/* * SWIOTLB-based DMA API implementation * * Copyright (C) 2012 ARM Ltd. * Author: Catalin Marinas * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) { if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE)) return pgprot_writecombine(prot); return prot; } void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir) { __dma_map_area(phys_to_virt(paddr), size, dir); } void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir) { __dma_unmap_area(phys_to_virt(paddr), size, dir); } void arch_dma_prep_coherent(struct page *page, size_t size) { __dma_flush_area(page_address(page), size); } #ifdef CONFIG_IOMMU_DMA static int __swiotlb_get_sgtable_page(struct sg_table *sgt, struct page *page, size_t size) { int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); if (!ret) sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); return ret; } static int __swiotlb_mmap_pfn(struct vm_area_struct *vma, unsigned long pfn, size_t size) { int ret = -ENXIO; unsigned long nr_vma_pages = vma_pages(vma); unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long off = vma->vm_pgoff; if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { ret = remap_pfn_range(vma, vma->vm_start, pfn + off, vma->vm_end - vma->vm_start, vma->vm_page_prot); } return ret; } #endif /* CONFIG_IOMMU_DMA */ static int __init arm64_dma_init(void) { WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(), TAINT_CPU_OUT_OF_SPEC, "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)", ARCH_DMA_MINALIGN, cache_line_size()); return dma_atomic_pool_init(GFP_DMA32, __pgprot(PROT_NORMAL_NC)); } arch_initcall(arm64_dma_init); #ifdef CONFIG_IOMMU_DMA #include #include #include /* Thankfully, all cache ops are by VA so we can ignore phys here */ static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) { __dma_flush_area(virt, PAGE_SIZE); } static void *__iommu_alloc_attrs(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, unsigned long attrs) { bool coherent = dev_is_dma_coherent(dev); int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); size_t iosize = size; void *addr; if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) return NULL; size = PAGE_ALIGN(size); /* * Some drivers rely on this, and we probably don't want the * possibility of stale kernel data being read by devices anyway. */ gfp |= __GFP_ZERO; if (!gfpflags_allow_blocking(gfp)) { struct page *page; /* * In atomic context we can't remap anything, so we'll only * get the virtually contiguous buffer we need by way of a * physically contiguous allocation. */ if (coherent) { page = alloc_pages(gfp, get_order(size)); addr = page ? page_address(page) : NULL; } else { addr = dma_alloc_from_pool(size, &page, gfp); } if (!addr) return NULL; *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); if (*handle == DMA_MAPPING_ERROR) { if (coherent) __free_pages(page, get_order(size)); else dma_free_from_pool(addr, size); addr = NULL; } } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs); struct page *page; page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, get_order(size), gfp & __GFP_NOWARN); if (!page) return NULL; *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); if (*handle == DMA_MAPPING_ERROR) { dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); return NULL; } addr = dma_common_contiguous_remap(page, size, VM_USERMAP, prot, __builtin_return_address(0)); if (addr) { memset(addr, 0, size); if (!coherent) __dma_flush_area(page_to_virt(page), iosize); } else { iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs); dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); } } else { pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs); struct page **pages; pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, handle, flush_page); if (!pages) return NULL; addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, __builtin_return_address(0)); if (!addr) iommu_dma_free(dev, pages, iosize, handle); } return addr; } static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, unsigned long attrs) { size_t iosize = size; size = PAGE_ALIGN(size); /* * @cpu_addr will be one of 4 things depending on how it was allocated: * - A remapped array of pages for contiguous allocations. * - A remapped array of pages from iommu_dma_alloc(), for all * non-atomic allocations. * - A non-cacheable alias from the atomic pool, for atomic * allocations by non-coherent devices. * - A normal lowmem address, for atomic allocations by * coherent devices. * Hence how dodgy the below logic looks... */ if (dma_in_atomic_pool(cpu_addr, size)) { iommu_dma_unmap_page(dev, handle, iosize, 0, 0); dma_free_from_pool(cpu_addr, size); } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { struct page *page = vmalloc_to_page(cpu_addr); iommu_dma_unmap_page(dev, handle, iosize, 0, attrs); dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); dma_common_free_remap(cpu_addr, size, VM_USERMAP); } else if (is_vmalloc_addr(cpu_addr)){ struct vm_struct *area = find_vm_area(cpu_addr); if (WARN_ON(!area || !area->pages)) return; iommu_dma_free(dev, area->pages, iosize, &handle); dma_common_free_remap(cpu_addr, size, VM_USERMAP); } else { iommu_dma_unmap_page(dev, handle, iosize, 0, 0); __free_pages(virt_to_page(cpu_addr), get_order(size)); } } static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { struct vm_struct *area; int ret; vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs); if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { /* * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, * hence in the vmalloc space. */ unsigned long pfn = vmalloc_to_pfn(cpu_addr); return __swiotlb_mmap_pfn(vma, pfn, size); } area = find_vm_area(cpu_addr); if (WARN_ON(!area || !area->pages)) return -ENXIO; return iommu_dma_mmap(area->pages, size, vma); } static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; struct vm_struct *area = find_vm_area(cpu_addr); if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { /* * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, * hence in the vmalloc space. */ struct page *page = vmalloc_to_page(cpu_addr); return __swiotlb_get_sgtable_page(sgt, page, size); } if (WARN_ON(!area || !area->pages)) return -ENXIO; return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, GFP_KERNEL); } static void __iommu_sync_single_for_cpu(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { phys_addr_t phys; if (dev_is_dma_coherent(dev)) return; phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr); arch_sync_dma_for_cpu(dev, phys, size, dir); } static void __iommu_sync_single_for_device(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { phys_addr_t phys; if (dev_is_dma_coherent(dev)) return; phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr); arch_sync_dma_for_device(dev, phys, size, dir); } static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { bool coherent = dev_is_dma_coherent(dev); int prot = dma_info_to_prot(dir, coherent, attrs); dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && dev_addr != DMA_MAPPING_ERROR) __dma_map_area(page_address(page) + offset, size, dir); return dev_addr; } static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); } static void __iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (dev_is_dma_coherent(dev)) return; for_each_sg(sgl, sg, nelems, i) arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); } static void __iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir) { struct scatterlist *sg; int i; if (dev_is_dma_coherent(dev)) return; for_each_sg(sgl, sg, nelems, i) arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); } static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { bool coherent = dev_is_dma_coherent(dev); if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) __iommu_sync_sg_for_device(dev, sgl, nelems, dir); return iommu_dma_map_sg(dev, sgl, nelems, dma_info_to_prot(dir, coherent, attrs)); } static void __iommu_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); } static const struct dma_map_ops iommu_dma_ops = { .alloc = __iommu_alloc_attrs, .free = __iommu_free_attrs, .mmap = __iommu_mmap_attrs, .get_sgtable = __iommu_get_sgtable, .map_page = __iommu_map_page, .unmap_page = __iommu_unmap_page, .map_sg = __iommu_map_sg_attrs, .unmap_sg = __iommu_unmap_sg_attrs, .sync_single_for_cpu = __iommu_sync_single_for_cpu, .sync_single_for_device = __iommu_sync_single_for_device, .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, .sync_sg_for_device = __iommu_sync_sg_for_device, .map_resource = iommu_dma_map_resource, .unmap_resource = iommu_dma_unmap_resource, }; static int __init __iommu_dma_init(void) { return iommu_dma_init(); } arch_initcall(__iommu_dma_init); static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *ops) { struct iommu_domain *domain; if (!ops) return; /* * The IOMMU core code allocates the default DMA domain, which the * underlying IOMMU driver needs to support via the dma-iommu layer. */ domain = iommu_get_domain_for_dev(dev); if (!domain) goto out_err; if (domain->type == IOMMU_DOMAIN_DMA) { if (iommu_dma_init_domain(domain, dma_base, size, dev)) goto out_err; dev->dma_ops = &iommu_dma_ops; } return; out_err: pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", dev_name(dev)); } void arch_teardown_dma_ops(struct device *dev) { dev->dma_ops = NULL; } #else static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu) { } #endif /* CONFIG_IOMMU_DMA */ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent) { dev->dma_coherent = coherent; __iommu_setup_dma_ops(dev, dma_base, size, iommu); #ifdef CONFIG_XEN if (xen_initial_domain()) { dev->archdata.dev_dma_ops = dev->dma_ops; dev->dma_ops = xen_dma_ops; } #endif }