/* * Copyright 2001 MontaVista Software Inc. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net * Copyright (c) 2003, 2004 Maciej W. Rozycki * * Common time service routines for MIPS machines. See * Documentation/mips/time.README. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The integer part of the number of usecs per jiffy is taken from tick, * but the fractional part is not recorded, so we calculate it using the * initial value of HZ. This aids systems where tick isn't really an * integer (e.g. for HZ = 128). */ #define USECS_PER_JIFFY TICK_SIZE #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) #define TICK_SIZE (tick_nsec / 1000) /* * forward reference */ DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); int __weak rtc_mips_set_time(unsigned long sec) { return 0; } EXPORT_SYMBOL(rtc_mips_set_time); int __weak rtc_mips_set_mmss(unsigned long nowtime) { return rtc_mips_set_time(nowtime); } int update_persistent_clock(struct timespec now) { return rtc_mips_set_mmss(now.tv_sec); } /* * Null high precision timer functions for systems lacking one. */ static cycle_t null_hpt_read(void) { return 0; } /* * Timer ack for an R4k-compatible timer of a known frequency. */ static void c0_timer_ack(void) { write_c0_compare(read_c0_compare()); } /* * High precision timer functions for a R4k-compatible timer. */ static cycle_t c0_hpt_read(void) { return read_c0_count(); } int (*mips_timer_state)(void); /* * local_timer_interrupt() does profiling and process accounting * on a per-CPU basis. * * In UP mode, it is invoked from the (global) timer_interrupt. * * In SMP mode, it might invoked by per-CPU timer interrupt, or * a broadcasted inter-processor interrupt which itself is triggered * by the global timer interrupt. */ void local_timer_interrupt(int irq, void *dev_id) { profile_tick(CPU_PROFILING); update_process_times(user_mode(get_irq_regs())); } int null_perf_irq(void) { return 0; } EXPORT_SYMBOL(null_perf_irq); int (*perf_irq)(void) = null_perf_irq; EXPORT_SYMBOL(perf_irq); /* * Timer interrupt */ int cp0_compare_irq; /* * Performance counter IRQ or -1 if shared with timer */ int cp0_perfcount_irq; EXPORT_SYMBOL_GPL(cp0_perfcount_irq); /* * Possibly handle a performance counter interrupt. * Return true if the timer interrupt should not be checked */ static inline int handle_perf_irq(int r2) { /* * The performance counter overflow interrupt may be shared with the * timer interrupt (cp0_perfcount_irq < 0). If it is and a * performance counter has overflowed (perf_irq() == IRQ_HANDLED) * and we can't reliably determine if a counter interrupt has also * happened (!r2) then don't check for a timer interrupt. */ return (cp0_perfcount_irq < 0) && perf_irq() == IRQ_HANDLED && !r2; } /* * time_init() - it does the following things. * * 1) plat_time_init() - * a) (optional) set up RTC routines, * b) (optional) calibrate and set the mips_hpt_frequency * (only needed if you intended to use cpu counter as timer interrupt * source) * 2) calculate a couple of cached variables for later usage * 3) plat_timer_setup() - * a) (optional) over-write any choices made above by time_init(). * b) machine specific code should setup the timer irqaction. * c) enable the timer interrupt */ unsigned int mips_hpt_frequency; static unsigned int __init calibrate_hpt(void) { cycle_t frequency, hpt_start, hpt_end, hpt_count, hz; const int loops = HZ / 10; int log_2_loops = 0; int i; /* * We want to calibrate for 0.1s, but to avoid a 64-bit * division we round the number of loops up to the nearest * power of 2. */ while (loops > 1 << log_2_loops) log_2_loops++; i = 1 << log_2_loops; /* * Wait for a rising edge of the timer interrupt. */ while (mips_timer_state()); while (!mips_timer_state()); /* * Now see how many high precision timer ticks happen * during the calculated number of periods between timer * interrupts. */ hpt_start = clocksource_mips.read(); do { while (mips_timer_state()); while (!mips_timer_state()); } while (--i); hpt_end = clocksource_mips.read(); hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask; hz = HZ; frequency = hpt_count * hz; return frequency >> log_2_loops; } struct clocksource clocksource_mips = { .name = "MIPS", .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int mips_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned int cnt; int res; #ifdef CONFIG_MIPS_MT_SMTC { unsigned long flags, vpflags; local_irq_save(flags); vpflags = dvpe(); #endif cnt = read_c0_count(); cnt += delta; write_c0_compare(cnt); res = ((long)(read_c0_count() - cnt ) > 0) ? -ETIME : 0; #ifdef CONFIG_MIPS_MT_SMTC evpe(vpflags); local_irq_restore(flags); } #endif return res; } static void mips_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { /* Nothing to do ... */ } static DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device); static int cp0_timer_irq_installed; static irqreturn_t timer_interrupt(int irq, void *dev_id) { const int r2 = cpu_has_mips_r2; struct clock_event_device *cd; int cpu = smp_processor_id(); /* * Suckage alert: * Before R2 of the architecture there was no way to see if a * performance counter interrupt was pending, so we have to run * the performance counter interrupt handler anyway. */ if (handle_perf_irq(r2)) goto out; /* * The same applies to performance counter interrupts. But with the * above we now know that the reason we got here must be a timer * interrupt. Being the paranoiacs we are we check anyway. */ if (!r2 || (read_c0_cause() & (1 << 30))) { c0_timer_ack(); #ifdef CONFIG_MIPS_MT_SMTC if (cpu_data[cpu].vpe_id) goto out; cpu = 0; #endif cd = &per_cpu(mips_clockevent_device, cpu); cd->event_handler(cd); } out: return IRQ_HANDLED; } static struct irqaction timer_irqaction = { .handler = timer_interrupt, #ifdef CONFIG_MIPS_MT_SMTC .flags = IRQF_DISABLED, #else .flags = IRQF_DISABLED | IRQF_PERCPU, #endif .name = "timer", }; static void __init init_mips_clocksource(void) { u64 temp; u32 shift; if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read) return; /* Calclate a somewhat reasonable rating value */ clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000; /* Find a shift value */ for (shift = 32; shift > 0; shift--) { temp = (u64) NSEC_PER_SEC << shift; do_div(temp, mips_hpt_frequency); if ((temp >> 32) == 0) break; } clocksource_mips.shift = shift; clocksource_mips.mult = (u32)temp; clocksource_register(&clocksource_mips); } void __init __weak plat_time_init(void) { } void __init __weak plat_timer_setup(struct irqaction *irq) { } #ifdef CONFIG_MIPS_MT_SMTC DEFINE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device); static void smtc_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { } int dummycnt[NR_CPUS]; static void mips_broadcast(cpumask_t mask) { unsigned int cpu; for_each_cpu_mask(cpu, mask) smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0); } static void setup_smtc_dummy_clockevent_device(void) { //uint64_t mips_freq = mips_hpt_^frequency; unsigned int cpu = smp_processor_id(); struct clock_event_device *cd; cd = &per_cpu(smtc_dummy_clockevent_device, cpu); cd->name = "SMTC"; cd->features = CLOCK_EVT_FEAT_DUMMY; /* Calculate the min / max delta */ cd->mult = 0; //div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32); cd->shift = 0; //32; cd->max_delta_ns = 0; //clockevent_delta2ns(0x7fffffff, cd); cd->min_delta_ns = 0; //clockevent_delta2ns(0x30, cd); cd->rating = 200; cd->irq = 17; //-1; // if (cpu) // cd->cpumask = CPU_MASK_ALL; // cpumask_of_cpu(cpu); // else cd->cpumask = cpumask_of_cpu(cpu); cd->set_mode = smtc_set_mode; cd->broadcast = mips_broadcast; clockevents_register_device(cd); } #endif static void mips_event_handler(struct clock_event_device *dev) { } /* * FIXME: This doesn't hold for the relocated E9000 compare interrupt. */ static int c0_compare_int_pending(void) { return (read_c0_cause() >> cp0_compare_irq) & 0x100; } static int c0_compare_int_usable(void) { const unsigned int delta = 0x300000; unsigned int cnt; /* * IP7 already pending? Try to clear it by acking the timer. */ if (c0_compare_int_pending()) { write_c0_compare(read_c0_compare()); irq_disable_hazard(); if (c0_compare_int_pending()) return 0; } cnt = read_c0_count(); cnt += delta; write_c0_compare(cnt); while ((long)(read_c0_count() - cnt) <= 0) ; /* Wait for expiry */ if (!c0_compare_int_pending()) return 0; write_c0_compare(read_c0_compare()); irq_disable_hazard(); if (c0_compare_int_pending()) return 0; /* * Feels like a real count / compare timer. */ return 1; } void __cpuinit mips_clockevent_init(void) { uint64_t mips_freq = mips_hpt_frequency; unsigned int cpu = smp_processor_id(); struct clock_event_device *cd; unsigned int irq = MIPS_CPU_IRQ_BASE + 7; if (!cpu_has_counter) return; #ifdef CONFIG_MIPS_MT_SMTC setup_smtc_dummy_clockevent_device(); /* * On SMTC we only register VPE0's compare interrupt as clockevent * device. */ if (cpu) return; #endif if (!c0_compare_int_usable()) return; cd = &per_cpu(mips_clockevent_device, cpu); cd->name = "MIPS"; cd->features = CLOCK_EVT_FEAT_ONESHOT; /* Calculate the min / max delta */ cd->mult = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32); cd->shift = 32; cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd); cd->min_delta_ns = clockevent_delta2ns(0x300, cd); cd->rating = 300; cd->irq = irq; #ifdef CONFIG_MIPS_MT_SMTC cd->cpumask = CPU_MASK_ALL; #else cd->cpumask = cpumask_of_cpu(cpu); #endif cd->set_next_event = mips_next_event; cd->set_mode = mips_set_mode; cd->event_handler = mips_event_handler; clockevents_register_device(cd); if (!cp0_timer_irq_installed) { #ifdef CONFIG_MIPS_MT_SMTC #define CPUCTR_IMASKBIT (0x100 << cp0_compare_irq) setup_irq_smtc(irq, &timer_irqaction, CPUCTR_IMASKBIT); #else setup_irq(irq, &timer_irqaction); #endif /* CONFIG_MIPS_MT_SMTC */ cp0_timer_irq_installed = 1; } } void __init time_init(void) { plat_time_init(); /* Choose appropriate high precision timer routines. */ if (!cpu_has_counter && !clocksource_mips.read) /* No high precision timer -- sorry. */ clocksource_mips.read = null_hpt_read; else if (!mips_hpt_frequency && !mips_timer_state) { /* A high precision timer of unknown frequency. */ if (!clocksource_mips.read) /* No external high precision timer -- use R4k. */ clocksource_mips.read = c0_hpt_read; } else { /* We know counter frequency. Or we can get it. */ if (!clocksource_mips.read) { /* No external high precision timer -- use R4k. */ clocksource_mips.read = c0_hpt_read; } if (!mips_hpt_frequency) mips_hpt_frequency = calibrate_hpt(); /* Report the high precision timer rate for a reference. */ printk("Using %u.%03u MHz high precision timer.\n", ((mips_hpt_frequency + 500) / 1000) / 1000, ((mips_hpt_frequency + 500) / 1000) % 1000); #ifdef CONFIG_IRQ_CPU setup_irq(MIPS_CPU_IRQ_BASE + 7, &timer_irqaction); #endif } /* * Call board specific timer interrupt setup. * * this pointer must be setup in machine setup routine. * * Even if a machine chooses to use a low-level timer interrupt, * it still needs to setup the timer_irqaction. * In that case, it might be better to set timer_irqaction.handler * to be NULL function so that we are sure the high-level code * is not invoked accidentally. */ plat_timer_setup(&timer_irqaction); init_mips_clocksource(); mips_clockevent_init(); }