#ifndef __PARISC_UACCESS_H #define __PARISC_UACCESS_H /* * User space memory access functions */ #include #include #include #include #include #include #include #define VERIFY_READ 0 #define VERIFY_WRITE 1 #define KERNEL_DS ((mm_segment_t){0}) #define USER_DS ((mm_segment_t){1}) #define segment_eq(a, b) ((a).seg == (b).seg) #define get_ds() (KERNEL_DS) #define get_fs() (current_thread_info()->addr_limit) #define set_fs(x) (current_thread_info()->addr_limit = (x)) /* * Note that since kernel addresses are in a separate address space on * parisc, we don't need to do anything for access_ok(). * We just let the page fault handler do the right thing. This also means * that put_user is the same as __put_user, etc. */ #define access_ok(type, uaddr, size) \ ( (uaddr) == (uaddr) ) #define put_user __put_user #define get_user __get_user #if !defined(CONFIG_64BIT) #define LDD_USER(val, ptr) __get_user_asm64(val, ptr) #define STD_USER(x, ptr) __put_user_asm64(x, ptr) #else #define LDD_USER(val, ptr) __get_user_asm(val, "ldd", ptr) #define STD_USER(x, ptr) __put_user_asm("std", x, ptr) #endif /* * The exception table contains two values: the first is the relative offset to * the address of the instruction that is allowed to fault, and the second is * the relative offset to the address of the fixup routine. Since relative * addresses are used, 32bit values are sufficient even on 64bit kernel. */ #define ARCH_HAS_RELATIVE_EXTABLE struct exception_table_entry { int insn; /* relative address of insn that is allowed to fault. */ int fixup; /* relative address of fixup routine */ }; #define ASM_EXCEPTIONTABLE_ENTRY( fault_addr, except_addr )\ ".section __ex_table,\"aw\"\n" \ ".word (" #fault_addr " - .), (" #except_addr " - .)\n\t" \ ".previous\n" /* * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() creates a special exception table entry * (with lowest bit set) for which the fault handler in fixup_exception() will * load -EFAULT into %r8 for a read or write fault, and zeroes the target * register in case of a read fault in get_user(). */ #define ASM_EXCEPTIONTABLE_ENTRY_EFAULT( fault_addr, except_addr )\ ASM_EXCEPTIONTABLE_ENTRY( fault_addr, except_addr + 1) /* * The page fault handler stores, in a per-cpu area, the following information * if a fixup routine is available. */ struct exception_data { unsigned long fault_ip; unsigned long fault_gp; unsigned long fault_space; unsigned long fault_addr; }; /* * load_sr2() preloads the space register %%sr2 - based on the value of * get_fs() - with either a value of 0 to access kernel space (KERNEL_DS which * is 0), or with the current value of %%sr3 to access user space (USER_DS) * memory. The following __get_user_asm() and __put_user_asm() functions have * %%sr2 hard-coded to access the requested memory. */ #define load_sr2() \ __asm__(" or,= %0,%%r0,%%r0\n\t" \ " mfsp %%sr3,%0\n\t" \ " mtsp %0,%%sr2\n\t" \ : : "r"(get_fs()) : ) #define __get_user_internal(val, ptr) \ ({ \ register long __gu_err __asm__ ("r8") = 0; \ \ switch (sizeof(*(ptr))) { \ case 1: __get_user_asm(val, "ldb", ptr); break; \ case 2: __get_user_asm(val, "ldh", ptr); break; \ case 4: __get_user_asm(val, "ldw", ptr); break; \ case 8: LDD_USER(val, ptr); break; \ default: BUILD_BUG(); \ } \ \ __gu_err; \ }) #define __get_user(val, ptr) \ ({ \ load_sr2(); \ __get_user_internal(val, ptr); \ }) #define __get_user_asm(val, ldx, ptr) \ { \ register long __gu_val; \ \ __asm__("1: " ldx " 0(%%sr2,%2),%0\n" \ "9:\n" \ ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 9b) \ : "=r"(__gu_val), "=r"(__gu_err) \ : "r"(ptr), "1"(__gu_err)); \ \ (val) = (__force __typeof__(*(ptr))) __gu_val; \ } #if !defined(CONFIG_64BIT) #define __get_user_asm64(val, ptr) \ { \ union { \ unsigned long long l; \ __typeof__(*(ptr)) t; \ } __gu_tmp; \ \ __asm__(" copy %%r0,%R0\n" \ "1: ldw 0(%%sr2,%2),%0\n" \ "2: ldw 4(%%sr2,%2),%R0\n" \ "9:\n" \ ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 9b) \ ASM_EXCEPTIONTABLE_ENTRY_EFAULT(2b, 9b) \ : "=&r"(__gu_tmp.l), "=r"(__gu_err) \ : "r"(ptr), "1"(__gu_err)); \ \ (val) = __gu_tmp.t; \ } #endif /* !defined(CONFIG_64BIT) */ #define __put_user_internal(x, ptr) \ ({ \ register long __pu_err __asm__ ("r8") = 0; \ __typeof__(*(ptr)) __x = (__typeof__(*(ptr)))(x); \ \ switch (sizeof(*(ptr))) { \ case 1: __put_user_asm("stb", __x, ptr); break; \ case 2: __put_user_asm("sth", __x, ptr); break; \ case 4: __put_user_asm("stw", __x, ptr); break; \ case 8: STD_USER(__x, ptr); break; \ default: BUILD_BUG(); \ } \ \ __pu_err; \ }) #define __put_user(x, ptr) \ ({ \ load_sr2(); \ __put_user_internal(x, ptr); \ }) /* * The "__put_user/kernel_asm()" macros tell gcc they read from memory * instead of writing. This is because they do not write to any memory * gcc knows about, so there are no aliasing issues. These macros must * also be aware that fixups are executed in the context of the fault, * and any registers used there must be listed as clobbers. * r8 is already listed as err. */ #define __put_user_asm(stx, x, ptr) \ __asm__ __volatile__ ( \ "1: " stx " %2,0(%%sr2,%1)\n" \ "9:\n" \ ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 9b) \ : "=r"(__pu_err) \ : "r"(ptr), "r"(x), "0"(__pu_err)) #if !defined(CONFIG_64BIT) #define __put_user_asm64(__val, ptr) do { \ __asm__ __volatile__ ( \ "1: stw %2,0(%%sr2,%1)\n" \ "2: stw %R2,4(%%sr2,%1)\n" \ "9:\n" \ ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 9b) \ ASM_EXCEPTIONTABLE_ENTRY_EFAULT(2b, 9b) \ : "=r"(__pu_err) \ : "r"(ptr), "r"(__val), "0"(__pu_err)); \ } while (0) #endif /* !defined(CONFIG_64BIT) */ /* * Complex access routines -- external declarations */ extern unsigned long lcopy_to_user(void __user *, const void *, unsigned long); extern unsigned long lcopy_from_user(void *, const void __user *, unsigned long); extern unsigned long lcopy_in_user(void __user *, const void __user *, unsigned long); extern long strncpy_from_user(char *, const char __user *, long); extern unsigned lclear_user(void __user *, unsigned long); extern long lstrnlen_user(const char __user *, long); /* * Complex access routines -- macros */ #define user_addr_max() (~0UL) #define strnlen_user lstrnlen_user #define strlen_user(str) lstrnlen_user(str, 0x7fffffffL) #define clear_user lclear_user #define __clear_user lclear_user unsigned long __must_check __copy_to_user(void __user *dst, const void *src, unsigned long len); unsigned long __must_check __copy_from_user(void *dst, const void __user *src, unsigned long len); unsigned long copy_in_user(void __user *dst, const void __user *src, unsigned long len); #define __copy_in_user copy_in_user #define __copy_to_user_inatomic __copy_to_user #define __copy_from_user_inatomic __copy_from_user extern void __compiletime_error("usercopy buffer size is too small") __bad_copy_user(void); static inline void copy_user_overflow(int size, unsigned long count) { WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count); } static __always_inline unsigned long __must_check copy_from_user(void *to, const void __user *from, unsigned long n) { int sz = __compiletime_object_size(to); unsigned long ret = n; if (likely(sz < 0 || sz >= n)) { check_object_size(to, n, false); ret = __copy_from_user(to, from, n); } else if (!__builtin_constant_p(n)) copy_user_overflow(sz, n); else __bad_copy_user(); if (unlikely(ret)) memset(to + (n - ret), 0, ret); return ret; } static __always_inline unsigned long __must_check copy_to_user(void __user *to, const void *from, unsigned long n) { int sz = __compiletime_object_size(from); if (likely(sz < 0 || sz >= n)) { check_object_size(from, n, true); n = __copy_to_user(to, from, n); } else if (!__builtin_constant_p(n)) copy_user_overflow(sz, n); else __bad_copy_user(); return n; } struct pt_regs; int fixup_exception(struct pt_regs *regs); #endif /* __PARISC_UACCESS_H */