summaryrefslogtreecommitdiff
path: root/net/sched/sch_etf.c
AgeCommit message (Collapse)AuthorFilesLines
2020-04-23sched: etf: do not assume all sockets are full blownEric Dumazet1-3/+4
skb->sk does not always point to a full blown socket, we need to use sk_fullsock() before accessing fields which only make sense on full socket. BUG: KASAN: use-after-free in report_sock_error+0x286/0x300 net/sched/sch_etf.c:141 Read of size 1 at addr ffff88805eb9b245 by task syz-executor.5/9630 CPU: 1 PID: 9630 Comm: syz-executor.5 Not tainted 5.7.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x188/0x20d lib/dump_stack.c:118 print_address_description.constprop.0.cold+0xd3/0x315 mm/kasan/report.c:382 __kasan_report.cold+0x35/0x4d mm/kasan/report.c:511 kasan_report+0x33/0x50 mm/kasan/common.c:625 report_sock_error+0x286/0x300 net/sched/sch_etf.c:141 etf_enqueue_timesortedlist+0x389/0x740 net/sched/sch_etf.c:170 __dev_xmit_skb net/core/dev.c:3710 [inline] __dev_queue_xmit+0x154a/0x30a0 net/core/dev.c:4021 neigh_hh_output include/net/neighbour.h:499 [inline] neigh_output include/net/neighbour.h:508 [inline] ip6_finish_output2+0xfb5/0x25b0 net/ipv6/ip6_output.c:117 __ip6_finish_output+0x442/0xab0 net/ipv6/ip6_output.c:143 ip6_finish_output+0x34/0x1f0 net/ipv6/ip6_output.c:153 NF_HOOK_COND include/linux/netfilter.h:296 [inline] ip6_output+0x239/0x810 net/ipv6/ip6_output.c:176 dst_output include/net/dst.h:435 [inline] NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] ip6_xmit+0xe1a/0x2090 net/ipv6/ip6_output.c:280 tcp_v6_send_synack+0x4e7/0x960 net/ipv6/tcp_ipv6.c:521 tcp_rtx_synack+0x10d/0x1a0 net/ipv4/tcp_output.c:3916 inet_rtx_syn_ack net/ipv4/inet_connection_sock.c:669 [inline] reqsk_timer_handler+0x4c2/0xb40 net/ipv4/inet_connection_sock.c:763 call_timer_fn+0x1ac/0x780 kernel/time/timer.c:1405 expire_timers kernel/time/timer.c:1450 [inline] __run_timers kernel/time/timer.c:1774 [inline] __run_timers kernel/time/timer.c:1741 [inline] run_timer_softirq+0x623/0x1600 kernel/time/timer.c:1787 __do_softirq+0x26c/0x9f7 kernel/softirq.c:292 invoke_softirq kernel/softirq.c:373 [inline] irq_exit+0x192/0x1d0 kernel/softirq.c:413 exiting_irq arch/x86/include/asm/apic.h:546 [inline] smp_apic_timer_interrupt+0x19e/0x600 arch/x86/kernel/apic/apic.c:1140 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:829 </IRQ> RIP: 0010:des_encrypt+0x157/0x9c0 lib/crypto/des.c:792 Code: 85 22 06 00 00 41 31 dc 41 8b 4d 04 44 89 e2 41 83 e4 3f 4a 8d 3c a5 60 72 72 88 81 e2 3f 3f 3f 3f 48 89 f8 48 c1 e8 03 31 d9 <0f> b6 34 28 48 89 f8 c1 c9 04 83 e0 07 83 c0 03 40 38 f0 7c 09 40 RSP: 0018:ffffc90003b5f6c0 EFLAGS: 00000282 ORIG_RAX: ffffffffffffff13 RAX: 1ffffffff10e4e55 RBX: 00000000d2f846d0 RCX: 00000000d2f846d0 RDX: 0000000012380612 RSI: ffffffff839863ca RDI: ffffffff887272a8 RBP: dffffc0000000000 R08: ffff888091d0a380 R09: 0000000000800081 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000012 R13: ffff8880a8ae8078 R14: 00000000c545c93e R15: 0000000000000006 cipher_crypt_one crypto/cipher.c:75 [inline] crypto_cipher_encrypt_one+0x124/0x210 crypto/cipher.c:82 crypto_cbcmac_digest_update+0x1b5/0x250 crypto/ccm.c:830 crypto_shash_update+0xc4/0x120 crypto/shash.c:119 shash_ahash_update+0xa3/0x110 crypto/shash.c:246 crypto_ahash_update include/crypto/hash.h:547 [inline] hash_sendmsg+0x518/0xad0 crypto/algif_hash.c:102 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:672 ____sys_sendmsg+0x308/0x7e0 net/socket.c:2362 ___sys_sendmsg+0x100/0x170 net/socket.c:2416 __sys_sendmmsg+0x195/0x480 net/socket.c:2506 __do_sys_sendmmsg net/socket.c:2535 [inline] __se_sys_sendmmsg net/socket.c:2532 [inline] __x64_sys_sendmmsg+0x99/0x100 net/socket.c:2532 do_syscall_64+0xf6/0x7d0 arch/x86/entry/common.c:295 entry_SYSCALL_64_after_hwframe+0x49/0xb3 RIP: 0033:0x45c829 Code: 0d b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 db b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f6d9528ec78 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00000000004fc080 RCX: 000000000045c829 RDX: 0000000000000001 RSI: 0000000020002640 RDI: 0000000000000004 RBP: 000000000078bf00 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff R13: 00000000000008d7 R14: 00000000004cb7aa R15: 00007f6d9528f6d4 Fixes: 4b15c7075352 ("net/sched: Make etf report drops on error_queue") Fixes: 25db26a91364 ("net/sched: Introduce the ETF Qdisc") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Vinicius Costa Gomes <vinicius.gomes@intel.com> Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-16sched: etf: Fix ordering of packets with same txtimeVinicius Costa Gomes1-1/+1
When a application sends many packets with the same txtime, they may be transmitted out of order (different from the order in which they were enqueued). This happens because when inserting elements into the tree, when the txtime of two packets are the same, the new packet is inserted at the left side of the tree, causing the reordering. The only effect of this change should be that packets with the same txtime will be transmitted in the order they are enqueued. The application in question (the AVTP GStreamer plugin, still in development) is sending video traffic, in which each video frame have a single presentation time, the problem is that when packetizing, multiple packets end up with the same txtime. The receiving side was rejecting packets because they were being received out of order. Fixes: 25db26a91364 ("net/sched: Introduce the ETF Qdisc") Reported-by: Ederson de Souza <ederson.desouza@intel.com> Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-29etf: Add skip_sock_checkVedang Patel1-0/+10
Currently, etf expects a socket with SO_TXTIME option set for each packet it encounters. So, it will drop all other packets. But, in the future commits we are planning to add functionality where tstamp value will be set by another qdisc. Also, some packets which are generated from within the kernel (e.g. ICMP packets) do not have any socket associated with them. So, this commit adds support for skip_sock_check. When this option is set, etf will skip checking for a socket and other associated options for all skbs. Signed-off-by: Vedang Patel <vedang.patel@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28netlink: make validation more configurable for future strictnessJohannes Berg1-1/+2
We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-28netlink: make nla_nest_start() add NLA_F_NESTED flagMichal Kubecek1-1/+1
Even if the NLA_F_NESTED flag was introduced more than 11 years ago, most netlink based interfaces (including recently added ones) are still not setting it in kernel generated messages. Without the flag, message parsers not aware of attribute semantics (e.g. wireshark dissector or libmnl's mnl_nlmsg_fprintf()) cannot recognize nested attributes and won't display the structure of their contents. Unfortunately we cannot just add the flag everywhere as there may be userspace applications which check nlattr::nla_type directly rather than through a helper masking out the flags. Therefore the patch renames nla_nest_start() to nla_nest_start_noflag() and introduces nla_nest_start() as a wrapper adding NLA_F_NESTED. The calls which add NLA_F_NESTED manually are rewritten to use nla_nest_start(). Except for changes in include/net/netlink.h, the patch was generated using this semantic patch: @@ expression E1, E2; @@ -nla_nest_start(E1, E2) +nla_nest_start_noflag(E1, E2) @@ expression E1, E2; @@ -nla_nest_start_noflag(E1, E2 | NLA_F_NESTED) +nla_nest_start(E1, E2) Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Acked-by: Jiri Pirko <jiri@mellanox.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-17etf: Drop all expired packetsJesus Sanchez-Palencia1-15/+21
Currently on dequeue() ETF only drops the first expired packet, which causes a problem if the next packet is already expired. When this happens, the watchdog will be configured with a time in the past, fire straight way and the packet will finally be dropped once the dequeue() function of the qdisc is called again. We can save quite a few cycles and improve the overall behavior of the qdisc if we drop all expired packets if the next packet is expired. This should allow ETF to recover faster from bad situations. But packet drops are still a very serious warning that the requirements imposed on the system aren't reasonable. This was inspired by how the implementation of hrtimers use the rb_tree inside the kernel. Signed-off-by: Jesus Sanchez-Palencia <jesus.s.palencia@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-17etf: Split timersortedlist_erase()Jesus Sanchez-Palencia1-15/+29
This is just a refactor that will simplify the implementation of the next patch in this series which will drop all expired packets on the dequeue flow. Signed-off-by: Jesus Sanchez-Palencia <jesus.s.palencia@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-17etf: Use cached rb_rootJesus Sanchez-Palencia1-9/+12
ETF's peek() operation is heavily used so use an rb_root_cached instead and leverage rb_first_cached() which will run in O(1) instead of O(log n). Even if on 'timesortedlist_clear()' we could be using rb_erase(), we choose to use rb_erase_cached(), because if in the future we allow runtime changes to ETF parameters, and need to do a '_clear()', this might cause some hard to debug issues. Signed-off-by: Jesus Sanchez-Palencia <jesus.s.palencia@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-17etf: Cancel timer if there are no pending skbsJesus Sanchez-Palencia1-1/+3
There is no point in firing the qdisc watchdog if there are no future skbs pending in the queue and the watchdog had been set previously. Signed-off-by: Jesus Sanchez-Palencia <jesus.s.palencia@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-04net/sched: Make etf report drops on error_queueJesus Sanchez-Palencia1-2/+33
Use the socket error queue for reporting dropped packets if the socket has enabled that feature through the SO_TXTIME API. Packets are dropped either on enqueue() if they aren't accepted by the qdisc or on dequeue() if the system misses their deadline. Those are reported as different errors so applications can react accordingly. Userspace can retrieve the errors through the socket error queue and the corresponding cmsg interfaces. A struct sock_extended_err* is used for returning the error data, and the packet's timestamp can be retrieved by adding both ee_data and ee_info fields as e.g.: ((__u64) serr->ee_data << 32) + serr->ee_info This feature is disabled by default and must be explicitly enabled by applications. Enabling it can bring some overhead for the Tx cycles of the application. Signed-off-by: Jesus Sanchez-Palencia <jesus.sanchez-palencia@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-04net/sched: Add HW offloading capability to ETFJesus Sanchez-Palencia1-1/+70
Add infra so etf qdisc supports HW offload of time-based transmission. For hw offload, the time sorted list is still used, so packets are dequeued always in order of txtime. Example: $ tc qdisc replace dev enp2s0 parent root handle 100 mqprio num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 queues 1@0 1@1 2@2 hw 0 $ tc qdisc add dev enp2s0 parent 100:1 etf offload delta 100000 \ clockid CLOCK_REALTIME In this example, the Qdisc will use HW offload for the control of the transmission time through the network adapter. The hrtimer used for packets scheduling inside the qdisc will use the clockid CLOCK_REALTIME as reference and packets leave the Qdisc "delta" (100000) nanoseconds before their transmission time. Because this will be using HW offload and since dynamic clocks are not supported by the hrtimer, the system clock and the PHC clock must be synchronized for this mode to behave as expected. Signed-off-by: Jesus Sanchez-Palencia <jesus.sanchez-palencia@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-04net/sched: Introduce the ETF QdiscVinicius Costa Gomes1-0/+384
The ETF (Earliest TxTime First) qdisc uses the information added earlier in this series (the socket option SO_TXTIME and the new role of sk_buff->tstamp) to schedule packets transmission based on absolute time. For some workloads, just bandwidth enforcement is not enough, and precise control of the transmission of packets is necessary. Example: $ tc qdisc replace dev enp2s0 parent root handle 100 mqprio num_tc 3 \ map 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 queues 1@0 1@1 2@2 hw 0 $ tc qdisc add dev enp2s0 parent 100:1 etf delta 100000 \ clockid CLOCK_TAI In this example, the Qdisc will provide SW best-effort for the control of the transmission time to the network adapter, the time stamp in the socket will be in reference to the clockid CLOCK_TAI and packets will leave the qdisc "delta" (100000) nanoseconds before its transmission time. The ETF qdisc will buffer packets sorted by their txtime. It will drop packets on enqueue() if their skbuff clockid does not match the clock reference of the Qdisc. Moreover, on dequeue(), a packet will be dropped if it expires while being enqueued. The qdisc also supports the SO_TXTIME deadline mode. For this mode, it will dequeue a packet as soon as possible and change the skb timestamp to 'now' during etf_dequeue(). Note that both the qdisc's and the SO_TXTIME ABIs allow for a clockid to be configured, but it's been decided that usage of CLOCK_TAI should be enforced until we decide to allow for other clockids to be used. The rationale here is that PTP times are usually in the TAI scale, thus no other clocks should be necessary. For now, the qdisc will return EINVAL if any clocks other than CLOCK_TAI are used. Signed-off-by: Jesus Sanchez-Palencia <jesus.sanchez-palencia@intel.com> Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>