/*
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifndef __ASM_PGTABLE_H
#define __ASM_PGTABLE_H
#include
#include
#include
#include
/*
* Software defined PTE bits definition.
*/
#define PTE_VALID (_AT(pteval_t, 1) << 0)
#define PTE_WRITE (PTE_DBM) /* same as DBM (51) */
#define PTE_DIRTY (_AT(pteval_t, 1) << 55)
#define PTE_SPECIAL (_AT(pteval_t, 1) << 56)
#define PTE_PROT_NONE (_AT(pteval_t, 1) << 58) /* only when !PTE_VALID */
/*
* VMALLOC and SPARSEMEM_VMEMMAP ranges.
*
* VMEMAP_SIZE: allows the whole VA space to be covered by a struct page array
* (rounded up to PUD_SIZE).
* VMALLOC_START: beginning of the kernel VA space
* VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space,
* fixed mappings and modules
*/
#define VMEMMAP_SIZE ALIGN((1UL << (VA_BITS - PAGE_SHIFT)) * sizeof(struct page), PUD_SIZE)
#ifndef CONFIG_KASAN
#define VMALLOC_START (VA_START)
#else
#include
#define VMALLOC_START (KASAN_SHADOW_END + SZ_64K)
#endif
#define VMALLOC_END (PAGE_OFFSET - PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
#define vmemmap ((struct page *)(VMALLOC_END + SZ_64K))
#define FIRST_USER_ADDRESS 0UL
#ifndef __ASSEMBLY__
#include
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pmd_error(const char *file, int line, unsigned long val);
extern void __pud_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);
#define PROT_DEFAULT (PTE_TYPE_PAGE | PTE_AF | PTE_SHARED)
#define PROT_SECT_DEFAULT (PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S)
#define PROT_DEVICE_nGnRnE (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_DEVICE_nGnRnE))
#define PROT_DEVICE_nGnRE (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_DEVICE_nGnRE))
#define PROT_NORMAL_NC (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_NORMAL_NC))
#define PROT_NORMAL_WT (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_NORMAL_WT))
#define PROT_NORMAL (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_NORMAL))
#define PROT_SECT_DEVICE_nGnRE (PROT_SECT_DEFAULT | PMD_SECT_PXN | PMD_SECT_UXN | PMD_ATTRINDX(MT_DEVICE_nGnRE))
#define PROT_SECT_NORMAL (PROT_SECT_DEFAULT | PMD_SECT_PXN | PMD_SECT_UXN | PMD_ATTRINDX(MT_NORMAL))
#define PROT_SECT_NORMAL_EXEC (PROT_SECT_DEFAULT | PMD_SECT_UXN | PMD_ATTRINDX(MT_NORMAL))
#define _PAGE_DEFAULT (PROT_DEFAULT | PTE_ATTRINDX(MT_NORMAL))
#define PAGE_KERNEL __pgprot(_PAGE_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE)
#define PAGE_KERNEL_RO __pgprot(_PAGE_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_RDONLY)
#define PAGE_KERNEL_ROX __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_RDONLY)
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE)
#define PAGE_KERNEL_EXEC_CONT __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_CONT)
#define PAGE_HYP __pgprot(_PAGE_DEFAULT | PTE_HYP)
#define PAGE_HYP_DEVICE __pgprot(PROT_DEVICE_nGnRE | PTE_HYP)
#define PAGE_S2 __pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_NORMAL) | PTE_S2_RDONLY)
#define PAGE_S2_DEVICE __pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_DEVICE_nGnRE) | PTE_S2_RDONLY | PTE_UXN)
#define PAGE_NONE __pgprot(((_PAGE_DEFAULT) & ~PTE_VALID) | PTE_PROT_NONE | PTE_PXN | PTE_UXN)
#define PAGE_SHARED __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN | PTE_WRITE)
#define PAGE_SHARED_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_WRITE)
#define PAGE_COPY __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN)
#define PAGE_COPY_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN)
#define PAGE_READONLY __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN)
#define PAGE_READONLY_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN)
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY_EXEC
#define __P101 PAGE_READONLY_EXEC
#define __P110 PAGE_COPY_EXEC
#define __P111 PAGE_COPY_EXEC
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY_EXEC
#define __S101 PAGE_READONLY_EXEC
#define __S110 PAGE_SHARED_EXEC
#define __S111 PAGE_SHARED_EXEC
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern struct page *empty_zero_page;
#define ZERO_PAGE(vaddr) (empty_zero_page)
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
#define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot) (__pte(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
#define pte_none(pte) (!pte_val(pte))
#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
/* Find an entry in the third-level page table. */
#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + pte_index(addr))
#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
/*
* The following only work if pte_present(). Undefined behaviour otherwise.
*/
#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
#define pte_exec(pte) (!(pte_val(pte) & PTE_UXN))
#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
#define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
#ifdef CONFIG_ARM64_HW_AFDBM
#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
#else
#define pte_hw_dirty(pte) (0)
#endif
#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
#define pte_valid_not_user(pte) \
((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
#define pte_valid_young(pte) \
((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF))
/*
* Could the pte be present in the TLB? We must check mm_tlb_flush_pending
* so that we don't erroneously return false for pages that have been
* remapped as PROT_NONE but are yet to be flushed from the TLB.
*/
#define pte_accessible(mm, pte) \
(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte))
static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
{
pte_val(pte) &= ~pgprot_val(prot);
return pte;
}
static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
{
pte_val(pte) |= pgprot_val(prot);
return pte;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_WRITE));
}
static inline pte_t pte_mkwrite(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_WRITE));
}
static inline pte_t pte_mkclean(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_DIRTY));
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_DIRTY));
}
static inline pte_t pte_mkold(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_AF));
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_AF));
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
}
static inline pte_t pte_mkcont(pte_t pte)
{
pte = set_pte_bit(pte, __pgprot(PTE_CONT));
return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
}
static inline pte_t pte_mknoncont(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_CONT));
}
static inline pmd_t pmd_mkcont(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
}
static inline void set_pte(pte_t *ptep, pte_t pte)
{
*ptep = pte;
/*
* Only if the new pte is valid and kernel, otherwise TLB maintenance
* or update_mmu_cache() have the necessary barriers.
*/
if (pte_valid_not_user(pte)) {
dsb(ishst);
isb();
}
}
struct mm_struct;
struct vm_area_struct;
extern void __sync_icache_dcache(pte_t pteval, unsigned long addr);
/*
* PTE bits configuration in the presence of hardware Dirty Bit Management
* (PTE_WRITE == PTE_DBM):
*
* Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
* 0 0 | 1 0 0
* 0 1 | 1 1 0
* 1 0 | 1 0 1
* 1 1 | 0 1 x
*
* When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
* the page fault mechanism. Checking the dirty status of a pte becomes:
*
* PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
*/
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
if (pte_valid(pte)) {
if (pte_sw_dirty(pte) && pte_write(pte))
pte_val(pte) &= ~PTE_RDONLY;
else
pte_val(pte) |= PTE_RDONLY;
if (pte_user(pte) && pte_exec(pte) && !pte_special(pte))
__sync_icache_dcache(pte, addr);
}
/*
* If the existing pte is valid, check for potential race with
* hardware updates of the pte (ptep_set_access_flags safely changes
* valid ptes without going through an invalid entry).
*/
if (IS_ENABLED(CONFIG_ARM64_HW_AFDBM) &&
pte_valid(*ptep) && pte_valid(pte)) {
VM_WARN_ONCE(!pte_young(pte),
"%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
__func__, pte_val(*ptep), pte_val(pte));
VM_WARN_ONCE(pte_write(*ptep) && !pte_dirty(pte),
"%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
__func__, pte_val(*ptep), pte_val(pte));
}
set_pte(ptep, pte);
}
/*
* Huge pte definitions.
*/
#define pte_huge(pte) (!(pte_val(pte) & PTE_TABLE_BIT))
#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
/*
* Hugetlb definitions.
*/
#define HUGE_MAX_HSTATE 4
#define HPAGE_SHIFT PMD_SHIFT
#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
#define __HAVE_ARCH_PTE_SPECIAL
static inline pte_t pud_pte(pud_t pud)
{
return __pte(pud_val(pud));
}
static inline pmd_t pud_pmd(pud_t pud)
{
return __pmd(pud_val(pud));
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd(pte_val(pte));
}
static inline pgprot_t mk_sect_prot(pgprot_t prot)
{
return __pgprot(pgprot_val(prot) & ~PTE_TABLE_BIT);
}
/*
* THP definitions.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
#define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_TYPE_MASK))
#define __HAVE_ARCH_PMD_WRITE
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
#define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
#define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
#define pud_write(pud) pte_write(pud_pte(pud))
#define pud_pfn(pud) (((pud_val(pud) & PUD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
#define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
static inline int has_transparent_hugepage(void)
{
return 1;
}
#define __pgprot_modify(prot,mask,bits) \
__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
/*
* Mark the prot value as uncacheable and unbufferable.
*/
#define pgprot_noncached(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
#define pgprot_writecombine(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
#define pgprot_device(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_present(pmd) (pmd_val(pmd))
#define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
PMD_TYPE_TABLE)
#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
PMD_TYPE_SECT)
#ifdef CONFIG_ARM64_64K_PAGES
#define pud_sect(pud) (0)
#define pud_table(pud) (1)
#else
#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
PUD_TYPE_SECT)
#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
PUD_TYPE_TABLE)
#endif
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
*pmdp = pmd;
dsb(ishst);
isb();
}
static inline void pmd_clear(pmd_t *pmdp)
{
set_pmd(pmdp, __pmd(0));
}
static inline pte_t *pmd_page_vaddr(pmd_t pmd)
{
return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
}
#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
#if CONFIG_PGTABLE_LEVELS > 2
#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!(pud_val(pud) & 2))
#define pud_present(pud) (pud_val(pud))
static inline void set_pud(pud_t *pudp, pud_t pud)
{
*pudp = pud;
dsb(ishst);
isb();
}
static inline void pud_clear(pud_t *pudp)
{
set_pud(pudp, __pud(0));
}
static inline pmd_t *pud_page_vaddr(pud_t pud)
{
return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
}
/* Find an entry in the second-level page table. */
#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
}
#define pud_page(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
#if CONFIG_PGTABLE_LEVELS > 3
#define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud))
#define pgd_none(pgd) (!pgd_val(pgd))
#define pgd_bad(pgd) (!(pgd_val(pgd) & 2))
#define pgd_present(pgd) (pgd_val(pgd))
static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
{
*pgdp = pgd;
dsb(ishst);
}
static inline void pgd_clear(pgd_t *pgdp)
{
set_pgd(pgdp, __pgd(0));
}
static inline pud_t *pgd_page_vaddr(pgd_t pgd)
{
return __va(pgd_val(pgd) & PHYS_MASK & (s32)PAGE_MASK);
}
/* Find an entry in the frst-level page table. */
#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
static inline pud_t *pud_offset(pgd_t *pgd, unsigned long addr)
{
return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(addr);
}
#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(pgd_val(pgd) & PHYS_MASK))
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
/* to find an entry in a page-table-directory */
#define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
PTE_PROT_NONE | PTE_VALID | PTE_WRITE;
/* preserve the hardware dirty information */
if (pte_hw_dirty(pte))
pte = pte_mkdirty(pte);
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
return pte;
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
}
#ifdef CONFIG_ARM64_HW_AFDBM
/*
* Atomic pte/pmd modifications.
*/
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep)
{
pteval_t pteval;
unsigned int tmp, res;
asm volatile("// ptep_test_and_clear_young\n"
" prfm pstl1strm, %2\n"
"1: ldxr %0, %2\n"
" ubfx %w3, %w0, %5, #1 // extract PTE_AF (young)\n"
" and %0, %0, %4 // clear PTE_AF\n"
" stxr %w1, %0, %2\n"
" cbnz %w1, 1b\n"
: "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*ptep)), "=&r" (res)
: "L" (~PTE_AF), "I" (ilog2(PTE_AF)));
return res;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
pteval_t old_pteval;
unsigned int tmp;
asm volatile("// ptep_get_and_clear\n"
" prfm pstl1strm, %2\n"
"1: ldxr %0, %2\n"
" stxr %w1, xzr, %2\n"
" cbnz %w1, 1b\n"
: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep)));
return __pte(old_pteval);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* ptep_set_wrprotect - mark read-only while trasferring potential hardware
* dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
*/
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
{
pteval_t pteval;
unsigned long tmp;
asm volatile("// ptep_set_wrprotect\n"
" prfm pstl1strm, %2\n"
"1: ldxr %0, %2\n"
" tst %0, %4 // check for hw dirty (!PTE_RDONLY)\n"
" csel %1, %3, xzr, eq // set PTE_DIRTY|PTE_RDONLY if dirty\n"
" orr %0, %0, %1 // if !dirty, PTE_RDONLY is already set\n"
" and %0, %0, %5 // clear PTE_WRITE/PTE_DBM\n"
" stxr %w1, %0, %2\n"
" cbnz %w1, 1b\n"
: "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
: "r" (PTE_DIRTY|PTE_RDONLY), "L" (PTE_RDONLY), "L" (~PTE_WRITE)
: "cc");
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
}
#endif
#endif /* CONFIG_ARM64_HW_AFDBM */
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
/*
* Encode and decode a swap entry:
* bits 0-1: present (must be zero)
* bits 2-7: swap type
* bits 8-57: swap offset
*/
#define __SWP_TYPE_SHIFT 2
#define __SWP_TYPE_BITS 6
#define __SWP_OFFSET_BITS 50
#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
/*
* Ensure that there are not more swap files than can be encoded in the kernel
* PTEs.
*/
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
extern int kern_addr_valid(unsigned long addr);
#include
void pgd_cache_init(void);
#define pgtable_cache_init pgd_cache_init
/*
* On AArch64, the cache coherency is handled via the set_pte_at() function.
*/
static inline void update_mmu_cache(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
/*
* We don't do anything here, so there's a very small chance of
* us retaking a user fault which we just fixed up. The alternative
* is doing a dsb(ishst), but that penalises the fastpath.
*/
}
#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
#define kc_vaddr_to_offset(v) ((v) & ~VA_START)
#define kc_offset_to_vaddr(o) ((o) | VA_START)
#endif /* !__ASSEMBLY__ */
#endif /* __ASM_PGTABLE_H */