summaryrefslogtreecommitdiff
path: root/sound/firewire/amdtp-stream.h
AgeCommit message (Collapse)AuthorFilesLines
2016-05-11ALSA: firewire-lib: permit to flush queued packets only in process context ↵Takashi Sakamoto1-1/+0
for better PCM period granularity These three commits were merged to improve PCM pointer granularity. commit 76fb87894828 ("ALSA: firewire-lib: taskletize the snd_pcm_period_elapsed() call") commit e9148dddc3c7 ("ALSA: firewire-lib: flush completed packets when reading PCM position") commit 92b862c7d685 ("ALSA: firewire-lib: optimize packet flushing") The point of them is to handle queued packets not only in software IRQ context of IR/IT contexts, but also in process context. As a result of handling packets, period tasklet is scheduled when acrossing PCM period boundary. This is to prevent recursive call of 'struct snd_pcm_ops.pointer()' in the same context. When the pointer callback is executed in the process context, it's better to avoid the second callback in the software IRQ context. The software IRQ context runs immediately after scheduled in the process context because few packets are queued yet. For the aim, 'pointer_flush' is used, however it causes a race condition between the process context and software IRQ context of IR/IT contexts. Practically, this race is not so critical because it influences process context to skip flushing queued packet and to get worse granularity of PCM pointer. The race condition is quite rare but it should be improved for stable service. The similar effect can be achieved by using 'in_interrupt()' macro. This commit obsoletes 'pointer_flush' with it. Acked-by: Clemens Ladisch <clemens@ladisch.de> Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2016-05-10ALSA: firewire-lib: enable the same feature as CIP_SKIP_INIT_DBC_CHECK flagTakashi Sakamoto1-5/+2
In former commit, drivers in ALSA firewire stack always starts IT context before IR context. If IR context starts after packets are transmitted by peer unit, packet discontinuity may be detected because the context starts in the middle of packet streaming. This situation is rare because IT context usually starts immediately. However, it's better to solve this issue. This is suppressed with CIP_SKIP_INIT_DBC_CHECK flag. This commit enables the same feature as CIP_SKIP_INIT_DBC_CHECK. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2016-05-10ALSA: firewire-lib: handle IT/IR contexts in each software interrupt contextTakashi Sakamoto1-28/+7
In clause 6.3 of IEC 61883-6:2000, there's an explanation about processing of presentation timestamp. In the clause, we can see "If a function block receives a CIP, processes it and subsequently re-transmits it, then the SYT of the outgoing CIP shall be the sum of the incoming SYT and the processing delay." ALSA firewire stack has an implementation to partly satisfy this specification. Developers assumed the stack to perform as an Audio function block[1]. Following to the assumption, current implementation of ALSA firewire stack use one software interrupt context to handle both of in/out packets. In most case, this is processed in 1394 OHCI IR context independently of the opposite context. Thus, this implementation uses longer CPU time in the software interrupt context. This is not better for whole system. Against the assumption, I confirmed that each ASIC for IEC 61883-1/6 doesn't necessarily expect it to the stack. Thus, current implementation of ALSA firewire stack includes over-engineering. This commit purges the implementation. As a result, packets of one direction are handled in one software interrupt context and spends minimum CPU time. [1] [alsa-devel] [PATCH 0/8] [RFC] new driver for Echo Audio's Fireworks based devices http://mailman.alsa-project.org/pipermail/alsa-devel/2013-June/062660.html Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-29ALSA: firewire-lib: complete AM824 data block processing layerTakashi Sakamoto1-46/+16
This commit moves the codes related to data block processing from packet streaming layer to AM824 layer. Each driver initializes amdtp stream structure for AM824 data block by calling amdtp_am824_init(). Then, a memory block is allocated for AM824 specific structure. This memory block is released by calling amdtp_stream_destroy(). When setting streaming parameters, it calls amdtp_am824_set_parameters(). When starting packet streaming, it calls amdtp_stream_start(). When stopping packet streaming, it calls amdtp_stream_stop(). Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-29ALSA: firewire-lib: rename macros with AM824 prefixTakashi Sakamoto1-7/+7
This commit renames some macros just related to AM824 format. In later commit, they're moved to AM824 layer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-29ALSA: firewire-lib: rename PCM format helper functionTakashi Sakamoto1-2/+2
Setting the format of PCM substream to AMDTP stream structure is important to set a handler to copy actual PCM samples between buffers. The processing should be in data block processing layer because essentially it has no relationship to packet streaming. This commit renames PCM format setting function to prepare for integrating AM824 layer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-29ALSA: firewire-lib: move MIDI trigger helper function to AM824 layerTakashi Sakamoto1-18/+0
In IEC 61883-6, MIDI messages are transferred in MIDI conformant data channel. Essentially, packet streaming layer is not responsible for MIDI functionality. This commit moves MIDI trigger helper function from the layer to AM824 layer. The rest of codes related to MIDI functionality will be moved in later commits. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-29ALSA: firewire-lib: rename parameter setting function for AM824 with FDF fieldTakashi Sakamoto1-2/+1
The value of FDF field in CIP header is protocol-dependent. Thus, it's better to allow data block processing layer to decide the value in any timing. In AM824 data format, the value of FDF field in CIP header indicates N-flag and Nominal Sampling Frequency Code (sfc). The N-flag is for switching 'Clock-based rate control mode' and 'Command-based rate control mode'. In our implementation, 'Clock-based rate control mode' is just supported. Therefore, When sampling transfer frequency is decided, then the FDF can be set. This commit replaces 'amdtp_stream_set_parameters' with 'amdtp_am824_set_parameters' to set the FDF. This is the same timing to decide the ration between the number of data blocks and the number of PCM frames. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-29ALSA: firewire-lib: add data block processing layer for AM824 formatTakashi Sakamoto1-1/+2
This commit adds data block processing layer for AM824 format. The new layer initializes streaming layer with its value for fmt field. Currently, most implementation of data block processing still remains streaming layer. In later commits, these codes will be moved to the layer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-29ALSA: firewire-lib: rename 'amdtp' to 'amdtp-stream' to prepare for ↵Takashi Sakamoto1-0/+306
functional separation In later commit, data block processing layer will be newly added. This layer will be named as 'amdtp-am824'. This commit renames current amdtp file to amdtp-stream, to distinguish it from the new layer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>