summaryrefslogtreecommitdiff
path: root/security/keys/key.c
AgeCommit message (Collapse)AuthorFilesLines
2019-06-26keys: Cache the hash value to avoid lots of recalculationDavid Howells1-1/+1
Cache the hash of the key's type and description in the index key so that we're not recalculating it every time we look at a key during a search. The hash function does a bunch of multiplications, so evading those is probably worthwhile - especially as this is done for every key examined during a search. This also allows the methods used by assoc_array to get chunks of index-key to be simplified. Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-26keys: Simplify key description managementDavid Howells1-0/+2
Simplify key description management by cramming the word containing the length with the first few chars of the description also. This simplifies the code that generates the index-key used by assoc_array. It should speed up key searching a bit too. Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-19keys: Invalidate used request_key authentication keysDavid Howells1-2/+2
Invalidate used request_key authentication keys rather than revoking them so that they get cleaned up immediately rather than potentially hanging around. There doesn't seem any need to keep the revoked keys around. Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-31keys: Hoist locking out of __key_link_begin()David Howells1-6/+21
Hoist the locking of out of __key_link_begin() and into its callers. This is necessary to allow the upcoming key_move() operation to correctly order taking of the source keyring semaphore, the destination keyring semaphore and the keyring serialisation lock. Signed-off-by: David Howells <dhowells@redhat.com>
2019-02-16keys: Timestamp new keysDavid Howells1-0/+1
Set the timestamp on new keys rather than leaving it unset. Fixes: 31d5a79d7f3d ("KEYS: Do LRU discard in full keyrings") Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.morris@microsoft.com>
2019-02-16KEYS: allow reaching the keys quotas exactlyEric Biggers1-2/+2
If the sysctl 'kernel.keys.maxkeys' is set to some number n, then actually users can only add up to 'n - 1' keys. Likewise for 'kernel.keys.maxbytes' and the root_* versions of these sysctls. But these sysctls are apparently supposed to be *maximums*, as per their names and all documentation I could find -- the keyrings(7) man page, Documentation/security/keys/core.rst, and all the mentions of EDQUOT meaning that the key quota was *exceeded* (as opposed to reached). Thus, fix the code to allow reaching the quotas exactly. Fixes: 0b77f5bfb45c ("keys: make the keyring quotas controllable through /proc/sys") Cc: stable@vger.kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.morris@microsoft.com>
2018-12-13security: audit and remove any unnecessary uses of module.hPaul Gortmaker1-1/+1
Historically a lot of these existed because we did not have a distinction between what was modular code and what was providing support to modules via EXPORT_SYMBOL and friends. That changed when we forked out support for the latter into the export.h file. This means we should be able to reduce the usage of module.h in code that is obj-y Makefile or bool Kconfig. The advantage in removing such instances is that module.h itself sources about 15 other headers; adding significantly to what we feed cpp, and it can obscure what headers we are effectively using. Since module.h might have been the implicit source for init.h (for __init) and for export.h (for EXPORT_SYMBOL) we consider each instance for the presence of either and replace as needed. Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: John Johansen <john.johansen@canonical.com> Cc: Mimi Zohar <zohar@linux.ibm.com> Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: linux-security-module@vger.kernel.org Cc: linux-integrity@vger.kernel.org Cc: keyrings@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: James Morris <james.morris@microsoft.com>
2017-12-08security: keys: remove redundant assignment to key_refColin Ian King1-1/+0
Variable key_ref is being assigned a value that is never read; key_ref is being re-assigned a few statements later. Hence this assignment is redundant and can be removed. Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-11-15security: keys: Replace time_t with time64_t for struct key_preparsed_payloadBaolin Wang1-4/+4
The 'struct key_preparsed_payload' will use 'time_t' which we will try to remove in the kernel, since 'time_t' is not year 2038 safe on 32bits systems. Thus this patch replaces 'time_t' with 'time64_t' which is year 2038 safe on 32 bits system for 'struct key_preparsed_payload', moreover we should use the 'TIME64_MAX' macro to initialize the 'time64_t' type variable. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-11-15security: keys: Replace time_t/timespec with time64_tBaolin Wang1-13/+6
The 'struct key' will use 'time_t' which we try to remove in the kernel, since 'time_t' is not year 2038 safe on 32bit systems. Also the 'struct keyring_search_context' will use 'timespec' type to record current time, which is also not year 2038 safe on 32bit systems. Thus this patch replaces 'time_t' with 'time64_t' which is year 2038 safe for 'struct key', and replace 'timespec' with 'time64_t' for the 'struct keyring_search_context', since we only look at the the seconds part of 'timespec' variable. Moreover we also change the codes where using the 'time_t' and 'timespec', and we can get current time by ktime_get_real_seconds() instead of current_kernel_time(), and use 'TIME64_MAX' macro to initialize the 'time64_t' type variable. Especially in proc.c file, we have replaced 'unsigned long' and 'timespec' type with 'u64' and 'time64_t' type to save the timeout value, which means user will get one 'u64' type timeout value by issuing proc_keys_show() function. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-10-18KEYS: don't let add_key() update an uninstantiated keyDavid Howells1-0/+10
Currently, when passed a key that already exists, add_key() will call the key's ->update() method if such exists. But this is heavily broken in the case where the key is uninstantiated because it doesn't call __key_instantiate_and_link(). Consequently, it doesn't do most of the things that are supposed to happen when the key is instantiated, such as setting the instantiation state, clearing KEY_FLAG_USER_CONSTRUCT and awakening tasks waiting on it, and incrementing key->user->nikeys. It also never takes key_construction_mutex, which means that ->instantiate() can run concurrently with ->update() on the same key. In the case of the "user" and "logon" key types this causes a memory leak, at best. Maybe even worse, the ->update() methods of the "encrypted" and "trusted" key types actually just dereference a NULL pointer when passed an uninstantiated key. Change key_create_or_update() to wait interruptibly for the key to finish construction before continuing. This patch only affects *uninstantiated* keys. For now we still allow a negatively instantiated key to be updated (thereby positively instantiating it), although that's broken too (the next patch fixes it) and I'm not sure that anyone actually uses that functionality either. Here is a simple reproducer for the bug using the "encrypted" key type (requires CONFIG_ENCRYPTED_KEYS=y), though as noted above the bug pertained to more than just the "encrypted" key type: #include <stdlib.h> #include <unistd.h> #include <keyutils.h> int main(void) { int ringid = keyctl_join_session_keyring(NULL); if (fork()) { for (;;) { const char payload[] = "update user:foo 32"; usleep(rand() % 10000); add_key("encrypted", "desc", payload, sizeof(payload), ringid); keyctl_clear(ringid); } } else { for (;;) request_key("encrypted", "desc", "callout_info", ringid); } } It causes: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: encrypted_update+0xb0/0x170 PGD 7a178067 P4D 7a178067 PUD 77269067 PMD 0 PREEMPT SMP CPU: 0 PID: 340 Comm: reproduce Tainted: G D 4.14.0-rc1-00025-g428490e38b2e #796 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 task: ffff8a467a39a340 task.stack: ffffb15c40770000 RIP: 0010:encrypted_update+0xb0/0x170 RSP: 0018:ffffb15c40773de8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8a467a275b00 RCX: 0000000000000000 RDX: 0000000000000005 RSI: ffff8a467a275b14 RDI: ffffffffb742f303 RBP: ffffb15c40773e20 R08: 0000000000000000 R09: ffff8a467a275b17 R10: 0000000000000020 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff8a4677057180 R15: ffff8a467a275b0f FS: 00007f5d7fb08700(0000) GS:ffff8a467f200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000018 CR3: 0000000077262005 CR4: 00000000001606f0 Call Trace: key_create_or_update+0x2bc/0x460 SyS_add_key+0x10c/0x1d0 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x7f5d7f211259 RSP: 002b:00007ffed03904c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000f8 RAX: ffffffffffffffda RBX: 000000003b2a7955 RCX: 00007f5d7f211259 RDX: 00000000004009e4 RSI: 00000000004009ff RDI: 0000000000400a04 RBP: 0000000068db8bad R08: 000000003b2a7955 R09: 0000000000000004 R10: 000000000000001a R11: 0000000000000246 R12: 0000000000400868 R13: 00007ffed03905d0 R14: 0000000000000000 R15: 0000000000000000 Code: 77 28 e8 64 34 1f 00 45 31 c0 31 c9 48 8d 55 c8 48 89 df 48 8d 75 d0 e8 ff f9 ff ff 85 c0 41 89 c4 0f 88 84 00 00 00 4c 8b 7d c8 <49> 8b 75 18 4c 89 ff e8 24 f8 ff ff 85 c0 41 89 c4 78 6d 49 8b RIP: encrypted_update+0xb0/0x170 RSP: ffffb15c40773de8 CR2: 0000000000000018 Cc: <stable@vger.kernel.org> # v2.6.12+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Eric Biggers <ebiggers@google.com>
2017-10-18KEYS: Fix race between updating and finding a negative keyDavid Howells1-11/+20
Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection error into one field such that: (1) The instantiation state can be modified/read atomically. (2) The error can be accessed atomically with the state. (3) The error isn't stored unioned with the payload pointers. This deals with the problem that the state is spread over three different objects (two bits and a separate variable) and reading or updating them atomically isn't practical, given that not only can uninstantiated keys change into instantiated or rejected keys, but rejected keys can also turn into instantiated keys - and someone accessing the key might not be using any locking. The main side effect of this problem is that what was held in the payload may change, depending on the state. For instance, you might observe the key to be in the rejected state. You then read the cached error, but if the key semaphore wasn't locked, the key might've become instantiated between the two reads - and you might now have something in hand that isn't actually an error code. The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error code if the key is negatively instantiated. The key_is_instantiated() function is replaced with key_is_positive() to avoid confusion as negative keys are also 'instantiated'. Additionally, barriering is included: (1) Order payload-set before state-set during instantiation. (2) Order state-read before payload-read when using the key. Further separate barriering is necessary if RCU is being used to access the payload content after reading the payload pointers. Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data") Cc: stable@vger.kernel.org # v4.4+ Reported-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Eric Biggers <ebiggers@google.com>
2017-09-25KEYS: reset parent each time before searching key_user_treeEric Biggers1-2/+2
In key_user_lookup(), if there is no key_user for the given uid, we drop key_user_lock, allocate a new key_user, and search the tree again. But we failed to set 'parent' to NULL at the beginning of the second search. If the tree were to be empty for the second search, the insertion would be done with an invalid 'parent', scribbling over freed memory. Fortunately this can't actually happen currently because the tree always contains at least the root_key_user. But it still should be fixed to make the code more robust. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
2017-09-25KEYS: prevent creating a different user's keyringsEric Biggers1-0/+2
It was possible for an unprivileged user to create the user and user session keyrings for another user. For example: sudo -u '#3000' sh -c 'keyctl add keyring _uid.4000 "" @u keyctl add keyring _uid_ses.4000 "" @u sleep 15' & sleep 1 sudo -u '#4000' keyctl describe @u sudo -u '#4000' keyctl describe @us This is problematic because these "fake" keyrings won't have the right permissions. In particular, the user who created them first will own them and will have full access to them via the possessor permissions, which can be used to compromise the security of a user's keys: -4: alswrv-----v------------ 3000 0 keyring: _uid.4000 -5: alswrv-----v------------ 3000 0 keyring: _uid_ses.4000 Fix it by marking user and user session keyrings with a flag KEY_FLAG_UID_KEYRING. Then, when searching for a user or user session keyring by name, skip all keyrings that don't have the flag set. Fixes: 69664cf16af4 ("keys: don't generate user and user session keyrings unless they're accessed") Cc: <stable@vger.kernel.org> [v2.6.26+] Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com>
2017-06-09KEYS: fix refcount_inc() on zeroMark Rutland1-7/+4
If a key's refcount is dropped to zero between key_lookup() peeking at the refcount and subsequently attempting to increment it, refcount_inc() will see a zero refcount. Here, refcount_inc() will WARN_ONCE(), and will *not* increment the refcount, which will remain zero. Once key_lookup() drops key_serial_lock, it is possible for the key to be freed behind our back. This patch uses refcount_inc_not_zero() to perform the peek and increment atomically. Fixes: fff292914d3a2f1e ("security, keys: convert key.usage from atomic_t to refcount_t") Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: David Howells <dhowells@redhat.com> Cc: David Windsor <dwindsor@gmail.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hans Liljestrand <ishkamiel@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-06-09KEYS: fix freeing uninitialized memory in key_update()Eric Biggers1-3/+2
key_update() freed the key_preparsed_payload even if it was not initialized first. This would cause a crash if userspace called keyctl_update() on a key with type like "asymmetric" that has a ->preparse() method but not an ->update() method. Possibly it could even be triggered for other key types by racing with keyctl_setperm() to make the KEY_NEED_WRITE check fail (the permission was already checked, so normally it wouldn't fail there). Reproducer with key type "asymmetric", given a valid cert.der: keyctl new_session keyid=$(keyctl padd asymmetric desc @s < cert.der) keyctl setperm $keyid 0x3f000000 keyctl update $keyid data [ 150.686666] BUG: unable to handle kernel NULL pointer dereference at 0000000000000001 [ 150.687601] IP: asymmetric_key_free_kids+0x12/0x30 [ 150.688139] PGD 38a3d067 [ 150.688141] PUD 3b3de067 [ 150.688447] PMD 0 [ 150.688745] [ 150.689160] Oops: 0000 [#1] SMP [ 150.689455] Modules linked in: [ 150.689769] CPU: 1 PID: 2478 Comm: keyctl Not tainted 4.11.0-rc4-xfstests-00187-ga9f6b6b8cd2f #742 [ 150.690916] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014 [ 150.692199] task: ffff88003b30c480 task.stack: ffffc90000350000 [ 150.692952] RIP: 0010:asymmetric_key_free_kids+0x12/0x30 [ 150.693556] RSP: 0018:ffffc90000353e58 EFLAGS: 00010202 [ 150.694142] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000004 [ 150.694845] RDX: ffffffff81ee3920 RSI: ffff88003d4b0700 RDI: 0000000000000001 [ 150.697569] RBP: ffffc90000353e60 R08: ffff88003d5d2140 R09: 0000000000000000 [ 150.702483] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 [ 150.707393] R13: 0000000000000004 R14: ffff880038a4d2d8 R15: 000000000040411f [ 150.709720] FS: 00007fcbcee35700(0000) GS:ffff88003fd00000(0000) knlGS:0000000000000000 [ 150.711504] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 150.712733] CR2: 0000000000000001 CR3: 0000000039eab000 CR4: 00000000003406e0 [ 150.714487] Call Trace: [ 150.714975] asymmetric_key_free_preparse+0x2f/0x40 [ 150.715907] key_update+0xf7/0x140 [ 150.716560] ? key_default_cmp+0x20/0x20 [ 150.717319] keyctl_update_key+0xb0/0xe0 [ 150.718066] SyS_keyctl+0x109/0x130 [ 150.718663] entry_SYSCALL_64_fastpath+0x1f/0xc2 [ 150.719440] RIP: 0033:0x7fcbce75ff19 [ 150.719926] RSP: 002b:00007ffd5d167088 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa [ 150.720918] RAX: ffffffffffffffda RBX: 0000000000404d80 RCX: 00007fcbce75ff19 [ 150.721874] RDX: 00007ffd5d16785e RSI: 000000002866cd36 RDI: 0000000000000002 [ 150.722827] RBP: 0000000000000006 R08: 000000002866cd36 R09: 00007ffd5d16785e [ 150.723781] R10: 0000000000000004 R11: 0000000000000206 R12: 0000000000404d80 [ 150.724650] R13: 00007ffd5d16784d R14: 00007ffd5d167238 R15: 000000000040411f [ 150.725447] Code: 83 c4 08 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 85 ff 74 23 55 48 89 e5 53 48 89 fb <48> 8b 3f e8 06 21 c5 ff 48 8b 7b 08 e8 fd 20 c5 ff 48 89 df e8 [ 150.727489] RIP: asymmetric_key_free_kids+0x12/0x30 RSP: ffffc90000353e58 [ 150.728117] CR2: 0000000000000001 [ 150.728430] ---[ end trace f7f8fe1da2d5ae8d ]--- Fixes: 4d8c0250b841 ("KEYS: Call ->free_preparse() even after ->preparse() returns an error") Cc: stable@vger.kernel.org # 3.17+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-04-05KEYS: Consistent ordering for __key_link_begin and restrict checkMat Martineau1-11/+13
The keyring restrict callback was sometimes called before __key_link_begin and sometimes after, which meant that the keyring semaphores were not always held during the restrict callback. If the semaphores are consistently acquired before checking link restrictions, keyring contents cannot be changed after the restrict check is complete but before the evaluated key is linked to the keyring. Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-05KEYS: Use structure to capture key restriction function and dataMat Martineau1-9/+14
Replace struct key's restrict_link function pointer with a pointer to the new struct key_restriction. The structure contains pointers to the restriction function as well as relevant data for evaluating the restriction. The garbage collector checks restrict_link->keytype when key types are unregistered. Restrictions involving a removed key type are converted to use restrict_link_reject so that restrictions cannot be removed by unregistering key types. Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-03KEYS: Split role of the keyring pointer for keyring restrict functionsMat Martineau1-2/+3
The first argument to the restrict_link_func_t functions was a keyring pointer. These functions are called by the key subsystem with this argument set to the destination keyring, but restrict_link_by_signature expects a pointer to the relevant trusted keyring. Restrict functions may need something other than a single struct key pointer to allow or reject key linkage, so the data used to make that decision (such as the trust keyring) is moved to a new, fourth argument. The first argument is now always the destination keyring. Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-03KEYS: Use a typedef for restrict_link function pointersMat Martineau1-6/+2
This pointer type needs to be returned from a lookup function, and without a typedef the syntax gets cumbersome. Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2017-04-03security, keys: convert key_user.usage from atomic_t to refcount_tElena Reshetova1-3/+3
refcount_t type and corresponding API should be used instead of atomic_t when the variable is used as a reference counter. This allows to avoid accidental refcounter overflows that might lead to use-after-free situations. Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: David Windsor <dwindsor@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2017-04-03security, keys: convert key.usage from atomic_t to refcount_tElena Reshetova1-3/+3
refcount_t type and corresponding API should be used instead of atomic_t when the variable is used as a reference counter. This allows to avoid accidental refcounter overflows that might lead to use-after-free situations. Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: David Windsor <dwindsor@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2016-06-17KEYS: potential uninitialized variableDan Carpenter1-1/+1
If __key_link_begin() failed then "edit" would be uninitialized. I've added a check to fix that. This allows a random user to crash the kernel, though it's quite difficult to achieve. There are three ways it can be done as the user would have to cause an error to occur in __key_link(): (1) Cause the kernel to run out of memory. In practice, this is difficult to achieve without ENOMEM cropping up elsewhere and aborting the attempt. (2) Revoke the destination keyring between the keyring ID being looked up and it being tested for revocation. In practice, this is difficult to time correctly because the KEYCTL_REJECT function can only be used from the request-key upcall process. Further, users can only make use of what's in /sbin/request-key.conf, though this does including a rejection debugging test - which means that the destination keyring has to be the caller's session keyring in practice. (3) Have just enough key quota available to create a key, a new session keyring for the upcall and a link in the session keyring, but not then sufficient quota to create a link in the nominated destination keyring so that it fails with EDQUOT. The bug can be triggered using option (3) above using something like the following: echo 80 >/proc/sys/kernel/keys/root_maxbytes keyctl request2 user debug:fred negate @t The above sets the quota to something much lower (80) to make the bug easier to trigger, but this is dependent on the system. Note also that the name of the keyring created contains a random number that may be between 1 and 10 characters in size, so may throw the test off by changing the amount of quota used. Assuming the failure occurs, something like the following will be seen: kfree_debugcheck: out of range ptr 6b6b6b6b6b6b6b68h ------------[ cut here ]------------ kernel BUG at ../mm/slab.c:2821! ... RIP: 0010:[<ffffffff811600f9>] kfree_debugcheck+0x20/0x25 RSP: 0018:ffff8804014a7de8 EFLAGS: 00010092 RAX: 0000000000000034 RBX: 6b6b6b6b6b6b6b68 RCX: 0000000000000000 RDX: 0000000000040001 RSI: 00000000000000f6 RDI: 0000000000000300 RBP: ffff8804014a7df0 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8804014a7e68 R11: 0000000000000054 R12: 0000000000000202 R13: ffffffff81318a66 R14: 0000000000000000 R15: 0000000000000001 ... Call Trace: kfree+0xde/0x1bc assoc_array_cancel_edit+0x1f/0x36 __key_link_end+0x55/0x63 key_reject_and_link+0x124/0x155 keyctl_reject_key+0xb6/0xe0 keyctl_negate_key+0x10/0x12 SyS_keyctl+0x9f/0xe7 do_syscall_64+0x63/0x13a entry_SYSCALL64_slow_path+0x25/0x25 Fixes: f70e2e06196a ('KEYS: Do preallocation for __key_link()') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-12KEYS: Remove KEY_FLAG_TRUSTED and KEY_ALLOC_TRUSTEDDavid Howells1-9/+2
Remove KEY_FLAG_TRUSTED and KEY_ALLOC_TRUSTED as they're no longer meaningful. Also we can drop the trusted flag from the preparse structure. Given this, we no longer need to pass the key flags through to restrict_link(). Further, we can now get rid of keyring_restrict_trusted_only() also. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-12KEYS: Add a facility to restrict new links into a keyringDavid Howells1-7/+36
Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-02-09KEYS: Add an alloc flag to convey the builtinness of a keyDavid Howells1-0/+2
Add KEY_ALLOC_BUILT_IN to convey that a key should have KEY_FLAG_BUILTIN set rather than setting it after the fact. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-01-28KEYS: Only apply KEY_FLAG_KEEP to a key if a parent keyring has it setDavid Howells1-1/+2
KEY_FLAG_KEEP should only be applied to a key if the keyring it is being linked into has KEY_FLAG_KEEP set. To this end, partially revert the following patch: commit 1d6d167c2efcfe9539d9cffb1a1be9c92e39c2c0 Author: Mimi Zohar <zohar@linux.vnet.ibm.com> Date: Thu Jan 7 07:46:36 2016 -0500 KEYS: refcount bug fix to undo the change that made it unconditional (Mimi got it right the first time). Without undoing this change, it becomes impossible to delete, revoke or invalidate keys added to keyrings through __key_instantiate_and_link() where the keyring has itself been linked to. To test this, run the following command sequence: keyctl newring foo @s keyctl add user a a %:foo keyctl unlink %user:a %:foo keyctl clear %:foo With the commit mentioned above the third and fourth commands fail with EPERM when they should succeed. Reported-by: Stephen Gallager <sgallagh@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com> cc: Mimi Zohar <zohar@linux.vnet.ibm.com> cc: keyrings@vger.kernel.org cc: stable@vger.kernel.org Signed-off-by: James Morris <james.l.morris@oracle.com>
2016-01-07KEYS: refcount bug fixMimi Zohar1-2/+1
This patch fixes the key_ref leak, removes the unnecessary KEY_FLAG_KEEP test before setting the flag, and cleans up the if/then brackets style introduced in commit: d3600bc KEYS: prevent keys from being removed from specified keyrings Reported-by: David Howells <dhowells@redhat.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Acked-by: David Howells <dhowells@redhat.com>
2015-12-15KEYS: prevent keys from being removed from specified keyringsMimi Zohar1-1/+5
Userspace should not be allowed to remove keys from certain keyrings (eg. blacklist), though the keys themselves can expire. This patch defines a new key flag named KEY_FLAG_KEEP to prevent userspace from being able to unlink, revoke, invalidate or timed out a key on a keyring. When this flag is set on the keyring, all keys subsequently added are flagged. In addition, when this flag is set, the keyring itself can not be cleared. Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: David Howells <dhowells@redhat.com>
2015-10-21KEYS: Merge the type-specific data with the payload dataDavid Howells1-9/+9
Merge the type-specific data with the payload data into one four-word chunk as it seems pointless to keep them separate. Use user_key_payload() for accessing the payloads of overloaded user-defined keys. Signed-off-by: David Howells <dhowells@redhat.com> cc: linux-cifs@vger.kernel.org cc: ecryptfs@vger.kernel.org cc: linux-ext4@vger.kernel.org cc: linux-f2fs-devel@lists.sourceforge.net cc: linux-nfs@vger.kernel.org cc: ceph-devel@vger.kernel.org cc: linux-ima-devel@lists.sourceforge.net
2015-10-21keys: Be more consistent in selection of union members usedInsu Yun1-1/+1
key->description and key->index_key.description are same because they are unioned. But, for readability, using same name for duplication and validation seems better. Signed-off-by: Insu Yun <wuninsu@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
2014-12-16KEYS: remove a bogus NULL checkDan Carpenter1-6/+4
We already checked if "desc" was NULL at the beginning of the function and we've dereferenced it so this causes a static checker warning. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2014-10-12Merge branch 'next' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris. Mostly ima, selinux, smack and key handling updates. * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (65 commits) integrity: do zero padding of the key id KEYS: output last portion of fingerprint in /proc/keys KEYS: strip 'id:' from ca_keyid KEYS: use swapped SKID for performing partial matching KEYS: Restore partial ID matching functionality for asymmetric keys X.509: If available, use the raw subjKeyId to form the key description KEYS: handle error code encoded in pointer selinux: normalize audit log formatting selinux: cleanup error reporting in selinux_nlmsg_perm() KEYS: Check hex2bin()'s return when generating an asymmetric key ID ima: detect violations for mmaped files ima: fix race condition on ima_rdwr_violation_check and process_measurement ima: added ima_policy_flag variable ima: return an error code from ima_add_boot_aggregate() ima: provide 'ima_appraise=log' kernel option ima: move keyring initialization to ima_init() PKCS#7: Handle PKCS#7 messages that contain no X.509 certs PKCS#7: Better handling of unsupported crypto KEYS: Overhaul key identification when searching for asymmetric keys KEYS: Implement binary asymmetric key ID handling ...
2014-09-16KEYS: Remove key_type::match in favour of overriding default by match_preparseDavid Howells1-1/+1
A previous patch added a ->match_preparse() method to the key type. This is allowed to override the function called by the iteration algorithm. Therefore, we can just set a default that simply checks for an exact match of the key description with the original criterion data and allow match_preparse to override it as needed. The key_type::match op is then redundant and can be removed, as can the user_match() function. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-03KEYS: Increase root_maxkeys and root_maxbytes sizesSteve Dickson1-2/+2
Now that NFS client uses the kernel key ring facility to store the NFSv4 id/gid mappings, the defaults for root_maxkeys and root_maxbytes need to be substantially increased. These values have been soak tested: https://bugzilla.redhat.com/show_bug.cgi?id=1033708#c73 Signed-off-by: Steve Dickson <steved@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2014-07-23KEYS: Call ->free_preparse() even after ->preparse() returns an errorDavid Howells1-5/+4
Call the ->free_preparse() key type op even after ->preparse() returns an error as it does cleaning up type stuff. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Sage Weil <sage@redhat.com>
2014-07-23KEYS: Allow expiry time to be set when preparsing a keyDavid Howells1-0/+8
Allow a key type's preparsing routine to set the expiry time for a key. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Sage Weil <sage@redhat.com>
2014-07-23KEYS: struct key_preparsed_payload should have two payload pointersDavid Howells1-2/+4
struct key_preparsed_payload should have two payload pointers to correspond with those in struct key. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Sage Weil <sage@redhat.com>
2014-07-18KEYS: Provide a generic instantiation functionDavid Howells1-0/+30
Provide a generic instantiation function for key types that use the preparse hook. This makes it easier to prereserve key quota before keyrings get locked to retain the new key. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Sage Weil <sage@redhat.com>
2014-03-14KEYS: Move the flags representing required permission to linux/key.hDavid Howells1-3/+3
Move the flags representing required permission to linux/key.h as the perm parameter of security_key_permission() is in terms of them - and not the permissions mask flags used in key->perm. Whilst we're at it: (1) Rename them to be KEY_NEED_xxx rather than KEY_xxx to avoid collisions with symbols in uapi/linux/input.h. (2) Don't use key_perm_t for a mask of required permissions, but rather limit it to the permissions mask attached to the key and arguments related directly to that. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
2013-12-02KEYS: Pre-clear struct key on allocationDavid Howells1-7/+1
The second word of key->payload does not get initialised in key_alloc(), but the big_key type is relying on it having been cleared. The problem comes when big_key fails to instantiate a large key and doesn't then set the payload. The big_key_destroy() op is called from the garbage collector and this assumes that the dentry pointer stored in the second word will be NULL if instantiation did not complete. Therefore just pre-clear the entire struct key on allocation rather than trying to be clever and only initialising to 0 only those bits that aren't otherwise initialised. The lack of initialisation can lead to a bug report like the following if big_key failed to initialise its file: general protection fault: 0000 [#1] SMP Modules linked in: ... CPU: 0 PID: 51 Comm: kworker/0:1 Not tainted 3.10.0-53.el7.x86_64 #1 Hardware name: Dell Inc. PowerEdge 1955/0HC513, BIOS 1.4.4 12/09/2008 Workqueue: events key_garbage_collector task: ffff8801294f5680 ti: ffff8801296e2000 task.ti: ffff8801296e2000 RIP: 0010:[<ffffffff811b4a51>] dput+0x21/0x2d0 ... Call Trace: [<ffffffff811a7b06>] path_put+0x16/0x30 [<ffffffff81235604>] big_key_destroy+0x44/0x60 [<ffffffff8122dc4b>] key_gc_unused_keys.constprop.2+0x5b/0xe0 [<ffffffff8122df2f>] key_garbage_collector+0x1df/0x3c0 [<ffffffff8107759b>] process_one_work+0x17b/0x460 [<ffffffff8107834b>] worker_thread+0x11b/0x400 [<ffffffff81078230>] ? rescuer_thread+0x3e0/0x3e0 [<ffffffff8107eb00>] kthread+0xc0/0xd0 [<ffffffff8107ea40>] ? kthread_create_on_node+0x110/0x110 [<ffffffff815c4bec>] ret_from_fork+0x7c/0xb0 [<ffffffff8107ea40>] ? kthread_create_on_node+0x110/0x110 Reported-by: Patrik Kis <pkis@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Stephen Gallagher <sgallagh@redhat.com>
2013-10-30KEYS: Fix a race between negating a key and reading the error setDavid Howells1-1/+2
key_reject_and_link() marking a key as negative and setting the error with which it was negated races with keyring searches and other things that read that error. The fix is to switch the order in which the assignments are done in key_reject_and_link() and to use memory barriers. Kudos to Dave Wysochanski <dwysocha@redhat.com> and Scott Mayhew <smayhew@redhat.com> for tracking this down. This may be the cause of: BUG: unable to handle kernel NULL pointer dereference at 0000000000000070 IP: [<ffffffff81219011>] wait_for_key_construction+0x31/0x80 PGD c6b2c3067 PUD c59879067 PMD 0 Oops: 0000 [#1] SMP last sysfs file: /sys/devices/system/cpu/cpu3/cache/index2/shared_cpu_map CPU 0 Modules linked in: ... Pid: 13359, comm: amqzxma0 Not tainted 2.6.32-358.20.1.el6.x86_64 #1 IBM System x3650 M3 -[7945PSJ]-/00J6159 RIP: 0010:[<ffffffff81219011>] wait_for_key_construction+0x31/0x80 RSP: 0018:ffff880c6ab33758 EFLAGS: 00010246 RAX: ffffffff81219080 RBX: 0000000000000000 RCX: 0000000000000002 RDX: ffffffff81219060 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff880c6ab33768 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: ffff880adfcbce40 R13: ffffffffa03afb84 R14: ffff880adfcbce40 R15: ffff880adfcbce43 FS: 00007f29b8042700(0000) GS:ffff880028200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000070 CR3: 0000000c613dc000 CR4: 00000000000007f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process amqzxma0 (pid: 13359, threadinfo ffff880c6ab32000, task ffff880c610deae0) Stack: ffff880adfcbce40 0000000000000000 ffff880c6ab337b8 ffffffff81219695 <d> 0000000000000000 ffff880a000000d0 ffff880c6ab337a8 000000000000000f <d> ffffffffa03afb93 000000000000000f ffff88186c7882c0 0000000000000014 Call Trace: [<ffffffff81219695>] request_key+0x65/0xa0 [<ffffffffa03a0885>] nfs_idmap_request_key+0xc5/0x170 [nfs] [<ffffffffa03a0eb4>] nfs_idmap_lookup_id+0x34/0x80 [nfs] [<ffffffffa03a1255>] nfs_map_group_to_gid+0x75/0xa0 [nfs] [<ffffffffa039a9ad>] decode_getfattr_attrs+0xbdd/0xfb0 [nfs] [<ffffffff81057310>] ? __dequeue_entity+0x30/0x50 [<ffffffff8100988e>] ? __switch_to+0x26e/0x320 [<ffffffffa039ae03>] decode_getfattr+0x83/0xe0 [nfs] [<ffffffffa039b610>] ? nfs4_xdr_dec_getattr+0x0/0xa0 [nfs] [<ffffffffa039b69f>] nfs4_xdr_dec_getattr+0x8f/0xa0 [nfs] [<ffffffffa02dada4>] rpcauth_unwrap_resp+0x84/0xb0 [sunrpc] [<ffffffffa039b610>] ? nfs4_xdr_dec_getattr+0x0/0xa0 [nfs] [<ffffffffa02cf923>] call_decode+0x1b3/0x800 [sunrpc] [<ffffffff81096de0>] ? wake_bit_function+0x0/0x50 [<ffffffffa02cf770>] ? call_decode+0x0/0x800 [sunrpc] [<ffffffffa02d99a7>] __rpc_execute+0x77/0x350 [sunrpc] [<ffffffff81096c67>] ? bit_waitqueue+0x17/0xd0 [<ffffffffa02d9ce1>] rpc_execute+0x61/0xa0 [sunrpc] [<ffffffffa02d03a5>] rpc_run_task+0x75/0x90 [sunrpc] [<ffffffffa02d04c2>] rpc_call_sync+0x42/0x70 [sunrpc] [<ffffffffa038ff80>] _nfs4_call_sync+0x30/0x40 [nfs] [<ffffffffa038836c>] _nfs4_proc_getattr+0xac/0xc0 [nfs] [<ffffffff810aac87>] ? futex_wait+0x227/0x380 [<ffffffffa038b856>] nfs4_proc_getattr+0x56/0x80 [nfs] [<ffffffffa0371403>] __nfs_revalidate_inode+0xe3/0x220 [nfs] [<ffffffffa037158e>] nfs_revalidate_mapping+0x4e/0x170 [nfs] [<ffffffffa036f147>] nfs_file_read+0x77/0x130 [nfs] [<ffffffff811811aa>] do_sync_read+0xfa/0x140 [<ffffffff81096da0>] ? autoremove_wake_function+0x0/0x40 [<ffffffff8100bb8e>] ? apic_timer_interrupt+0xe/0x20 [<ffffffff8100b9ce>] ? common_interrupt+0xe/0x13 [<ffffffff81228ffb>] ? selinux_file_permission+0xfb/0x150 [<ffffffff8121bed6>] ? security_file_permission+0x16/0x20 [<ffffffff81181a95>] vfs_read+0xb5/0x1a0 [<ffffffff81181bd1>] sys_read+0x51/0x90 [<ffffffff810dc685>] ? __audit_syscall_exit+0x265/0x290 [<ffffffff8100b072>] system_call_fastpath+0x16/0x1b Signed-off-by: David Howells <dhowells@redhat.com> cc: Dave Wysochanski <dwysocha@redhat.com> cc: Scott Mayhew <smayhew@redhat.com>
2013-09-25KEYS: Add a 'trusted' flag and a 'trusted only' flagDavid Howells1-0/+8
Add KEY_FLAG_TRUSTED to indicate that a key either comes from a trusted source or had a cryptographic signature chain that led back to a trusted key the kernel already possessed. Add KEY_FLAGS_TRUSTED_ONLY to indicate that a keyring will only accept links to keys marked with KEY_FLAGS_TRUSTED. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org>
2013-09-24KEYS: Expand the capacity of a keyringDavid Howells1-18/+17
Expand the capacity of a keyring to be able to hold a lot more keys by using the previously added associative array implementation. Currently the maximum capacity is: (PAGE_SIZE - sizeof(header)) / sizeof(struct key *) which, on a 64-bit system, is a little more 500. However, since this is being used for the NFS uid mapper, we need more than that. The new implementation gives us effectively unlimited capacity. With some alterations, the keyutils testsuite runs successfully to completion after this patch is applied. The alterations are because (a) keyrings that are simply added to no longer appear ordered and (b) some of the errors have changed a bit. Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24KEYS: Drop the permissions argument from __keyring_search_one()David Howells1-1/+1
Drop the permissions argument from __keyring_search_one() as the only caller passes 0 here - which causes all checks to be skipped. Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24KEYS: Define a __key_get() wrapper to use rather than atomic_inc()David Howells1-1/+1
Define a __key_get() wrapper to use rather than atomic_inc() on the key usage count as this makes it easier to hook in refcount error debugging. Signed-off-by: David Howells <dhowells@redhat.com>
2013-09-24KEYS: Consolidate the concept of an 'index key' for key accessDavid Howells1-35/+37
Consolidate the concept of an 'index key' for accessing keys. The index key is the search term needed to find a key directly - basically the key type and the key description. We can add to that the description length. This will be useful when turning a keyring into an associative array rather than just a pointer block. Signed-off-by: David Howells <dhowells@redhat.com>
2012-12-17Merge branch 'for-linus' of ↵Linus Torvalds1-3/+3
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris: "A quiet cycle for the security subsystem with just a few maintenance updates." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: Smack: create a sysfs mount point for smackfs Smack: use select not depends in Kconfig Yama: remove locking from delete path Yama: add RCU to drop read locking drivers/char/tpm: remove tasklet and cleanup KEYS: Use keyring_alloc() to create special keyrings KEYS: Reduce initial permissions on keys KEYS: Make the session and process keyrings per-thread seccomp: Make syscall skipping and nr changes more consistent key: Fix resource leak keys: Fix unreachable code KEYS: Add payload preparsing opportunity prior to key instantiate or update
2012-10-15Merge branch 'modules-next' of ↵Linus Torvalds1-32/+82
git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux Pull module signing support from Rusty Russell: "module signing is the highlight, but it's an all-over David Howells frenzy..." Hmm "Magrathea: Glacier signing key". Somebody has been reading too much HHGTTG. * 'modules-next' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (37 commits) X.509: Fix indefinite length element skip error handling X.509: Convert some printk calls to pr_devel asymmetric keys: fix printk format warning MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checking MODSIGN: Make mrproper should remove generated files. MODSIGN: Use utf8 strings in signer's name in autogenerated X.509 certs MODSIGN: Use the same digest for the autogen key sig as for the module sig MODSIGN: Sign modules during the build process MODSIGN: Provide a script for generating a key ID from an X.509 cert MODSIGN: Implement module signature checking MODSIGN: Provide module signing public keys to the kernel MODSIGN: Automatically generate module signing keys if missing MODSIGN: Provide Kconfig options MODSIGN: Provide gitignore and make clean rules for extra files MODSIGN: Add FIPS policy module: signature checking hook X.509: Add a crypto key parser for binary (DER) X.509 certificates MPILIB: Provide a function to read raw data into an MPI X.509: Add an ASN.1 decoder X.509: Add simple ASN.1 grammar compiler ...
2012-10-08KEYS: Add payload preparsing opportunity prior to key instantiate or updateDavid Howells1-32/+82
Give the key type the opportunity to preparse the payload prior to the instantiation and update routines being called. This is done with the provision of two new key type operations: int (*preparse)(struct key_preparsed_payload *prep); void (*free_preparse)(struct key_preparsed_payload *prep); If the first operation is present, then it is called before key creation (in the add/update case) or before the key semaphore is taken (in the update and instantiate cases). The second operation is called to clean up if the first was called. preparse() is given the opportunity to fill in the following structure: struct key_preparsed_payload { char *description; void *type_data[2]; void *payload; const void *data; size_t datalen; size_t quotalen; }; Before the preparser is called, the first three fields will have been cleared, the payload pointer and size will be stored in data and datalen and the default quota size from the key_type struct will be stored into quotalen. The preparser may parse the payload in any way it likes and may store data in the type_data[] and payload fields for use by the instantiate() and update() ops. The preparser may also propose a description for the key by attaching it as a string to the description field. This can be used by passing a NULL or "" description to the add_key() system call or the key_create_or_update() function. This cannot work with request_key() as that required the description to tell the upcall about the key to be created. This, for example permits keys that store PGP public keys to generate their own name from the user ID and public key fingerprint in the key. The instantiate() and update() operations are then modified to look like this: int (*instantiate)(struct key *key, struct key_preparsed_payload *prep); int (*update)(struct key *key, struct key_preparsed_payload *prep); and the new payload data is passed in *prep, whether or not it was preparsed. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>