Age | Commit message (Collapse) | Author | Files | Lines |
|
linux/mm.h provides offset_in_page() macro. Let's use already predefined
macro instead of (addr & ~PAGE_MASK).
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch makes do_mincore() use walk_page_vma(), which reduces many
lines of code by using common page table walk code.
[daeseok.youn@gmail.com: remove unneeded variable 'err']
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
One bit in ->vm_flags is unused now!
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When the encountered pte is a swap entry, the current code handles two
cases: migration and normal swapentry, but we have a third case: hwpoison
page.
This patch adds hwpoison page handle, consider hwpoison page incore as
same as migration.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
shmem mappings already contain exceptional entries where swap slot
information is remembered.
To be able to store eviction information for regular page cache, prepare
every site dealing with the radix trees directly to handle entries other
than pages.
The common lookup functions will filter out non-page entries and return
NULL for page cache holes, just as before. But provide a raw version of
the API which returns non-page entries as well, and switch shmem over to
use it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Two cleanups:
1. remove redundant codes for hugetlb pages.
2. end = pmd_addr_end(addr, end) restricts [addr, end) within PMD_SIZE,
this may increase do_mincore() calls, remove it.
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: qiuxishi <qiuxishi@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When I use several fast SSD to do swap, swapper_space.tree_lock is
heavily contended. This makes each swap partition have one
address_space to reduce the lock contention. There is an array of
address_space for swap. The swap entry type is the index to the array.
In my test with 3 SSD, this increases the swapout throughput 20%.
[akpm@linux-foundation.org: revert unneeded change to __add_to_swap_cache]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make the radix_tree exceptional cases, mostly in filemap.c, clearer.
It's hard to devise a suitable snappy name that illuminates the use by
shmem/tmpfs for swap, while keeping filemap/pagecache/radix_tree
generality. And akpm points out that /* radix_tree_deref_retry(page) */
comments look like calls that have been commented out for unknown
reason.
Skirt the naming difficulty by rearranging these blocks to handle the
transient radix_tree_deref_retry(page) case first; then just explain the
remaining shmem/tmpfs swap case in a comment.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove PageSwapBacked (!page_is_file_cache) cases from
add_to_page_cache_locked() and add_to_page_cache_lru(): those pages now
go through shmem_add_to_page_cache().
Remove a comment on maximum tmpfs size from fsstack_copy_inode_size(),
and add a comment on swap entries to invalidate_mapping_pages().
And mincore_page() uses find_get_page() on what might be shmem or a
tmpfs file: allow for a radix_tree_exceptional_entry(), and proceed to
find_get_page() on swapper_space if so (oh, swapper_space needs #ifdef).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Handle transparent huge page pmd entries natively instead of splitting
them into subpages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
split_huge_page_pmd compat code. Each one of those would need to be
expanded to hundred of lines of complex code without a fully reliable
split_huge_page_pmd design.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Do page table walks with the well-known nested loops we use in several
other places already.
This avoids doing full page table walks after every pte range and also
allows to handle unmapped areas bigger than one pte range in one go.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of passing a start address and a number of pages into the helper
functions, convert them to use a start and an end address.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Split out functions to handle hugetlb ranges, pte ranges and unmapped
ranges, to improve readability but also to prepare the file structure for
nested page table walks.
No semantic changes intended.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This fixes some minor issues that bugged me while going over the code:
o adjust argument order of do_mincore() to match the syscall
o simplify range length calculation
o drop superfluous shift in huge tlb calculation, address is page aligned
o drop dead nr_huge calculation
o check pte_none() before pte_present()
o comment and whitespace fixes
No semantic changes intended.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
Most callers of pmd_none_or_clear_bad() check whether the target page is
in a hugepage or not, but mincore() and walk_page_range() do not check it.
So if we use mincore() on a hugepage on x86 machine, the hugepage memory
is leaked as shown below. This patch fixes it by extending mincore()
system call to support hugepages.
Details
=======
My test program (leak_mincore) works as follows:
- creat() and mmap() a file on hugetlbfs (file size is 200MB == 100 hugepages,)
- read()/write() something on it,
- call mincore() for first ten pages and printf() the values of *vec
- munmap() and unlink() the file on hugetlbfs
Without my patch
----------------
$ cat /proc/meminfo| grep "HugePage"
HugePages_Total: 1000
HugePages_Free: 1000
HugePages_Rsvd: 0
HugePages_Surp: 0
$ ./leak_mincore
vec[0] 0
vec[1] 0
vec[2] 0
vec[3] 0
vec[4] 0
vec[5] 0
vec[6] 0
vec[7] 0
vec[8] 0
vec[9] 0
$ cat /proc/meminfo |grep "HugePage"
HugePages_Total: 1000
HugePages_Free: 999
HugePages_Rsvd: 0
HugePages_Surp: 0
$ ls /hugetlbfs/
$
Return values in *vec from mincore() are set to 0, while the hugepage
should be in memory, and 1 hugepage is still accounted as used while
there is no file on hugetlbfs.
With my patch
-------------
$ cat /proc/meminfo| grep "HugePage"
HugePages_Total: 1000
HugePages_Free: 1000
HugePages_Rsvd: 0
HugePages_Surp: 0
$ ./leak_mincore
vec[0] 1
vec[1] 1
vec[2] 1
vec[3] 1
vec[4] 1
vec[5] 1
vec[6] 1
vec[7] 1
vec[8] 1
vec[9] 1
$ cat /proc/meminfo |grep "HugePage"
HugePages_Total: 1000
HugePages_Free: 1000
HugePages_Rsvd: 0
HugePages_Surp: 0
$ ls /hugetlbfs/
$
Return value in *vec set to 1 and no memory leaks.
[akpm@linux-foundation.org: cleanup]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
Nothing in the tree uses nopage any more. Remove support for it in the
core mm code and documentation (and a few stray references to it in
comments).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
My mincore also forgot about crossing vmas.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Paper bag time. Thanks to Randy for noticing that I didn't actually assign
'present' to anything.
Unfortunately my original patch passed the few simple test cases I gave it,
purely by coincidence.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix mincore-anon patch to compile with CONFIG_SWAP=n
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make mincore work for anon mappings, nonlinear, and migration entries.
Based on patch from Linus Torvalds <torvalds@linux-foundation.org>.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
fix a typo, sys_mincore() needs min().
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Linus "I'm a moron" Torvalds <torvalds@osdl.org>
|
|
Hugh Dickins correctly points out that mincore() is actually _supposed_
to fail on an unmapped hole in the user address space, rather than
return valid ("empty") information about the hole. This just simplifies
the problem further (I had been misled by our previous confusing and
complicated way of doing mincore()).
Also, in the unlikely situation that we can't allocate a temporary
kernel buffer, we should actually return EAGAIN, not ENOMEM, to keep the
"unmapped hole" and "allocation failure" error cases separate.
Finally, add a comment about our stupid historical lack of support for
anonymous mappings. I'll fix that if somebody reminds me after 2.6.20
is out.
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Doug Chapman noticed that mincore() will doa "copy_to_user()" of the
result while holding the mmap semaphore for reading, which is a big
no-no. While a recursive read-lock on a semaphore in the case of a page
fault happens to work, we don't actually allow them due to deadlock
schenarios with writers due to fairness issues.
Doug and Marcel sent in a patch to fix it, but I decided to just rewrite
the mess instead - not just fixing the locking problem, but making the
code smaller and (imho) much easier to understand.
Cc: Doug Chapman <dchapman@redhat.com>
Cc: Marcel Holtmann <holtmann@redhat.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Remove use of FIRST_USER_PGD_NR from sys_mincore: it's inconsistent (no other
syscall refers to it), unnecessary (sys_mincore loops over vmas further down)
and incorrect (misses user addresses in ARM's first pgd).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|