGTRAP */ }, /* run mode */ #endif #endif #endif { 0x0000, 0x00 } /* Must be last */ }; static int computeSignal(unsigned int tt) { struct hard_trap_info *ht; for (ht = hard_trap_info; ht->tt && ht->signo; ht++) if (ht->tt == tt) return ht->signo; return SIGHUP; /* default for things we don't know about */ } /** * * kgdb_skipexception - Bail out of KGDB when we've been triggered. * @exception: Exception vector number * @regs: Current &struct pt_regs. * * On some architectures we need to skip a breakpoint exception when * it occurs after a breakpoint has been removed. * */ int kgdb_skipexception(int exception, struct pt_regs *regs) { return kgdb_isremovedbreak(regs->nip); } static int kgdb_call_nmi_hook(struct pt_regs *regs) { kgdb_nmicallback(raw_smp_processor_id(), regs); return 0; } #ifdef CONFIG_SMP void kgdb_roundup_cpus(unsigned long flags) { smp_send_debugger_break(); } #endif /* KGDB functions to use existing PowerPC64 hooks. */ static int kgdb_debugger(struct pt_regs *regs) { return !kgdb_handle_exception(1, computeSignal(TRAP(regs)), DIE_OOPS, regs); } static int kgdb_handle_breakpoint(struct pt_regs *regs) { if (user_mode(regs)) return 0; if (kgdb_handle_exception(1, SIGTRAP, 0, regs) != 0) return 0; if (*(u32 *) (regs->nip) == *(u32 *) (&arch_kgdb_ops.gdb_bpt_instr)) regs->nip += BREAK_INSTR_SIZE; return 1; } static DEFINE_PER_CPU(struct thread_info, kgdb_thread_info); static int kgdb_singlestep(struct pt_regs *regs) { struct thread_info *thread_info, *exception_thread_info; struct thread_info *backup_current_thread_info = this_cpu_ptr(&kgdb_thread_info); if (user_mode(regs)) return 0; /* * On Book E and perhaps other processors, singlestep is handled on * the critical exception stack. This causes current_thread_info() * to fail, since it it locates the thread_info by masking off * the low bits of the current stack pointer. We work around * this issue by copying the thread_info from the kernel stack * before calling kgdb_handle_exception, and copying it back * afterwards. On most processors the copy is avoided since * exception_thread_info == thread_info. */ thread_info = (struct thread_info *)(regs->gpr[1] & ~(THREAD_SIZE-1)); exception_thread_info = current_thread_info(); if (thread_info != exception_thread_info) { /* Save the original current_thread_info. */ memcpy(backup_current_thread_info, exception_thread_info, sizeof *thread_info); memcpy(exception_thread_info, thread_info, sizeof *thread_info); } kgdb_handle_exception(0, SIGTRAP, 0, regs); if (thread_info != exception_thread_info) /* Restore current_thread_info lastly. */ memcpy(exception_thread_info, backup_current_thread_info, sizeof *thread_info); return 1; } static int kgdb_iabr_match(struct pt_regs *regs) { if (user_mode(regs)) return 0; if (kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs) != 0) return 0; return 1; } static int kgdb_break_match(struct pt_regs *regs) { if (user_mode(regs)) return 0; if (kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs) != 0) return 0; return 1; } #define PACK64(ptr, src) do { *(ptr++) = (src); } while (0) #define PACK32(ptr, src) do { \ u32 *ptr32; \ ptr32 = (u32 *)ptr; \ *(ptr32++) = (src); \ ptr = (unsigned long *)ptr32; \ } while (0) void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) { struct pt_regs *regs = (struct pt_regs *)(p->thread.ksp + STACK_FRAME_OVERHEAD); unsigned long *ptr = gdb_regs; int reg; memset(gdb_regs, 0, NUMREGBYTES); /* Regs GPR0-2 */ for (reg = 0; reg < 3; reg++) PACK64(ptr, regs->gpr[reg]); /* Regs GPR3-13 are caller saved, not in regs->gpr[] */ ptr += 11; /* Regs GPR14-31 */ for (reg = 14; reg < 32; reg++) PACK64(ptr, regs->gpr[reg]); #ifdef CONFIG_FSL_BOOKE #ifdef CONFIG_SPE for (reg = 0; reg < 32; reg++) PACK64(ptr, p->thread.evr[reg]); #else ptr += 32; #endif #else /* fp registers not used by kernel, leave zero */ ptr += 32 * 8 / sizeof(long); #endif PACK64(ptr, regs->nip); PACK64(ptr, regs->msr); PACK32(ptr, regs->ccr); PACK64(ptr, regs->link); PACK64(ptr, regs->ctr); PACK32(ptr, regs->xer); BUG_ON((unsigned long)ptr > (unsigned long)(((void *)gdb_regs) + NUMREGBYTES)); } #define GDB_SIZEOF_REG sizeof(unsigned long) #define GDB_SIZEOF_REG_U32 sizeof(u32) #ifdef CONFIG_FSL_BOOKE #define GDB_SIZEOF_FLOAT_REG sizeof(unsigned long) #else #define GDB_SIZEOF_FLOAT_REG sizeof(u64) #endif struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = { { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[0]) }, { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[1]) }, { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[2]) }, { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[3]) }, { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[4]) }, { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[5]) }, { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[6]) }, { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[7]) }, { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[8]) }, { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[9]) }, { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[10]) }, { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[11]) }, { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[12]) }, { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[13]) }, { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[14]) }, { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[15]) }, { "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[16]) }, { "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[17]) }, { "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[18]) }, { "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[19]) }, { "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[20]) }, { "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[21]) }, { "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[22]) }, { "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[23]) }, { "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[24]) }, { "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[25]) }, { "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[26]) }, { "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[27]) }, { "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[28]) }, { "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[29]) }, { "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[30]) }, { "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[31]) }, { "f0", GDB_SIZEOF_FLOAT_REG, 0 }, { "f1", GDB_SIZEOF_FLOAT_REG, 1 }, { "f2", GDB_SIZEOF_FLOAT_REG, 2 }, { "f3", GDB_SIZEOF_FLOAT_REG, 3 }, { "f4", GDB_SIZEOF_FLOAT_REG, 4 }, { "f5", GDB_SIZEOF_FLOAT_REG, 5 }, { "f6", GDB_SIZEOF_FLOAT_REG, 6 }, { "f7", GDB_SIZEOF_FLOAT_REG, 7 }, { "f8", GDB_SIZEOF_FLOAT_REG, 8 }, { "f9", GDB_SIZEOF_FLOAT_REG, 9 }, { "f10", GDB_SIZEOF_FLOAT_REG, 10 }, { "f11", GDB_SIZEOF_FLOAT_REG, 11 }, { "f12", GDB_SIZEOF_FLOAT_REG, 12 }, { "f13", GDB_SIZEOF_FLOAT_REG, 13 }, { "f14", GDB_SIZEOF_FLOAT_REG, 14 }, { "f15", GDB_SIZEOF_FLOAT_REG, 15 }, { "f16", GDB_SIZEOF_FLOAT_REG, 16 }, { "f17", GDB_SIZEOF_FLOAT_REG, 17 }, { "f18", GDB_SIZEOF_FLOAT_REG, 18 }, { "f19", GDB_SIZEOF_FLOAT_REG, 19 }, { "f20", GDB_SIZEOF_FLOAT_REG, 20 }, { "f21", GDB_SIZEOF_FLOAT_REG, 21 }, { "f22", GDB_SIZEOF_FLOAT_REG, 22 }, { "f23", GDB_SIZEOF_FLOAT_REG, 23 }, { "f24", GDB_SIZEOF_FLOAT_REG, 24 }, { "f25", GDB_SIZEOF_FLOAT_REG, 25 }, { "f26", GDB_SIZEOF_FLOAT_REG, 26 }, { "f27", GDB_SIZEOF_FLOAT_REG, 27 }, { "f28", GDB_SIZEOF_FLOAT_REG, 28 }, { "f29", GDB_SIZEOF_FLOAT_REG, 29 }, { "f30", GDB_SIZEOF_FLOAT_REG, 30 }, { "f31", GDB_SIZEOF_FLOAT_REG, 31 }, { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, nip) }, { "msr", GDB_SIZEOF_REG, offsetof(struct pt_regs, msr) }, { "cr", GDB_SIZEOF_REG_U32, offsetof(struct pt_regs, ccr) }, { "lr", GDB_SIZEOF_REG, offsetof(struct pt_regs, link) }, { "ctr", GDB_SIZEOF_REG_U32, offsetof(struct pt_regs, ctr) }, { "xer", GDB_SIZEOF_REG, offsetof(struct pt_regs, xer) }, }; char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) { if (regno >= DBG_MAX_REG_NUM || regno < 0) return NULL; if (regno < 32 || regno >= 64) /* First 0 -> 31 gpr registers*/ /* pc, msr, ls... registers 64 -> 69 */ memcpy(mem, (void *)regs + dbg_reg_def[regno].offset, dbg_reg_def[regno].size); if (regno >= 32 && regno < 64) { /* FP registers 32 -> 63 */ #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_SPE) if (current) memcpy(mem, ¤t->thread.evr[regno-32], dbg_reg_def[regno].size); #else /* fp registers not used by kernel, leave zero */ memset(mem, 0, dbg_reg_def[regno].size); #endif } return dbg_reg_def[regno].name; } int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) { if (regno >= DBG_MAX_REG_NUM || regno < 0) return -EINVAL; if (regno < 32 || regno >= 64) /* First 0 -> 31 gpr registers*/ /* pc, msr, ls... registers 64 -> 69 */ memcpy((void *)regs + dbg_reg_def[regno].offset, mem, dbg_reg_def[regno].size); if (regno >= 32 && regno < 64) { /* FP registers 32 -> 63 */ #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_SPE) memcpy(¤t->thread.evr[regno-32], mem, dbg_reg_def[regno].size); #else /* fp registers not used by kernel, leave zero */ return 0; #endif } return 0; } void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc) { regs->nip = pc; } /* * This function does PowerPC specific procesing for interfacing to gdb. */ int kgdb_arch_handle_exception(int vector, int signo, int err_code, char *remcom_in_buffer, char *remcom_out_buffer, struct pt_regs *linux_regs) { char *ptr = &remcom_in_buffer[1]; unsigned long addr; switch (remcom_in_buffer[0]) { /* * sAA..AA Step one instruction from AA..AA * This will return an error to gdb .. */ case 's': case 'c': /* handle the optional parameter */ if (kgdb_hex2long(&ptr, &addr)) linux_regs->nip = addr; atomic_set(&kgdb_cpu_doing_single_step, -1); /* set the trace bit if we're stepping */ if (remcom_in_buffer[0] == 's') { #ifdef CONFIG_PPC_ADV_DEBUG_REGS mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM); linux_regs->msr |= MSR_DE; #else linux_regs->msr |= MSR_SE; #endif atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id()); } return 0; } return -1; } /* * Global data */ struct kgdb_arch arch_kgdb_ops = { #ifdef __LITTLE_ENDIAN__ .gdb_bpt_instr = {0x08, 0x10, 0x82, 0x7d}, #else .gdb_bpt_instr = {0x7d, 0x82, 0x10, 0x08}, #endif }; static int kgdb_not_implemented(struct pt_regs *regs) { return 0; } static void *old__debugger_ipi; static void *old__debugger; static void *old__debugger_bpt; static void *old__debugger_sstep; static void *old__debugger_iabr_match; static void *old__debugger_break_match; static void *old__debugger_fault_handler; int kgdb_arch_init(void) { old__debugger_ipi = __debugger_ipi; old__debugger = __debugger; old__debugger_bpt = __debugger_bpt; old__debugger_sstep = __debugger_sstep; old__debugger_iabr_match = __debugger_iabr_match; old__debugger_break_match = __debugger_break_match; old__debugger_fault_handler = __debugger_fault_handler; __debugger_ipi = kgdb_call_nmi_hook; __debugger = kgdb_debugger; __debugger_bpt = kgdb_handle_breakpoint; __debugger_sstep = kgdb_singlestep; __debugger_iabr_match = kgdb_iabr_match; __debugger_break_match = kgdb_break_match; __debugger_fault_handler = kgdb_not_implemented; return 0; } void kgdb_arch_exit(void) { __debugger_ipi = old__debugger_ipi; __debugger = old__debugger; __debugger_bpt = old__debugger_bpt; __debugger_sstep = old__debugger_sstep; __debugger_iabr_match = old__debugger_iabr_match; __debugger_break_match = old__debugger_break_match; __debugger_fault_handler = old__debugger_fault_handler; }