/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 ARM Ltd. */ #ifndef __ASM_PGTABLE_H #define __ASM_PGTABLE_H #include #include #include #include #include #include #include /* * VMALLOC range. * * VMALLOC_START: beginning of the kernel vmalloc space * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space * and fixed mappings */ #define VMALLOC_START (MODULES_END) #define VMALLOC_END (VMEMMAP_START - SZ_256M) #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) #define FIRST_USER_ADDRESS 0UL #ifndef __ASSEMBLY__ #include #include #include #include #include #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE /* Set stride and tlb_level in flush_*_tlb_range */ #define flush_pmd_tlb_range(vma, addr, end) \ __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) #define flush_pud_tlb_range(vma, addr, end) \ __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * Outside of a few very special situations (e.g. hibernation), we always * use broadcast TLB invalidation instructions, therefore a spurious page * fault on one CPU which has been handled concurrently by another CPU * does not need to perform additional invalidation. */ #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) /* * Macros to convert between a physical address and its placement in a * page table entry, taking care of 52-bit addresses. */ #ifdef CONFIG_ARM64_PA_BITS_52 #define __pte_to_phys(pte) \ ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36)) #define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK) #else #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK) #define __phys_to_pte_val(phys) (phys) #endif #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) #define pfn_pte(pfn,prot) \ __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define pte_none(pte) (!pte_val(pte)) #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0)) #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) /* * The following only work if pte_present(). Undefined behaviour otherwise. */ #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE))) #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ PTE_ATTRINDX(MT_NORMAL_TAGGED)) #define pte_cont_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ (__boundary - 1 < (end) - 1) ? __boundary : (end); \ }) #define pmd_cont_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ (__boundary - 1 < (end) - 1) ? __boundary : (end); \ }) #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY)) #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) /* * Execute-only user mappings do not have the PTE_USER bit set. All valid * kernel mappings have the PTE_UXN bit set. */ #define pte_valid_not_user(pte) \ ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) /* * Could the pte be present in the TLB? We must check mm_tlb_flush_pending * so that we don't erroneously return false for pages that have been * remapped as PROT_NONE but are yet to be flushed from the TLB. * Note that we can't make any assumptions based on the state of the access * flag, since ptep_clear_flush_young() elides a DSB when invalidating the * TLB. */ #define pte_accessible(mm, pte) \ (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) /* * p??_access_permitted() is true for valid user mappings (PTE_USER * bit set, subject to the write permission check). For execute-only * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits * not set) must return false. PROT_NONE mappings do not have the * PTE_VALID bit set. */ #define pte_access_permitted(pte, write) \ (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) #define pmd_access_permitted(pmd, write) \ (pte_access_permitted(pmd_pte(pmd), (write))) #define pud_access_permitted(pud, write) \ (pte_access_permitted(pud_pte(pud), (write))) static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) { pte_val(pte) &= ~pgprot_val(prot); return pte; } static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) { pte_val(pte) |= pgprot_val(prot); return pte; } static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) { pmd_val(pmd) &= ~pgprot_val(prot); return pmd; } static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) { pmd_val(pmd) |= pgprot_val(prot); return pmd; } static inline pte_t pte_mkwrite(pte_t pte) { pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); if (pte_write(pte)) pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); return pte; } static inline pte_t pte_wrprotect(pte_t pte) { /* * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY * clear), set the PTE_DIRTY bit. */ if (pte_hw_dirty(pte)) pte = pte_mkdirty(pte); pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); return pte; } static inline pte_t pte_mkold(pte_t pte) { return clear_pte_bit(pte, __pgprot(PTE_AF)); } static inline pte_t pte_mkyoung(pte_t pte) { return set_pte_bit(pte, __pgprot(PTE_AF)); } static inline pte_t pte_mkspecial(pte_t pte) { return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); } static inline pte_t pte_mkcont(pte_t pte) { pte = set_pte_bit(pte, __pgprot(PTE_CONT)); return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE)); } static inline pte_t pte_mknoncont(pte_t pte) { return clear_pte_bit(pte, __pgprot(PTE_CONT)); } static inline pte_t pte_mkpresent(pte_t pte) { return set_pte_bit(pte, __pgprot(PTE_VALID)); } static inline pmd_t pmd_mkcont(pmd_t pmd) { return __pmd(pmd_val(pmd) | PMD_SECT_CONT); } static inline pte_t pte_mkdevmap(pte_t pte) { return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL)); } static inline void set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); /* * Only if the new pte is valid and kernel, otherwise TLB maintenance * or update_mmu_cache() have the necessary barriers. */ if (pte_valid_not_user(pte)) { dsb(ishst); isb(); } } extern void __sync_icache_dcache(pte_t pteval); /* * PTE bits configuration in the presence of hardware Dirty Bit Management * (PTE_WRITE == PTE_DBM): * * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) * 0 0 | 1 0 0 * 0 1 | 1 1 0 * 1 0 | 1 0 1 * 1 1 | 0 1 x * * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via * the page fault mechanism. Checking the dirty status of a pte becomes: * * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) */ static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep, pte_t pte) { pte_t old_pte; if (!IS_ENABLED(CONFIG_DEBUG_VM)) return; old_pte = READ_ONCE(*ptep); if (!pte_valid(old_pte) || !pte_valid(pte)) return; if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) return; /* * Check for potential race with hardware updates of the pte * (ptep_set_access_flags safely changes valid ptes without going * through an invalid entry). */ VM_WARN_ONCE(!pte_young(pte), "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", __func__, pte_val(old_pte), pte_val(pte)); VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", __func__, pte_val(old_pte), pte_val(pte)); } static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) __sync_icache_dcache(pte); /* * If the PTE would provide user space access to the tags associated * with it then ensure that the MTE tags are synchronised. Although * pte_access_permitted() returns false for exec only mappings, they * don't expose tags (instruction fetches don't check tags). */ if (system_supports_mte() && pte_access_permitted(pte, false) && !pte_special(pte)) { pte_t old_pte = READ_ONCE(*ptep); /* * We only need to synchronise if the new PTE has tags enabled * or if swapping in (in which case another mapping may have * set tags in the past even if this PTE isn't tagged). * (!pte_none() && !pte_present()) is an open coded version of * is_swap_pte() */ if (pte_tagged(pte) || (!pte_none(old_pte) && !pte_present(old_pte))) mte_sync_tags(old_pte, pte); } __check_racy_pte_update(mm, ptep, pte); set_pte(ptep, pte); } /* * Huge pte definitions. */ #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) /* * Hugetlb definitions. */ #define HUGE_MAX_HSTATE 4 #define HPAGE_SHIFT PMD_SHIFT #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) #define HPAGE_MASK (~(HPAGE_SIZE - 1)) #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) static inline pte_t pgd_pte(pgd_t pgd) { return __pte(pgd_val(pgd)); } static inline pte_t p4d_pte(p4d_t p4d) { return __pte(p4d_val(p4d)); } static inline pte_t pud_pte(pud_t pud) { return __pte(pud_val(pud)); } static inline pud_t pte_pud(pte_t pte) { return __pud(pte_val(pte)); } static inline pmd_t pud_pmd(pud_t pud) { return __pmd(pud_val(pud)); } static inline pte_t pmd_pte(pmd_t pmd) { return __pte(pmd_val(pmd)); } static inline pmd_t pte_pmd(pte_t pte) { return __pmd(pte_val(pte)); } static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT); } static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT); } #ifdef CONFIG_NUMA_BALANCING /* * See the comment in include/linux/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE; } static inline int pmd_protnone(pmd_t pmd) { return pte_protnone(pmd_pte(pmd)); } #endif #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID)) static inline int pmd_present(pmd_t pmd) { return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd); } /* * THP definitions. */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_huge(pmd_t pmd) { return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) #define pmd_young(pmd) pte_young(pmd_pte(pmd)) #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) #define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) static inline pmd_t pmd_mkinvalid(pmd_t pmd) { pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID)); pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID)); return pmd; } #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) #define pmd_write(pmd) pte_write(pmd_pte(pmd)) #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) #endif static inline pmd_t pmd_mkdevmap(pmd_t pmd) { return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP))); } #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) #define pud_young(pud) pte_young(pud_pte(pud)) #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) #define pud_write(pud) pte_write(pud_pte(pud)) #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)) #define set_pud_at(mm, addr, pudp, pud) set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)) #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) #define __pgprot_modify(prot,mask,bits) \ __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) #define pgprot_nx(prot) \ __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) /* * Mark the prot value as uncacheable and unbufferable. */ #define pgprot_noncached(prot) \ __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) #define pgprot_writecombine(prot) \ __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) #define pgprot_device(prot) \ __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) #define pgprot_tagged(prot) \ __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) #define pgprot_mhp pgprot_tagged /* * DMA allocations for non-coherent devices use what the Arm architecture calls * "Normal non-cacheable" memory, which permits speculation, unaligned accesses * and merging of writes. This is different from "Device-nGnR[nE]" memory which * is intended for MMIO and thus forbids speculation, preserves access size, * requires strict alignment and can also force write responses to come from the * endpoint. */ #define pgprot_dmacoherent(prot) \ __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) #define __HAVE_PHYS_MEM_ACCESS_PROT struct file; extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot); #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ PMD_TYPE_TABLE) #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ PMD_TYPE_SECT) #define pmd_leaf(pmd) pmd_sect(pmd) #define pmd_bad(pmd) (!pmd_table(pmd)) #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 static inline bool pud_sect(pud_t pud) { return false; } static inline bool pud_table(pud_t pud) { return true; } #else #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ PUD_TYPE_SECT) #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ PUD_TYPE_TABLE) #endif extern pgd_t init_pg_dir[PTRS_PER_PGD]; extern pgd_t init_pg_end[]; extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; extern pgd_t idmap_pg_dir[PTRS_PER_PGD]; extern pgd_t idmap_pg_end[]; extern pgd_t tramp_pg_dir[PTRS_PER_PGD]; extern pgd_t reserved_pg_dir[PTRS_PER_PGD]; extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); static inline bool in_swapper_pgdir(void *addr) { return ((unsigned long)addr & PAGE_MASK) == ((unsigned long)swapper_pg_dir & PAGE_MASK); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) { #ifdef __PAGETABLE_PMD_FOLDED if (in_swapper_pgdir(pmdp)) { set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); return; } #endif /* __PAGETABLE_PMD_FOLDED */ WRITE_ONCE(*pmdp, pmd); if (pmd_valid(pmd)) { dsb(ishst); isb(); } } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, __pmd(0)); } static inline phys_addr_t pmd_page_paddr(pmd_t pmd) { return __pmd_to_phys(pmd); } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_page_paddr(pmd)); } /* Find an entry in the third-level page table. */ #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) #define pte_clear_fixmap() clear_fixmap(FIX_PTE) #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) /* use ONLY for statically allocated translation tables */ #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) #if CONFIG_PGTABLE_LEVELS > 2 #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (!pud_table(pud)) #define pud_present(pud) pte_present(pud_pte(pud)) #define pud_leaf(pud) pud_sect(pud) #define pud_valid(pud) pte_valid(pud_pte(pud)) static inline void set_pud(pud_t *pudp, pud_t pud) { #ifdef __PAGETABLE_PUD_FOLDED if (in_swapper_pgdir(pudp)) { set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); return; } #endif /* __PAGETABLE_PUD_FOLDED */ WRITE_ONCE(*pudp, pud); if (pud_valid(pud)) { dsb(ishst); isb(); } } static inline void pud_clear(pud_t *pudp) { set_pud(pudp, __pud(0)); } static inline phys_addr_t pud_page_paddr(pud_t pud) { return __pud_to_phys(pud); } static inline unsigned long pud_page_vaddr(pud_t pud) { return (unsigned long)__va(pud_page_paddr(pud)); } /* Find an entry in the second-level page table. */ #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) #define pud_page(pud) phys_to_page(__pud_to_phys(pud)) /* use ONLY for statically allocated translation tables */ #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) #else #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) /* Match pmd_offset folding in */ #define pmd_set_fixmap(addr) NULL #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) #define pmd_clear_fixmap() #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) #define p4d_none(p4d) (!p4d_val(p4d)) #define p4d_bad(p4d) (!(p4d_val(p4d) & 2)) #define p4d_present(p4d) (p4d_val(p4d)) static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) { if (in_swapper_pgdir(p4dp)) { set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); return; } WRITE_ONCE(*p4dp, p4d); dsb(ishst); isb(); } static inline void p4d_clear(p4d_t *p4dp) { set_p4d(p4dp, __p4d(0)); } static inline phys_addr_t p4d_page_paddr(p4d_t p4d) { return __p4d_to_phys(p4d); } static inline unsigned long p4d_page_vaddr(p4d_t p4d) { return (unsigned long)__va(p4d_page_paddr(p4d)); } /* Find an entry in the frst-level page table. */ #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t)) #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr)) #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr)) #define pud_clear_fixmap() clear_fixmap(FIX_PUD) #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) /* use ONLY for statically allocated translation tables */ #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr)))) #else #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;}) /* Match pud_offset folding in */ #define pud_set_fixmap(addr) NULL #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) #define pud_clear_fixmap() #define pud_offset_kimg(dir,addr) ((pud_t *)dir) #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { /* * Normal and Normal-Tagged are two different memory types and indices * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. */ const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP | PTE_ATTRINDX_MASK; /* preserve the hardware dirty information */ if (pte_hw_dirty(pte)) pte = pte_mkdirty(pte); pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); return pte; } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); } #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS static inline int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); } static inline int pud_devmap(pud_t pud) { return 0; } static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif /* * Atomic pte/pmd modifications. */ #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int __ptep_test_and_clear_young(pte_t *ptep) { pte_t old_pte, pte; pte = READ_ONCE(*ptep); do { old_pte = pte; pte = pte_mkold(pte); pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), pte_val(old_pte), pte_val(pte)); } while (pte_val(pte) != pte_val(old_pte)); return pte_young(pte); } static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { return __ptep_test_and_clear_young(ptep); } #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH static inline int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { int young = ptep_test_and_clear_young(vma, address, ptep); if (young) { /* * We can elide the trailing DSB here since the worst that can * happen is that a CPU continues to use the young entry in its * TLB and we mistakenly reclaim the associated page. The * window for such an event is bounded by the next * context-switch, which provides a DSB to complete the TLB * invalidation. */ flush_tlb_page_nosync(vma, address); } return young; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { return __pte(xchg_relaxed(&pte_val(*ptep), 0)); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp)); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * ptep_set_wrprotect - mark read-only while trasferring potential hardware * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. */ #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t old_pte, pte; pte = READ_ONCE(*ptep); do { old_pte = pte; pte = pte_wrprotect(pte); pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), pte_val(old_pte), pte_val(pte)); } while (pte_val(pte) != pte_val(old_pte)); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { ptep_set_wrprotect(mm, address, (pte_t *)pmdp); } #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); } #endif /* * Encode and decode a swap entry: * bits 0-1: present (must be zero) * bits 2-7: swap type * bits 8-57: swap offset * bit 58: PTE_PROT_NONE (must be zero) */ #define __SWP_TYPE_SHIFT 2 #define __SWP_TYPE_BITS 6 #define __SWP_OFFSET_BITS 50 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) #define __swp_entry_to_pmd(swp) __pmd((swp).val) #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ /* * Ensure that there are not more swap files than can be encoded in the kernel * PTEs. */ #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) extern int kern_addr_valid(unsigned long addr); #ifdef CONFIG_ARM64_MTE #define __HAVE_ARCH_PREPARE_TO_SWAP static inline int arch_prepare_to_swap(struct page *page) { if (system_supports_mte()) return mte_save_tags(page); return 0; } #define __HAVE_ARCH_SWAP_INVALIDATE static inline void arch_swap_invalidate_page(int type, pgoff_t offset) { if (system_supports_mte()) mte_invalidate_tags(type, offset); } static inline void arch_swap_invalidate_area(int type) { if (system_supports_mte()) mte_invalidate_tags_area(type); } #define __HAVE_ARCH_SWAP_RESTORE static inline void arch_swap_restore(swp_entry_t entry, struct page *page) { if (system_supports_mte() && mte_restore_tags(entry, page)) set_bit(PG_mte_tagged, &page->flags); } #endif /* CONFIG_ARM64_MTE */ /* * On AArch64, the cache coherency is handled via the set_pte_at() function. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { /* * We don't do anything here, so there's a very small chance of * us retaking a user fault which we just fixed up. The alternative * is doing a dsb(ishst), but that penalises the fastpath. */ } #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) #ifdef CONFIG_ARM64_PA_BITS_52 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) #else #define phys_to_ttbr(addr) (addr) #endif /* * On arm64 without hardware Access Flag, copying from user will fail because * the pte is old and cannot be marked young. So we always end up with zeroed * page after fork() + CoW for pfn mappings. We don't always have a * hardware-managed access flag on arm64. */ static inline bool arch_faults_on_old_pte(void) { WARN_ON(preemptible()); return !cpu_has_hw_af(); } #define arch_faults_on_old_pte arch_faults_on_old_pte /* * Experimentally, it's cheap to set the access flag in hardware and we * benefit from prefaulting mappings as 'old' to start with. */ static inline bool arch_wants_old_prefaulted_pte(void) { return !arch_faults_on_old_pte(); } #define arch_wants_old_prefaulted_pte arch_wants_old_prefaulted_pte static inline pgprot_t arch_filter_pgprot(pgprot_t prot) { if (cpus_have_const_cap(ARM64_HAS_EPAN)) return prot; if (pgprot_val(prot) != pgprot_val(PAGE_EXECONLY)) return prot; return PAGE_READONLY_EXEC; } #endif /* !__ASSEMBLY__ */ #endif /* __ASM_PGTABLE_H */