From 7c00fce98c3e15334a603925b41aa49f76e83227 Mon Sep 17 00:00:00 2001 From: Thomas Garnier Date: Tue, 26 Jul 2016 15:21:56 -0700 Subject: mm: reorganize SLAB freelist randomization The kernel heap allocators are using a sequential freelist making their allocation predictable. This predictability makes kernel heap overflow easier to exploit. An attacker can careful prepare the kernel heap to control the following chunk overflowed. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) ***Problems that needed solving: - Randomize the Freelist (singled linked) used in the SLUB allocator. - Ensure good performance to encourage usage. - Get best entropy in early boot stage. ***Parts: - 01/02 Reorganize the SLAB Freelist randomization to share elements with the SLUB implementation. - 02/02 The SLUB Freelist randomization implementation. Similar approach than the SLAB but tailored to the singled freelist used in SLUB. ***Performance data: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) This patch (of 2): This commit reorganizes the previous SLAB freelist randomization to prepare for the SLUB implementation. It moves functions that will be shared to slab_common. The entropy functions are changed to align with the SLUB implementation, now using get_random_(int|long) functions. These functions were chosen because they provide a bit more entropy early on boot and better performance when specific arch instructions are not available. [akpm@linux-foundation.org: fix build] Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier Reviewed-by: Kees Cook Cc: Christoph Lameter Cc: Pekka Enberg Cc: David Rientjes Cc: Joonsoo Kim Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- include/linux/slab_def.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'include') diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h index 8694f7a5d92b..339ba027ade9 100644 --- a/include/linux/slab_def.h +++ b/include/linux/slab_def.h @@ -81,7 +81,7 @@ struct kmem_cache { #endif #ifdef CONFIG_SLAB_FREELIST_RANDOM - void *random_seq; + unsigned int *random_seq; #endif struct kmem_cache_node *node[MAX_NUMNODES]; -- cgit v1.2.3