From 89272ca1102e000f7dbca724b7b106e688199a5d Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Mon, 17 Feb 2020 17:12:04 +0100 Subject: docs: filesystems: convert f2fs.txt to ReST - Add a SPDX header; - Adjust document and section titles; - Some whitespace fixes and new line breaks; - Mark literal blocks as such; - Add table markups; - Add it to filesystems/index.rst. Signed-off-by: Mauro Carvalho Chehab Link: https://lore.kernel.org/r/8dd156320b0c015dec6d3f848d03ea057042a15b.1581955849.git.mchehab+huawei@kernel.org Signed-off-by: Jonathan Corbet --- Documentation/filesystems/f2fs.rst | 762 +++++++++++++++++++++++++++++++++++++ 1 file changed, 762 insertions(+) create mode 100644 Documentation/filesystems/f2fs.rst (limited to 'Documentation/filesystems/f2fs.rst') diff --git a/Documentation/filesystems/f2fs.rst b/Documentation/filesystems/f2fs.rst new file mode 100644 index 000000000000..d681203728d7 --- /dev/null +++ b/Documentation/filesystems/f2fs.rst @@ -0,0 +1,762 @@ +.. SPDX-License-Identifier: GPL-2.0 + +========================================== +WHAT IS Flash-Friendly File System (F2FS)? +========================================== + +NAND flash memory-based storage devices, such as SSD, eMMC, and SD cards, have +been equipped on a variety systems ranging from mobile to server systems. Since +they are known to have different characteristics from the conventional rotating +disks, a file system, an upper layer to the storage device, should adapt to the +changes from the sketch in the design level. + +F2FS is a file system exploiting NAND flash memory-based storage devices, which +is based on Log-structured File System (LFS). The design has been focused on +addressing the fundamental issues in LFS, which are snowball effect of wandering +tree and high cleaning overhead. + +Since a NAND flash memory-based storage device shows different characteristic +according to its internal geometry or flash memory management scheme, namely FTL, +F2FS and its tools support various parameters not only for configuring on-disk +layout, but also for selecting allocation and cleaning algorithms. + +The following git tree provides the file system formatting tool (mkfs.f2fs), +a consistency checking tool (fsck.f2fs), and a debugging tool (dump.f2fs). + +- git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools.git + +For reporting bugs and sending patches, please use the following mailing list: + +- linux-f2fs-devel@lists.sourceforge.net + +Background and Design issues +============================ + +Log-structured File System (LFS) +-------------------------------- +"A log-structured file system writes all modifications to disk sequentially in +a log-like structure, thereby speeding up both file writing and crash recovery. +The log is the only structure on disk; it contains indexing information so that +files can be read back from the log efficiently. In order to maintain large free +areas on disk for fast writing, we divide the log into segments and use a +segment cleaner to compress the live information from heavily fragmented +segments." from Rosenblum, M. and Ousterhout, J. K., 1992, "The design and +implementation of a log-structured file system", ACM Trans. Computer Systems +10, 1, 26–52. + +Wandering Tree Problem +---------------------- +In LFS, when a file data is updated and written to the end of log, its direct +pointer block is updated due to the changed location. Then the indirect pointer +block is also updated due to the direct pointer block update. In this manner, +the upper index structures such as inode, inode map, and checkpoint block are +also updated recursively. This problem is called as wandering tree problem [1], +and in order to enhance the performance, it should eliminate or relax the update +propagation as much as possible. + +[1] Bityutskiy, A. 2005. JFFS3 design issues. http://www.linux-mtd.infradead.org/ + +Cleaning Overhead +----------------- +Since LFS is based on out-of-place writes, it produces so many obsolete blocks +scattered across the whole storage. In order to serve new empty log space, it +needs to reclaim these obsolete blocks seamlessly to users. This job is called +as a cleaning process. + +The process consists of three operations as follows. + +1. A victim segment is selected through referencing segment usage table. +2. It loads parent index structures of all the data in the victim identified by + segment summary blocks. +3. It checks the cross-reference between the data and its parent index structure. +4. It moves valid data selectively. + +This cleaning job may cause unexpected long delays, so the most important goal +is to hide the latencies to users. And also definitely, it should reduce the +amount of valid data to be moved, and move them quickly as well. + +Key Features +============ + +Flash Awareness +--------------- +- Enlarge the random write area for better performance, but provide the high + spatial locality +- Align FS data structures to the operational units in FTL as best efforts + +Wandering Tree Problem +---------------------- +- Use a term, “node”, that represents inodes as well as various pointer blocks +- Introduce Node Address Table (NAT) containing the locations of all the “node” + blocks; this will cut off the update propagation. + +Cleaning Overhead +----------------- +- Support a background cleaning process +- Support greedy and cost-benefit algorithms for victim selection policies +- Support multi-head logs for static/dynamic hot and cold data separation +- Introduce adaptive logging for efficient block allocation + +Mount Options +============= + + +====================== ============================================================ +background_gc=%s Turn on/off cleaning operations, namely garbage + collection, triggered in background when I/O subsystem is + idle. If background_gc=on, it will turn on the garbage + collection and if background_gc=off, garbage collection + will be turned off. If background_gc=sync, it will turn + on synchronous garbage collection running in background. + Default value for this option is on. So garbage + collection is on by default. +disable_roll_forward Disable the roll-forward recovery routine +norecovery Disable the roll-forward recovery routine, mounted read- + only (i.e., -o ro,disable_roll_forward) +discard/nodiscard Enable/disable real-time discard in f2fs, if discard is + enabled, f2fs will issue discard/TRIM commands when a + segment is cleaned. +no_heap Disable heap-style segment allocation which finds free + segments for data from the beginning of main area, while + for node from the end of main area. +nouser_xattr Disable Extended User Attributes. Note: xattr is enabled + by default if CONFIG_F2FS_FS_XATTR is selected. +noacl Disable POSIX Access Control List. Note: acl is enabled + by default if CONFIG_F2FS_FS_POSIX_ACL is selected. +active_logs=%u Support configuring the number of active logs. In the + current design, f2fs supports only 2, 4, and 6 logs. + Default number is 6. +disable_ext_identify Disable the extension list configured by mkfs, so f2fs + does not aware of cold files such as media files. +inline_xattr Enable the inline xattrs feature. +noinline_xattr Disable the inline xattrs feature. +inline_xattr_size=%u Support configuring inline xattr size, it depends on + flexible inline xattr feature. +inline_data Enable the inline data feature: New created small(<~3.4k) + files can be written into inode block. +inline_dentry Enable the inline dir feature: data in new created + directory entries can be written into inode block. The + space of inode block which is used to store inline + dentries is limited to ~3.4k. +noinline_dentry Disable the inline dentry feature. +flush_merge Merge concurrent cache_flush commands as much as possible + to eliminate redundant command issues. If the underlying + device handles the cache_flush command relatively slowly, + recommend to enable this option. +nobarrier This option can be used if underlying storage guarantees + its cached data should be written to the novolatile area. + If this option is set, no cache_flush commands are issued + but f2fs still guarantees the write ordering of all the + data writes. +fastboot This option is used when a system wants to reduce mount + time as much as possible, even though normal performance + can be sacrificed. +extent_cache Enable an extent cache based on rb-tree, it can cache + as many as extent which map between contiguous logical + address and physical address per inode, resulting in + increasing the cache hit ratio. Set by default. +noextent_cache Disable an extent cache based on rb-tree explicitly, see + the above extent_cache mount option. +noinline_data Disable the inline data feature, inline data feature is + enabled by default. +data_flush Enable data flushing before checkpoint in order to + persist data of regular and symlink. +reserve_root=%d Support configuring reserved space which is used for + allocation from a privileged user with specified uid or + gid, unit: 4KB, the default limit is 0.2% of user blocks. +resuid=%d The user ID which may use the reserved blocks. +resgid=%d The group ID which may use the reserved blocks. +fault_injection=%d Enable fault injection in all supported types with + specified injection rate. +fault_type=%d Support configuring fault injection type, should be + enabled with fault_injection option, fault type value + is shown below, it supports single or combined type. + + =================== =========== + Type_Name Type_Value + =================== =========== + FAULT_KMALLOC 0x000000001 + FAULT_KVMALLOC 0x000000002 + FAULT_PAGE_ALLOC 0x000000004 + FAULT_PAGE_GET 0x000000008 + FAULT_ALLOC_BIO 0x000000010 + FAULT_ALLOC_NID 0x000000020 + FAULT_ORPHAN 0x000000040 + FAULT_BLOCK 0x000000080 + FAULT_DIR_DEPTH 0x000000100 + FAULT_EVICT_INODE 0x000000200 + FAULT_TRUNCATE 0x000000400 + FAULT_READ_IO 0x000000800 + FAULT_CHECKPOINT 0x000001000 + FAULT_DISCARD 0x000002000 + FAULT_WRITE_IO 0x000004000 + =================== =========== +mode=%s Control block allocation mode which supports "adaptive" + and "lfs". In "lfs" mode, there should be no random + writes towards main area. +io_bits=%u Set the bit size of write IO requests. It should be set + with "mode=lfs". +usrquota Enable plain user disk quota accounting. +grpquota Enable plain group disk quota accounting. +prjquota Enable plain project quota accounting. +usrjquota= Appoint specified file and type during mount, so that quota +grpjquota= information can be properly updated during recovery flow, +prjjquota= : must be in root directory; +jqfmt= : [vfsold,vfsv0,vfsv1]. +offusrjquota Turn off user journelled quota. +offgrpjquota Turn off group journelled quota. +offprjjquota Turn off project journelled quota. +quota Enable plain user disk quota accounting. +noquota Disable all plain disk quota option. +whint_mode=%s Control which write hints are passed down to block + layer. This supports "off", "user-based", and + "fs-based". In "off" mode (default), f2fs does not pass + down hints. In "user-based" mode, f2fs tries to pass + down hints given by users. And in "fs-based" mode, f2fs + passes down hints with its policy. +alloc_mode=%s Adjust block allocation policy, which supports "reuse" + and "default". +fsync_mode=%s Control the policy of fsync. Currently supports "posix", + "strict", and "nobarrier". In "posix" mode, which is + default, fsync will follow POSIX semantics and does a + light operation to improve the filesystem performance. + In "strict" mode, fsync will be heavy and behaves in line + with xfs, ext4 and btrfs, where xfstest generic/342 will + pass, but the performance will regress. "nobarrier" is + based on "posix", but doesn't issue flush command for + non-atomic files likewise "nobarrier" mount option. +test_dummy_encryption Enable dummy encryption, which provides a fake fscrypt + context. The fake fscrypt context is used by xfstests. +checkpoint=%s[:%u[%]] Set to "disable" to turn off checkpointing. Set to "enable" + to reenable checkpointing. Is enabled by default. While + disabled, any unmounting or unexpected shutdowns will cause + the filesystem contents to appear as they did when the + filesystem was mounted with that option. + While mounting with checkpoint=disabled, the filesystem must + run garbage collection to ensure that all available space can + be used. If this takes too much time, the mount may return + EAGAIN. You may optionally add a value to indicate how much + of the disk you would be willing to temporarily give up to + avoid additional garbage collection. This can be given as a + number of blocks, or as a percent. For instance, mounting + with checkpoint=disable:100% would always succeed, but it may + hide up to all remaining free space. The actual space that + would be unusable can be viewed at /sys/fs/f2fs//unusable + This space is reclaimed once checkpoint=enable. +compress_algorithm=%s Control compress algorithm, currently f2fs supports "lzo" + and "lz4" algorithm. +compress_log_size=%u Support configuring compress cluster size, the size will + be 4KB * (1 << %u), 16KB is minimum size, also it's + default size. +compress_extension=%s Support adding specified extension, so that f2fs can enable + compression on those corresponding files, e.g. if all files + with '.ext' has high compression rate, we can set the '.ext' + on compression extension list and enable compression on + these file by default rather than to enable it via ioctl. + For other files, we can still enable compression via ioctl. +====================== ============================================================ + +Debugfs Entries +=============== + +/sys/kernel/debug/f2fs/ contains information about all the partitions mounted as +f2fs. Each file shows the whole f2fs information. + +/sys/kernel/debug/f2fs/status includes: + + - major file system information managed by f2fs currently + - average SIT information about whole segments + - current memory footprint consumed by f2fs. + +Sysfs Entries +============= + +Information about mounted f2fs file systems can be found in +/sys/fs/f2fs. Each mounted filesystem will have a directory in +/sys/fs/f2fs based on its device name (i.e., /sys/fs/f2fs/sda). +The files in each per-device directory are shown in table below. + +Files in /sys/fs/f2fs/ +(see also Documentation/ABI/testing/sysfs-fs-f2fs) + +Usage +===== + +1. Download userland tools and compile them. + +2. Skip, if f2fs was compiled statically inside kernel. + Otherwise, insert the f2fs.ko module:: + + # insmod f2fs.ko + +3. Create a directory trying to mount:: + + # mkdir /mnt/f2fs + +4. Format the block device, and then mount as f2fs:: + + # mkfs.f2fs -l label /dev/block_device + # mount -t f2fs /dev/block_device /mnt/f2fs + +mkfs.f2fs +--------- +The mkfs.f2fs is for the use of formatting a partition as the f2fs filesystem, +which builds a basic on-disk layout. + +The options consist of: + +=============== =========================================================== +``-l [label]`` Give a volume label, up to 512 unicode name. +``-a [0 or 1]`` Split start location of each area for heap-based allocation. + + 1 is set by default, which performs this. +``-o [int]`` Set overprovision ratio in percent over volume size. + + 5 is set by default. +``-s [int]`` Set the number of segments per section. + + 1 is set by default. +``-z [int]`` Set the number of sections per zone. + + 1 is set by default. +``-e [str]`` Set basic extension list. e.g. "mp3,gif,mov" +``-t [0 or 1]`` Disable discard command or not. + + 1 is set by default, which conducts discard. +=============== =========================================================== + +fsck.f2fs +--------- +The fsck.f2fs is a tool to check the consistency of an f2fs-formatted +partition, which examines whether the filesystem metadata and user-made data +are cross-referenced correctly or not. +Note that, initial version of the tool does not fix any inconsistency. + +The options consist of:: + + -d debug level [default:0] + +dump.f2fs +--------- +The dump.f2fs shows the information of specific inode and dumps SSA and SIT to +file. Each file is dump_ssa and dump_sit. + +The dump.f2fs is used to debug on-disk data structures of the f2fs filesystem. +It shows on-disk inode information recognized by a given inode number, and is +able to dump all the SSA and SIT entries into predefined files, ./dump_ssa and +./dump_sit respectively. + +The options consist of:: + + -d debug level [default:0] + -i inode no (hex) + -s [SIT dump segno from #1~#2 (decimal), for all 0~-1] + -a [SSA dump segno from #1~#2 (decimal), for all 0~-1] + +Examples:: + + # dump.f2fs -i [ino] /dev/sdx + # dump.f2fs -s 0~-1 /dev/sdx (SIT dump) + # dump.f2fs -a 0~-1 /dev/sdx (SSA dump) + +Design +====== + +On-disk Layout +-------------- + +F2FS divides the whole volume into a number of segments, each of which is fixed +to 2MB in size. A section is composed of consecutive segments, and a zone +consists of a set of sections. By default, section and zone sizes are set to one +segment size identically, but users can easily modify the sizes by mkfs. + +F2FS splits the entire volume into six areas, and all the areas except superblock +consists of multiple segments as described below:: + + align with the zone size <-| + |-> align with the segment size + _________________________________________________________________________ + | | | Segment | Node | Segment | | + | Superblock | Checkpoint | Info. | Address | Summary | Main | + | (SB) | (CP) | Table (SIT) | Table (NAT) | Area (SSA) | | + |____________|_____2______|______N______|______N______|______N_____|__N___| + . . + . . + . . + ._________________________________________. + |_Segment_|_..._|_Segment_|_..._|_Segment_| + . . + ._________._________ + |_section_|__...__|_ + . . + .________. + |__zone__| + +- Superblock (SB) + It is located at the beginning of the partition, and there exist two copies + to avoid file system crash. It contains basic partition information and some + default parameters of f2fs. + +- Checkpoint (CP) + It contains file system information, bitmaps for valid NAT/SIT sets, orphan + inode lists, and summary entries of current active segments. + +- Segment Information Table (SIT) + It contains segment information such as valid block count and bitmap for the + validity of all the blocks. + +- Node Address Table (NAT) + It is composed of a block address table for all the node blocks stored in + Main area. + +- Segment Summary Area (SSA) + It contains summary entries which contains the owner information of all the + data and node blocks stored in Main area. + +- Main Area + It contains file and directory data including their indices. + +In order to avoid misalignment between file system and flash-based storage, F2FS +aligns the start block address of CP with the segment size. Also, it aligns the +start block address of Main area with the zone size by reserving some segments +in SSA area. + +Reference the following survey for additional technical details. +https://wiki.linaro.org/WorkingGroups/Kernel/Projects/FlashCardSurvey + +File System Metadata Structure +------------------------------ + +F2FS adopts the checkpointing scheme to maintain file system consistency. At +mount time, F2FS first tries to find the last valid checkpoint data by scanning +CP area. In order to reduce the scanning time, F2FS uses only two copies of CP. +One of them always indicates the last valid data, which is called as shadow copy +mechanism. In addition to CP, NAT and SIT also adopt the shadow copy mechanism. + +For file system consistency, each CP points to which NAT and SIT copies are +valid, as shown as below:: + + +--------+----------+---------+ + | CP | SIT | NAT | + +--------+----------+---------+ + . . . . + . . . . + . . . . + +-------+-------+--------+--------+--------+--------+ + | CP #0 | CP #1 | SIT #0 | SIT #1 | NAT #0 | NAT #1 | + +-------+-------+--------+--------+--------+--------+ + | ^ ^ + | | | + `----------------------------------------' + +Index Structure +--------------- + +The key data structure to manage the data locations is a "node". Similar to +traditional file structures, F2FS has three types of node: inode, direct node, +indirect node. F2FS assigns 4KB to an inode block which contains 923 data block +indices, two direct node pointers, two indirect node pointers, and one double +indirect node pointer as described below. One direct node block contains 1018 +data blocks, and one indirect node block contains also 1018 node blocks. Thus, +one inode block (i.e., a file) covers:: + + 4KB * (923 + 2 * 1018 + 2 * 1018 * 1018 + 1018 * 1018 * 1018) := 3.94TB. + + Inode block (4KB) + |- data (923) + |- direct node (2) + | `- data (1018) + |- indirect node (2) + | `- direct node (1018) + | `- data (1018) + `- double indirect node (1) + `- indirect node (1018) + `- direct node (1018) + `- data (1018) + +Note that, all the node blocks are mapped by NAT which means the location of +each node is translated by the NAT table. In the consideration of the wandering +tree problem, F2FS is able to cut off the propagation of node updates caused by +leaf data writes. + +Directory Structure +------------------- + +A directory entry occupies 11 bytes, which consists of the following attributes. + +- hash hash value of the file name +- ino inode number +- len the length of file name +- type file type such as directory, symlink, etc + +A dentry block consists of 214 dentry slots and file names. Therein a bitmap is +used to represent whether each dentry is valid or not. A dentry block occupies +4KB with the following composition. + +:: + + Dentry Block(4 K) = bitmap (27 bytes) + reserved (3 bytes) + + dentries(11 * 214 bytes) + file name (8 * 214 bytes) + + [Bucket] + +--------------------------------+ + |dentry block 1 | dentry block 2 | + +--------------------------------+ + . . + . . + . [Dentry Block Structure: 4KB] . + +--------+----------+----------+------------+ + | bitmap | reserved | dentries | file names | + +--------+----------+----------+------------+ + [Dentry Block: 4KB] . . + . . + . . + +------+------+-----+------+ + | hash | ino | len | type | + +------+------+-----+------+ + [Dentry Structure: 11 bytes] + +F2FS implements multi-level hash tables for directory structure. Each level has +a hash table with dedicated number of hash buckets as shown below. Note that +"A(2B)" means a bucket includes 2 data blocks. + +:: + + ---------------------- + A : bucket + B : block + N : MAX_DIR_HASH_DEPTH + ---------------------- + + level #0 | A(2B) + | + level #1 | A(2B) - A(2B) + | + level #2 | A(2B) - A(2B) - A(2B) - A(2B) + . | . . . . + level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) + . | . . . . + level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) + +The number of blocks and buckets are determined by:: + + ,- 2, if n < MAX_DIR_HASH_DEPTH / 2, + # of blocks in level #n = | + `- 4, Otherwise + + ,- 2^(n + dir_level), + | if n + dir_level < MAX_DIR_HASH_DEPTH / 2, + # of buckets in level #n = | + `- 2^((MAX_DIR_HASH_DEPTH / 2) - 1), + Otherwise + +When F2FS finds a file name in a directory, at first a hash value of the file +name is calculated. Then, F2FS scans the hash table in level #0 to find the +dentry consisting of the file name and its inode number. If not found, F2FS +scans the next hash table in level #1. In this way, F2FS scans hash tables in +each levels incrementally from 1 to N. In each levels F2FS needs to scan only +one bucket determined by the following equation, which shows O(log(# of files)) +complexity:: + + bucket number to scan in level #n = (hash value) % (# of buckets in level #n) + +In the case of file creation, F2FS finds empty consecutive slots that cover the +file name. F2FS searches the empty slots in the hash tables of whole levels from +1 to N in the same way as the lookup operation. + +The following figure shows an example of two cases holding children:: + + --------------> Dir <-------------- + | | + child child + + child - child [hole] - child + + child - child - child [hole] - [hole] - child + + Case 1: Case 2: + Number of children = 6, Number of children = 3, + File size = 7 File size = 7 + +Default Block Allocation +------------------------ + +At runtime, F2FS manages six active logs inside "Main" area: Hot/Warm/Cold node +and Hot/Warm/Cold data. + +- Hot node contains direct node blocks of directories. +- Warm node contains direct node blocks except hot node blocks. +- Cold node contains indirect node blocks +- Hot data contains dentry blocks +- Warm data contains data blocks except hot and cold data blocks +- Cold data contains multimedia data or migrated data blocks + +LFS has two schemes for free space management: threaded log and copy-and-compac- +tion. The copy-and-compaction scheme which is known as cleaning, is well-suited +for devices showing very good sequential write performance, since free segments +are served all the time for writing new data. However, it suffers from cleaning +overhead under high utilization. Contrarily, the threaded log scheme suffers +from random writes, but no cleaning process is needed. F2FS adopts a hybrid +scheme where the copy-and-compaction scheme is adopted by default, but the +policy is dynamically changed to the threaded log scheme according to the file +system status. + +In order to align F2FS with underlying flash-based storage, F2FS allocates a +segment in a unit of section. F2FS expects that the section size would be the +same as the unit size of garbage collection in FTL. Furthermore, with respect +to the mapping granularity in FTL, F2FS allocates each section of the active +logs from different zones as much as possible, since FTL can write the data in +the active logs into one allocation unit according to its mapping granularity. + +Cleaning process +---------------- + +F2FS does cleaning both on demand and in the background. On-demand cleaning is +triggered when there are not enough free segments to serve VFS calls. Background +cleaner is operated by a kernel thread, and triggers the cleaning job when the +system is idle. + +F2FS supports two victim selection policies: greedy and cost-benefit algorithms. +In the greedy algorithm, F2FS selects a victim segment having the smallest number +of valid blocks. In the cost-benefit algorithm, F2FS selects a victim segment +according to the segment age and the number of valid blocks in order to address +log block thrashing problem in the greedy algorithm. F2FS adopts the greedy +algorithm for on-demand cleaner, while background cleaner adopts cost-benefit +algorithm. + +In order to identify whether the data in the victim segment are valid or not, +F2FS manages a bitmap. Each bit represents the validity of a block, and the +bitmap is composed of a bit stream covering whole blocks in main area. + +Write-hint Policy +----------------- + +1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. + +2) whint_mode=user-based. F2FS tries to pass down hints given by +users. + +===================== ======================== =================== +User F2FS Block +===================== ======================== =================== + META WRITE_LIFE_NOT_SET + HOT_NODE " + WARM_NODE " + COLD_NODE " +ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME +extension list " " + +-- buffered io +WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME +WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT +WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET +WRITE_LIFE_NONE " " +WRITE_LIFE_MEDIUM " " +WRITE_LIFE_LONG " " + +-- direct io +WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME +WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT +WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET +WRITE_LIFE_NONE " WRITE_LIFE_NONE +WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM +WRITE_LIFE_LONG " WRITE_LIFE_LONG +===================== ======================== =================== + +3) whint_mode=fs-based. F2FS passes down hints with its policy. + +===================== ======================== =================== +User F2FS Block +===================== ======================== =================== + META WRITE_LIFE_MEDIUM; + HOT_NODE WRITE_LIFE_NOT_SET + WARM_NODE " + COLD_NODE WRITE_LIFE_NONE +ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME +extension list " " + +-- buffered io +WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME +WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT +WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG +WRITE_LIFE_NONE " " +WRITE_LIFE_MEDIUM " " +WRITE_LIFE_LONG " " + +-- direct io +WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME +WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT +WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET +WRITE_LIFE_NONE " WRITE_LIFE_NONE +WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM +WRITE_LIFE_LONG " WRITE_LIFE_LONG +===================== ======================== =================== + +Fallocate(2) Policy +------------------- + +The default policy follows the below posix rule. + +Allocating disk space + The default operation (i.e., mode is zero) of fallocate() allocates + the disk space within the range specified by offset and len. The + file size (as reported by stat(2)) will be changed if offset+len is + greater than the file size. Any subregion within the range specified + by offset and len that did not contain data before the call will be + initialized to zero. This default behavior closely resembles the + behavior of the posix_fallocate(3) library function, and is intended + as a method of optimally implementing that function. + +However, once F2FS receives ioctl(fd, F2FS_IOC_SET_PIN_FILE) in prior to +fallocate(fd, DEFAULT_MODE), it allocates on-disk blocks addressess having +zero or random data, which is useful to the below scenario where: + + 1. create(fd) + 2. ioctl(fd, F2FS_IOC_SET_PIN_FILE) + 3. fallocate(fd, 0, 0, size) + 4. address = fibmap(fd, offset) + 5. open(blkdev) + 6. write(blkdev, address) + +Compression implementation +-------------------------- + +- New term named cluster is defined as basic unit of compression, file can + be divided into multiple clusters logically. One cluster includes 4 << n + (n >= 0) logical pages, compression size is also cluster size, each of + cluster can be compressed or not. + +- In cluster metadata layout, one special block address is used to indicate + cluster is compressed one or normal one, for compressed cluster, following + metadata maps cluster to [1, 4 << n - 1] physical blocks, in where f2fs + stores data including compress header and compressed data. + +- In order to eliminate write amplification during overwrite, F2FS only + support compression on write-once file, data can be compressed only when + all logical blocks in file are valid and cluster compress ratio is lower + than specified threshold. + +- To enable compression on regular inode, there are three ways: + + * chattr +c file + * chattr +c dir; touch dir/file + * mount w/ -o compress_extension=ext; touch file.ext + +Compress metadata layout:: + + [Dnode Structure] + +-----------------------------------------------+ + | cluster 1 | cluster 2 | ......... | cluster N | + +-----------------------------------------------+ + . . . . + . . . . + . Compressed Cluster . . Normal Cluster . + +----------+---------+---------+---------+ +---------+---------+---------+---------+ + |compr flag| block 1 | block 2 | block 3 | | block 1 | block 2 | block 3 | block 4 | + +----------+---------+---------+---------+ +---------+---------+---------+---------+ + . . + . . + . . + +-------------+-------------+----------+----------------------------+ + | data length | data chksum | reserved | compressed data | + +-------------+-------------+----------+----------------------------+ -- cgit v1.2.3