From 28a936ef44e12b4d2b38f45ff767262763b60a20 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:39 -0500 Subject: crypto: Kconfig - move x86 entries to a submenu Move CPU-specific crypto/Kconfig entries to arch/xxx/crypto/Kconfig and create a submenu for them under the Crypto API menu. Suggested-by: Eric Biggers Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- arch/x86/crypto/Kconfig | 500 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 500 insertions(+) create mode 100644 arch/x86/crypto/Kconfig (limited to 'arch/x86/crypto') diff --git a/arch/x86/crypto/Kconfig b/arch/x86/crypto/Kconfig new file mode 100644 index 000000000000..04f4baea12a8 --- /dev/null +++ b/arch/x86/crypto/Kconfig @@ -0,0 +1,500 @@ +# SPDX-License-Identifier: GPL-2.0 + +menu "Accelerated Cryptographic Algorithms for CPU (x86)" + +config CRYPTO_CURVE25519_X86 + tristate "x86_64 accelerated Curve25519 scalar multiplication library" + depends on X86 && 64BIT + select CRYPTO_LIB_CURVE25519_GENERIC + select CRYPTO_ARCH_HAVE_LIB_CURVE25519 + +config CRYPTO_AES_NI_INTEL + tristate "AES cipher algorithms (AES-NI)" + depends on X86 + select CRYPTO_AEAD + select CRYPTO_LIB_AES + select CRYPTO_ALGAPI + select CRYPTO_SKCIPHER + select CRYPTO_SIMD + help + Use Intel AES-NI instructions for AES algorithm. + + AES cipher algorithms (FIPS-197). AES uses the Rijndael + algorithm. + + Rijndael appears to be consistently a very good performer in + both hardware and software across a wide range of computing + environments regardless of its use in feedback or non-feedback + modes. Its key setup time is excellent, and its key agility is + good. Rijndael's very low memory requirements make it very well + suited for restricted-space environments, in which it also + demonstrates excellent performance. Rijndael's operations are + among the easiest to defend against power and timing attacks. + + The AES specifies three key sizes: 128, 192 and 256 bits + + See for more information. + + In addition to AES cipher algorithm support, the acceleration + for some popular block cipher mode is supported too, including + ECB, CBC, LRW, XTS. The 64 bit version has additional + acceleration for CTR and XCTR. + +config CRYPTO_BLOWFISH_X86_64 + tristate "Blowfish cipher algorithm (x86_64)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_BLOWFISH_COMMON + imply CRYPTO_CTR + help + Blowfish cipher algorithm (x86_64), by Bruce Schneier. + + This is a variable key length cipher which can use keys from 32 + bits to 448 bits in length. It's fast, simple and specifically + designed for use on "large microprocessors". + + See also: + + +config CRYPTO_CAMELLIA_X86_64 + tristate "Camellia cipher algorithm (x86_64)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + imply CRYPTO_CTR + help + Camellia cipher algorithm module (x86_64). + + Camellia is a symmetric key block cipher developed jointly + at NTT and Mitsubishi Electric Corporation. + + The Camellia specifies three key sizes: 128, 192 and 256 bits. + + See also: + + +config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 + tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_CAMELLIA_X86_64 + select CRYPTO_SIMD + imply CRYPTO_XTS + help + Camellia cipher algorithm module (x86_64/AES-NI/AVX). + + Camellia is a symmetric key block cipher developed jointly + at NTT and Mitsubishi Electric Corporation. + + The Camellia specifies three key sizes: 128, 192 and 256 bits. + + See also: + + +config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 + tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" + depends on X86 && 64BIT + select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 + help + Camellia cipher algorithm module (x86_64/AES-NI/AVX2). + + Camellia is a symmetric key block cipher developed jointly + at NTT and Mitsubishi Electric Corporation. + + The Camellia specifies three key sizes: 128, 192 and 256 bits. + + See also: + + +config CRYPTO_CAST5_AVX_X86_64 + tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_CAST5 + select CRYPTO_CAST_COMMON + select CRYPTO_SIMD + imply CRYPTO_CTR + help + The CAST5 encryption algorithm (synonymous with CAST-128) is + described in RFC2144. + + This module provides the Cast5 cipher algorithm that processes + sixteen blocks parallel using the AVX instruction set. + +config CRYPTO_CAST6_AVX_X86_64 + tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_CAST6 + select CRYPTO_CAST_COMMON + select CRYPTO_SIMD + imply CRYPTO_XTS + imply CRYPTO_CTR + help + The CAST6 encryption algorithm (synonymous with CAST-256) is + described in RFC2612. + + This module provides the Cast6 cipher algorithm that processes + eight blocks parallel using the AVX instruction set. + +config CRYPTO_DES3_EDE_X86_64 + tristate "Triple DES EDE cipher algorithm (x86-64)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_LIB_DES + imply CRYPTO_CTR + help + Triple DES EDE (FIPS 46-3) algorithm. + + This module provides implementation of the Triple DES EDE cipher + algorithm that is optimized for x86-64 processors. Two versions of + algorithm are provided; regular processing one input block and + one that processes three blocks parallel. + +config CRYPTO_SERPENT_SSE2_X86_64 + tristate "Serpent cipher algorithm (x86_64/SSE2)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_SERPENT + select CRYPTO_SIMD + imply CRYPTO_CTR + help + Serpent cipher algorithm, by Anderson, Biham & Knudsen. + + Keys are allowed to be from 0 to 256 bits in length, in steps + of 8 bits. + + This module provides Serpent cipher algorithm that processes eight + blocks parallel using SSE2 instruction set. + + See also: + + +config CRYPTO_SERPENT_SSE2_586 + tristate "Serpent cipher algorithm (i586/SSE2)" + depends on X86 && !64BIT + select CRYPTO_SKCIPHER + select CRYPTO_SERPENT + select CRYPTO_SIMD + imply CRYPTO_CTR + help + Serpent cipher algorithm, by Anderson, Biham & Knudsen. + + Keys are allowed to be from 0 to 256 bits in length, in steps + of 8 bits. + + This module provides Serpent cipher algorithm that processes four + blocks parallel using SSE2 instruction set. + + See also: + + +config CRYPTO_SERPENT_AVX_X86_64 + tristate "Serpent cipher algorithm (x86_64/AVX)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_SERPENT + select CRYPTO_SIMD + imply CRYPTO_XTS + imply CRYPTO_CTR + help + Serpent cipher algorithm, by Anderson, Biham & Knudsen. + + Keys are allowed to be from 0 to 256 bits in length, in steps + of 8 bits. + + This module provides the Serpent cipher algorithm that processes + eight blocks parallel using the AVX instruction set. + + See also: + + +config CRYPTO_SERPENT_AVX2_X86_64 + tristate "Serpent cipher algorithm (x86_64/AVX2)" + depends on X86 && 64BIT + select CRYPTO_SERPENT_AVX_X86_64 + help + Serpent cipher algorithm, by Anderson, Biham & Knudsen. + + Keys are allowed to be from 0 to 256 bits in length, in steps + of 8 bits. + + This module provides Serpent cipher algorithm that processes 16 + blocks parallel using AVX2 instruction set. + + See also: + + +config CRYPTO_SM4_AESNI_AVX_X86_64 + tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_SIMD + select CRYPTO_ALGAPI + select CRYPTO_SM4 + help + SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). + + SM4 (GBT.32907-2016) is a cryptographic standard issued by the + Organization of State Commercial Administration of China (OSCCA) + as an authorized cryptographic algorithms for the use within China. + + This is SM4 optimized implementation using AES-NI/AVX/x86_64 + instruction set for block cipher. Through two affine transforms, + we can use the AES S-Box to simulate the SM4 S-Box to achieve the + effect of instruction acceleration. + + If unsure, say N. + +config CRYPTO_SM4_AESNI_AVX2_X86_64 + tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_SIMD + select CRYPTO_ALGAPI + select CRYPTO_SM4 + select CRYPTO_SM4_AESNI_AVX_X86_64 + help + SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). + + SM4 (GBT.32907-2016) is a cryptographic standard issued by the + Organization of State Commercial Administration of China (OSCCA) + as an authorized cryptographic algorithms for the use within China. + + This is SM4 optimized implementation using AES-NI/AVX2/x86_64 + instruction set for block cipher. Through two affine transforms, + we can use the AES S-Box to simulate the SM4 S-Box to achieve the + effect of instruction acceleration. + + If unsure, say N. + +config CRYPTO_TWOFISH_586 + tristate "Twofish cipher algorithms (i586)" + depends on (X86 || UML_X86) && !64BIT + select CRYPTO_ALGAPI + select CRYPTO_TWOFISH_COMMON + imply CRYPTO_CTR + help + Twofish cipher algorithm. + + Twofish was submitted as an AES (Advanced Encryption Standard) + candidate cipher by researchers at CounterPane Systems. It is a + 16 round block cipher supporting key sizes of 128, 192, and 256 + bits. + + See also: + + +config CRYPTO_TWOFISH_X86_64 + tristate "Twofish cipher algorithm (x86_64)" + depends on (X86 || UML_X86) && 64BIT + select CRYPTO_ALGAPI + select CRYPTO_TWOFISH_COMMON + imply CRYPTO_CTR + help + Twofish cipher algorithm (x86_64). + + Twofish was submitted as an AES (Advanced Encryption Standard) + candidate cipher by researchers at CounterPane Systems. It is a + 16 round block cipher supporting key sizes of 128, 192, and 256 + bits. + + See also: + + +config CRYPTO_TWOFISH_X86_64_3WAY + tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_TWOFISH_COMMON + select CRYPTO_TWOFISH_X86_64 + help + Twofish cipher algorithm (x86_64, 3-way parallel). + + Twofish was submitted as an AES (Advanced Encryption Standard) + candidate cipher by researchers at CounterPane Systems. It is a + 16 round block cipher supporting key sizes of 128, 192, and 256 + bits. + + This module provides Twofish cipher algorithm that processes three + blocks parallel, utilizing resources of out-of-order CPUs better. + + See also: + + +config CRYPTO_TWOFISH_AVX_X86_64 + tristate "Twofish cipher algorithm (x86_64/AVX)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_SIMD + select CRYPTO_TWOFISH_COMMON + select CRYPTO_TWOFISH_X86_64 + select CRYPTO_TWOFISH_X86_64_3WAY + imply CRYPTO_XTS + help + Twofish cipher algorithm (x86_64/AVX). + + Twofish was submitted as an AES (Advanced Encryption Standard) + candidate cipher by researchers at CounterPane Systems. It is a + 16 round block cipher supporting key sizes of 128, 192, and 256 + bits. + + This module provides the Twofish cipher algorithm that processes + eight blocks parallel using the AVX Instruction Set. + + See also: + + +config CRYPTO_CHACHA20_X86_64 + tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" + depends on X86 && 64BIT + select CRYPTO_SKCIPHER + select CRYPTO_LIB_CHACHA_GENERIC + select CRYPTO_ARCH_HAVE_LIB_CHACHA + help + SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, + XChaCha20, and XChaCha12 stream ciphers. + +config CRYPTO_AEGIS128_AESNI_SSE2 + tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" + depends on X86 && 64BIT + select CRYPTO_AEAD + select CRYPTO_SIMD + help + AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. + +config CRYPTO_NHPOLY1305_SSE2 + tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" + depends on X86 && 64BIT + select CRYPTO_NHPOLY1305 + help + SSE2 optimized implementation of the hash function used by the + Adiantum encryption mode. + +config CRYPTO_NHPOLY1305_AVX2 + tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" + depends on X86 && 64BIT + select CRYPTO_NHPOLY1305 + help + AVX2 optimized implementation of the hash function used by the + Adiantum encryption mode. + +config CRYPTO_BLAKE2S_X86 + bool "BLAKE2s digest algorithm (x86 accelerated version)" + depends on X86 && 64BIT + select CRYPTO_LIB_BLAKE2S_GENERIC + select CRYPTO_ARCH_HAVE_LIB_BLAKE2S + +config CRYPTO_POLYVAL_CLMUL_NI + tristate "POLYVAL hash function (CLMUL-NI accelerated)" + depends on X86 && 64BIT + select CRYPTO_POLYVAL + help + This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is + used to efficiently implement HCTR2 on x86-64 processors that support + carry-less multiplication instructions. + +config CRYPTO_POLY1305_X86_64 + tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" + depends on X86 && 64BIT + select CRYPTO_LIB_POLY1305_GENERIC + select CRYPTO_ARCH_HAVE_LIB_POLY1305 + help + Poly1305 authenticator algorithm, RFC7539. + + Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. + It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use + in IETF protocols. This is the x86_64 assembler implementation using SIMD + instructions. + +config CRYPTO_SHA1_SSSE3 + tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" + depends on X86 && 64BIT + select CRYPTO_SHA1 + select CRYPTO_HASH + help + SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented + using Supplemental SSE3 (SSSE3) instructions or Advanced Vector + Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), + when available. + +config CRYPTO_SHA256_SSSE3 + tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" + depends on X86 && 64BIT + select CRYPTO_SHA256 + select CRYPTO_HASH + help + SHA-256 secure hash standard (DFIPS 180-2) implemented + using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector + Extensions version 1 (AVX1), or Advanced Vector Extensions + version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New + Instructions) when available. + +config CRYPTO_SHA512_SSSE3 + tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" + depends on X86 && 64BIT + select CRYPTO_SHA512 + select CRYPTO_HASH + help + SHA-512 secure hash standard (DFIPS 180-2) implemented + using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector + Extensions version 1 (AVX1), or Advanced Vector Extensions + version 2 (AVX2) instructions, when available. + +config CRYPTO_SM3_AVX_X86_64 + tristate "SM3 digest algorithm (x86_64/AVX)" + depends on X86 && 64BIT + select CRYPTO_HASH + select CRYPTO_SM3 + help + SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). + It is part of the Chinese Commercial Cryptography suite. This is + SM3 optimized implementation using Advanced Vector Extensions (AVX) + when available. + + If unsure, say N. + +config CRYPTO_GHASH_CLMUL_NI_INTEL + tristate "GHASH hash function (CLMUL-NI accelerated)" + depends on X86 && 64BIT + select CRYPTO_CRYPTD + help + This is the x86_64 CLMUL-NI accelerated implementation of + GHASH, the hash function used in GCM (Galois/Counter mode). + +config CRYPTO_CRC32C_INTEL + tristate "CRC32c INTEL hardware acceleration" + depends on X86 + select CRYPTO_HASH + help + In Intel processor with SSE4.2 supported, the processor will + support CRC32C implementation using hardware accelerated CRC32 + instruction. This option will create 'crc32c-intel' module, + which will enable any routine to use the CRC32 instruction to + gain performance compared with software implementation. + Module will be crc32c-intel. + +config CRYPTO_CRC32_PCLMUL + tristate "CRC32 PCLMULQDQ hardware acceleration" + depends on X86 + select CRYPTO_HASH + select CRC32 + help + From Intel Westmere and AMD Bulldozer processor with SSE4.2 + and PCLMULQDQ supported, the processor will support + CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ + instruction. This option will create 'crc32-pclmul' module, + which will enable any routine to use the CRC-32-IEEE 802.3 checksum + and gain better performance as compared with the table implementation. + +config CRYPTO_CRCT10DIF_PCLMUL + tristate "CRCT10DIF PCLMULQDQ hardware acceleration" + depends on X86 && 64BIT && CRC_T10DIF + select CRYPTO_HASH + help + For x86_64 processors with SSE4.2 and PCLMULQDQ supported, + CRC T10 DIF PCLMULQDQ computation can be hardware + accelerated PCLMULQDQ instruction. This option will create + 'crct10dif-pclmul' module, which is faster when computing the + crct10dif checksum as compared with the generic table implementation. + +endmenu -- cgit v1.2.3