summaryrefslogtreecommitdiff
path: root/mm/memory.c
AgeCommit message (Collapse)AuthorFilesLines
2022-04-01mm,hwpoison: unmap poisoned page before invalidationRik van Riel1-4/+8
In some cases it appears the invalidation of a hwpoisoned page fails because the page is still mapped in another process. This can cause a program to be continuously restarted and die when it page faults on the page that was not invalidated. Avoid that problem by unmapping the hwpoisoned page when we find it. Another issue is that sometimes we end up oopsing in finish_fault, if the code tries to do something with the now-NULL vmf->page. I did not hit this error when submitting the previous patch because there are several opportunities for alloc_set_pte to bail out before accessing vmf->page, and that apparently happened on those systems, and most of the time on other systems, too. However, across several million systems that error does occur a handful of times a day. It can be avoided by returning VM_FAULT_NOPAGE which will cause do_read_fault to return before calling finish_fault. Link: https://lkml.kernel.org/r/20220325161428.5068d97e@imladris.surriel.com Fixes: e53ac7374e64 ("mm: invalidate hwpoison page cache page in fault path") Signed-off-by: Rik van Riel <riel@surriel.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: unmap_mapping_range_tree() with i_mmap_rwsem sharedHugh Dickins1-4/+4
Revert 48ec833b7851 ("Revert "mm/memory.c: share the i_mmap_rwsem"") to reinstate c8475d144abb ("mm/memory.c: share the i_mmap_rwsem"): the unmap_mapping_range family of functions do the unmapping of user pages (ultimately via zap_page_range_single) without modifying the interval tree itself, and unmapping races are necessarily guarded by page table lock, thus the i_mmap_rwsem should be shared in unmap_mapping_pages() and unmap_mapping_folio(). Commit 48ec833b7851 was intended as a short-term measure, allowing the other shared lock changes into 3.19 final, before investigating three trinity crashes, one of which had been bisected to commit c8475d144ab: [1] https://lkml.org/lkml/2014/11/14/342 https://lore.kernel.org/lkml/5466142C.60100@oracle.com/ [2] https://lkml.org/lkml/2014/12/22/213 https://lore.kernel.org/lkml/549832E2.8060609@oracle.com/ [3] https://lkml.org/lkml/2014/12/9/741 https://lore.kernel.org/lkml/5487ACC5.1010002@oracle.com/ Two of those were Bad page states: free_pages_prepare() found PG_mlocked still set - almost certain to have been fixed by 4.4 commit b87537d9e2fe ("mm: rmap use pte lock not mmap_sem to set PageMlocked"). The NULL deref on rwsem in [2]: unclear, only happened once, not bisected to c8475d144ab. No change to the i_mmap_lock_write() around __unmap_hugepage_range_final() in unmap_single_vma(): IIRC that's a special usage, helping to serialize hugetlbfs page table sharing, not to be dabbled with lightly. No change to other uses of i_mmap_lock_write() by hugetlbfs. I am not aware of any significant gains from the concurrency allowed by this commit: it is submitted more to resolve an ancient misunderstanding. Link: https://lkml.kernel.org/r/e4a5e356-6c87-47b2-3ce8-c2a95ae84e20@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Sasha Levin <sashal@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: streamline COW logic in do_swap_page()David Hildenbrand1-12/+43
Currently we have a different COW logic when: * triggering a read-fault to swapin first and then trigger a write-fault -> do_swap_page() + do_wp_page() * triggering a write-fault to swapin -> do_swap_page() + do_wp_page() only if we fail reuse in do_swap_page() The COW logic in do_swap_page() is different than our reuse logic in do_wp_page(). The COW logic in do_wp_page() -- page_count() == 1 -- makes currently sure that we certainly don't have a remaining reference, e.g., via GUP, on the target page we want to reuse: if there is any unexpected reference, we have to copy to avoid information leaks. As do_swap_page() behaves differently, in environments with swap enabled we can currently have an unintended information leak from the parent to the child, similar as known from CVE-2020-29374: 1. Parent writes to anonymous page -> Page is mapped writable and modified 2. Page is swapped out -> Page is unmapped and replaced by swap entry 3. fork() -> Swap entries are copied to child 4. Child pins page R/O -> Page is mapped R/O into child 5. Child unmaps page -> Child still holds GUP reference 6. Parent writes to page -> Page is reused in do_swap_page() -> Child can observe changes Exchanging 2. and 3. should have the same effect. Let's apply the same COW logic as in do_wp_page(), conditionally trying to remove the page from the swapcache after freeing the swap entry, however, before actually mapping our page. We can change the order now that we use try_to_free_swap(), which doesn't care about the mapcount, instead of reuse_swap_page(). To handle references from the LRU pagevecs, conditionally drain the local LRU pagevecs when required, however, don't consider the page_count() when deciding whether to drain to keep it simple for now. Link: https://lkml.kernel.org/r/20220131162940.210846-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: slightly clarify KSM logic in do_swap_page()David Hildenbrand1-15/+23
Let's make it clearer that KSM might only have to copy a page in case we have a page in the swapcache, not if we allocated a fresh page and bypassed the swapcache. While at it, add a comment why this is usually necessary and merge the two swapcache conditions. [akpm@linux-foundation.org: fix comment, per David] Link: https://lkml.kernel.org/r/20220131162940.210846-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: optimize do_wp_page() for fresh pages in local LRU pagevecsDavid Hildenbrand1-1/+9
For example, if a page just got swapped in via a read fault, the LRU pagevecs might still hold a reference to the page. If we trigger a write fault on such a page, the additional reference from the LRU pagevecs will prohibit reusing the page. Let's conditionally drain the local LRU pagevecs when we stumble over a !PageLRU() page. We cannot easily drain remote LRU pagevecs and it might not be desirable performance-wise. Consequently, this will only avoid copying in some cases. Add a simple "page_count(page) > 3" check first but keep the "page_count(page) > 1 + PageSwapCache(page)" check in place, as we want to minimize cases where we remove a page from the swapcache but won't be able to reuse it, for example, because another process has it mapped R/O, to not affect reclaim. We cannot easily handle the following cases and we will always have to copy: (1) The page is referenced in the LRU pagevecs of other CPUs. We really would have to drain the LRU pagevecs of all CPUs -- most probably copying is much cheaper. (2) The page is already PageLRU() but is getting moved between LRU lists, for example, for activation (e.g., mark_page_accessed()), deactivation (MADV_COLD), or lazyfree (MADV_FREE). We'd have to drain mostly unconditionally, which might be bad performance-wise. Most probably this won't happen too often in practice. Note that there are other reasons why an anon page might temporarily not be PageLRU(): for example, compaction and migration have to isolate LRU pages from the LRU lists first (isolate_lru_page()), moving them to temporary local lists and clearing PageLRU() and holding an additional reference on the page. In that case, we'll always copy. This change seems to be fairly effective with the reproducer [1] shared by Nadav, as long as writeback is done synchronously, for example, using zram. However, with asynchronous writeback, we'll usually fail to free the swapcache because the page is still under writeback: something we cannot easily optimize for, and maybe it's not really relevant in practice. [1] https://lkml.kernel.org/r/0480D692-D9B2-429A-9A88-9BBA1331AC3A@gmail.com Link: https://lkml.kernel.org/r/20220131162940.210846-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: optimize do_wp_page() for exclusive pages in the swapcacheDavid Hildenbrand1-6/+14
Patch series "mm: COW fixes part 1: fix the COW security issue for THP and swap", v3. This series attempts to optimize and streamline the COW logic for ordinary anon pages and THP anon pages, fixing two remaining instances of CVE-2020-29374 in do_swap_page() and do_huge_pmd_wp_page(): information can leak from a parent process to a child process via anonymous pages shared during fork(). This issue, including other related COW issues, has been summarized in [2]: "1. Observing Memory Modifications of Private Pages From A Child Process Long story short: process-private memory might not be as private as you think once you fork(): successive modifications of private memory regions in the parent process can still be observed by the child process, for example, by smart use of vmsplice()+munmap(). The core problem is that pinning pages readable in a child process, such as done via the vmsplice system call, can result in a child process observing memory modifications done in the parent process the child is not supposed to observe. [1] contains an excellent summary and [2] contains further details. This issue was assigned CVE-2020-29374 [9]. For this to trigger, it's required to use a fork() without subsequent exec(), for example, as used under Android zygote. Without further details about an application that forks less-privileged child processes, one cannot really say what's actually affected and what's not -- see the details section the end of this mail for a short sshd/openssh analysis. While commit 17839856fd58 ("gup: document and work around "COW can break either way" issue") fixed this issue and resulted in other problems (e.g., ptrace on pmem), commit 09854ba94c6a ("mm: do_wp_page() simplification") re-introduced part of the problem unfortunately. The original reproducer can be modified quite easily to use THP [3] and make the issue appear again on upstream kernels. I modified it to use hugetlb [4] and it triggers as well. The problem is certainly less severe with hugetlb than with THP; it merely highlights that we still have plenty of open holes we should be closing/fixing. Regarding vmsplice(), the only known workaround is to disallow the vmsplice() system call ... or disable THP and hugetlb. But who knows what else is affected (RDMA? O_DIRECT?) to achieve the same goal -- in the end, it's a more generic issue" This security issue was first reported by Jann Horn on 27 May 2020 and it currently affects anonymous pages during swapin, anonymous THP and hugetlb. This series tackles anonymous pages during swapin and anonymous THP: - do_swap_page() for handling COW on PTEs during swapin directly - do_huge_pmd_wp_page() for handling COW on PMD-mapped THP during write faults With this series, we'll apply the same COW logic we have in do_wp_page() to all swappable anon pages: don't reuse (map writable) the page in case there are additional references (page_count() != 1). All users of reuse_swap_page() are remove, and consequently reuse_swap_page() is removed. In general, we're struggling with the following COW-related issues: (1) "missed COW": we miss to copy on write and reuse the page (map it writable) although we must copy because there are pending references from another process to this page. The result is a security issue. (2) "wrong COW": we copy on write although we wouldn't have to and shouldn't: if there are valid GUP references, they will become out of sync with the pages mapped into the page table. We fail to detect that such a page can be reused safely, especially if never more than a single process mapped the page. The result is an intra process memory corruption. (3) "unnecessary COW": we copy on write although we wouldn't have to: performance degradation and temporary increases swap+memory consumption can be the result. While this series fixes (1) for swappable anon pages, it tries to reduce reported cases of (3) first as good and easy as possible to limit the impact when streamlining. The individual patches try to describe in which cases we will run into (3). This series certainly makes (2) worse for THP, because a THP will now get PTE-mapped on write faults if there are additional references, even if there was only ever a single process involved: once PTE-mapped, we'll copy each and every subpage and won't reuse any subpage as long as the underlying compound page wasn't split. I'm working on an approach to fix (2) and improve (3): PageAnonExclusive to mark anon pages that are exclusive to a single process, allow GUP pins only on such exclusive pages, and allow turning exclusive pages shared (clearing PageAnonExclusive) only if there are no GUP pins. Anon pages with PageAnonExclusive set never have to be copied during write faults, but eventually during fork() if they cannot be turned shared. The improved reuse logic in this series will essentially also be the logic to reset PageAnonExclusive. This work will certainly take a while, but I'm planning on sharing details before having code fully ready. #1-#5 can be applied independently of the rest. #6-#9 are mostly only cleanups related to reuse_swap_page(). Notes: * For now, I'll leave hugetlb code untouched: "unnecessary COW" might easily break existing setups because hugetlb pages are a scarce resource and we could just end up having to crash the application when we run out of hugetlb pages. We have to be very careful and the security aspect with hugetlb is most certainly less relevant than for unprivileged anon pages. * Instead of lru_add_drain() we might actually just drain the lru_add list or even just remove the single page of interest from the lru_add list. This would require a new helper function, and could be added if the conditional lru_add_drain() turn out to be a problem. * I extended the test case already included in [1] to also test for the newly found do_swap_page() case. I'll send that out separately once/if this part was merged. [1] https://lkml.kernel.org/r/20211217113049.23850-1-david@redhat.com [2] https://lore.kernel.org/r/3ae33b08-d9ef-f846-56fb-645e3b9b4c66@redhat.com This patch (of 9): Liang Zhang reported [1] that the current COW logic in do_wp_page() is sub-optimal when it comes to swap+read fault+write fault of anonymous pages that have a single user, visible via a performance degradation in the redis benchmark. Something similar was previously reported [2] by Nadav with a simple reproducer. After we put an anon page into the swapcache and unmapped it from a single process, that process might read that page again and refault it read-only. If that process then writes to that page, the process is actually the exclusive user of the page, however, the COW logic in do_co_page() won't be able to reuse it due to the additional reference from the swapcache. Let's optimize for pages that have been added to the swapcache but only have an exclusive user. Try removing the swapcache reference if there is hope that we're the exclusive user. We will fail removing the swapcache reference in two scenarios: (1) There are additional swap entries referencing the page: copying instead of reusing is the right thing to do. (2) The page is under writeback: theoretically we might be able to reuse in some cases, however, we cannot remove the additional reference and will have to copy. Note that we'll only try removing the page from the swapcache when it's highly likely that we'll be the exclusive owner after removing the page from the swapache. As we're about to map that page writable and redirty it, that should not affect reclaim but is rather the right thing to do. Further, we might have additional references from the LRU pagevecs, which will force us to copy instead of being able to reuse. We'll try handling such references for some scenarios next. Concurrent writeback cannot be handled easily and we'll always have to copy. While at it, remove the superfluous page_mapcount() check: it's implicitly covered by the page_count() for ordinary anon pages. [1] https://lkml.kernel.org/r/20220113140318.11117-1-zhangliang5@huawei.com [2] https://lkml.kernel.org/r/0480D692-D9B2-429A-9A88-9BBA1331AC3A@gmail.com Link: https://lkml.kernel.org/r/20220131162940.210846-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reported-by: Liang Zhang <zhangliang5@huawei.com> Reported-by: Nadav Amit <nadav.amit@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jann Horn <jannh@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24Merge tag 'asm-generic-5.18' of ↵Linus Torvalds1-8/+0
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull asm-generic updates from Arnd Bergmann: "There are three sets of updates for 5.18 in the asm-generic tree: - The set_fs()/get_fs() infrastructure gets removed for good. This was already gone from all major architectures, but now we can finally remove it everywhere, which loses some particularly tricky and error-prone code. There is a small merge conflict against a parisc cleanup, the solution is to use their new version. - The nds32 architecture ends its tenure in the Linux kernel. The hardware is still used and the code is in reasonable shape, but the mainline port is not actively maintained any more, as all remaining users are thought to run vendor kernels that would never be updated to a future release. - A series from Masahiro Yamada cleans up some of the uapi header files to pass the compile-time checks" * tag 'asm-generic-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (27 commits) nds32: Remove the architecture uaccess: remove CONFIG_SET_FS ia64: remove CONFIG_SET_FS support sh: remove CONFIG_SET_FS support sparc64: remove CONFIG_SET_FS support lib/test_lockup: fix kernel pointer check for separate address spaces uaccess: generalize access_ok() uaccess: fix type mismatch warnings from access_ok() arm64: simplify access_ok() m68k: fix access_ok for coldfire MIPS: use simpler access_ok() MIPS: Handle address errors for accesses above CPU max virtual user address uaccess: add generic __{get,put}_kernel_nofault nios2: drop access_ok() check from __put_user() x86: use more conventional access_ok() definition x86: remove __range_not_ok() sparc64: add __{get,put}_kernel_nofault() nds32: fix access_ok() checks in get/put_user uaccess: fix nios2 and microblaze get_user_8() sparc64: fix building assembly files ...
2022-03-23Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds1-28/+15
Pull folio updates from Matthew Wilcox: - Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) * tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits) mm/damon: minor cleanup for damon_pa_young selftests/vm/transhuge-stress: Support file-backed PMD folios mm/filemap: Support VM_HUGEPAGE for file mappings mm/readahead: Switch to page_cache_ra_order mm/readahead: Align file mappings for non-DAX mm/readahead: Add large folio readahead mm: Support arbitrary THP sizes mm: Make large folios depend on THP mm: Fix READ_ONLY_THP warning mm/filemap: Allow large folios to be added to the page cache mm: Turn can_split_huge_page() into can_split_folio() mm/vmscan: Convert pageout() to take a folio mm/vmscan: Turn page_check_references() into folio_check_references() mm/vmscan: Account large folios correctly mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios mm/vmscan: Free non-shmem folios without splitting them mm/rmap: Constify the rmap_walk_control argument mm/rmap: Convert rmap_walk() to take a folio mm: Turn page_anon_vma() into folio_anon_vma() mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read() ...
2022-03-23userfaultfd: provide unmasked address on page-faultNadav Amit1-0/+1
Userfaultfd is supposed to provide the full address (i.e., unmasked) of the faulting access back to userspace. However, that is not the case for quite some time. Even running "userfaultfd_demo" from the userfaultfd man page provides the wrong output (and contradicts the man page). Notice that "UFFD_EVENT_PAGEFAULT event" shows the masked address (7fc5e30b3000) and not the first read address (0x7fc5e30b300f). Address returned by mmap() = 0x7fc5e30b3000 fault_handler_thread(): poll() returns: nready = 1; POLLIN = 1; POLLERR = 0 UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fc5e30b3000 (uffdio_copy.copy returned 4096) Read address 0x7fc5e30b300f in main(): A Read address 0x7fc5e30b340f in main(): A Read address 0x7fc5e30b380f in main(): A Read address 0x7fc5e30b3c0f in main(): A The exact address is useful for various reasons and specifically for prefetching decisions. If it is known that the memory is populated by certain objects whose size is not page-aligned, then based on the faulting address, the uffd-monitor can decide whether to prefetch and prefault the adjacent page. This bug has been for quite some time in the kernel: since commit 1a29d85eb0f1 ("mm: use vmf->address instead of of vmf->virtual_address") vmf->virtual_address"), which dates back to 2016. A concern has been raised that existing userspace application might rely on the old/wrong behavior in which the address is masked. Therefore, it was suggested to provide the masked address unless the user explicitly asks for the exact address. Add a new userfaultfd feature UFFD_FEATURE_EXACT_ADDRESS to direct userfaultfd to provide the exact address. Add a new "real_address" field to vmf to hold the unmasked address. Provide the address to userspace accordingly. Initialize real_address in various code-paths to be consistent with address, even when it is not used, to be on the safe side. [namit@vmware.com: initialize real_address on all code paths, per Jan] Link: https://lkml.kernel.org/r/20220226022655.350562-1-namit@vmware.com [akpm@linux-foundation.org: fix typo in comment, per Jan] Link: https://lkml.kernel.org/r/20220218041003.3508-1-namit@vmware.com Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: invalidate hwpoison page cache page in fault pathRik van Riel1-2/+7
Sometimes the page offlining code can leave behind a hwpoisoned clean page cache page. This can lead to programs being killed over and over and over again as they fault in the hwpoisoned page, get killed, and then get re-spawned by whatever wanted to run them. This is particularly embarrassing when the page was offlined due to having too many corrected memory errors. Now we are killing tasks due to them trying to access memory that probably isn't even corrupted. This problem can be avoided by invalidating the page from the page fault handler, which already has a branch for dealing with these kinds of pages. With this patch we simply pretend the page fault was successful if the page was invalidated, return to userspace, incur another page fault, read in the file from disk (to a new memory page), and then everything works again. Link: https://lkml.kernel.org/r/20220212213740.423efcea@imladris.surriel.com Signed-off-by: Rik van Riel <riel@surriel.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm/memory.c: use helper macro min and max in unmap_mapping_range_tree()Miaohe Lin1-6/+2
Use helper macro min and max to help simplify the code logic. Minor readability improvement. Link: https://lkml.kernel.org/r/20220224121134.35068-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm/memory.c: use helper function range_in_vma()Miaohe Lin1-1/+1
Use helper function range_in_vma() to check if address, address + size are within the vma range. Minor readability improvement. Link: https://lkml.kernel.org/r/20220219021441.29173-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: rework swap handling of zap_pte_rangePeter Xu1-15/+6
Clean the code up by merging the device private/exclusive swap entry handling with the rest, then we merge the pte clear operation too. struct* page is defined in multiple places in the function, move it upward. free_swap_and_cache() is only useful for !non_swap_entry() case, put it into the condition. No functional change intended. Link: https://lkml.kernel.org/r/20220216094810.60572-5-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: change zap_details.zap_mapping into even_cowsPeter Xu1-9/+7
Currently we have a zap_mapping pointer maintained in zap_details, when it is specified we only want to zap the pages that has the same mapping with what the caller has specified. But what we want to do is actually simpler: we want to skip zapping private (COW-ed) pages in some cases. We can refer to unmap_mapping_pages() callers where we could have passed in different even_cows values. The other user is unmap_mapping_folio() where we always want to skip private pages. According to Hugh, we used a mapping pointer for historical reason, as explained here: https://lore.kernel.org/lkml/391aa58d-ce84-9d4-d68d-d98a9c533255@google.com/ Quoting partly from Hugh: Which raises the question again of why I did not just use a boolean flag there originally: aah, I think I've found why. In those days there was a horrible "optimization", for better performance on some benchmark I guess, which when you read from /dev/zero into a private mapping, would map the zero page there (look up read_zero_pagealigned() and zeromap_page_range() if you dare). So there was another category of page to be skipped along with the anon COWs, and I didn't want multiple tests in the zap loop, so checking check_mapping against page->mapping did both. I think nowadays you could do it by checking for PageAnon page (or genuine swap entry) instead. This patch replaces the zap_details.zap_mapping pointer into the even_cows boolean, then we check it against PageAnon. Link: https://lkml.kernel.org/r/20220216094810.60572-4-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Suggested-by: Hugh Dickins <hughd@google.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: rename zap_skip_check_mapping() to should_zap_page()Peter Xu1-9/+8
The previous name is against the natural way people think. Invert the meaning and also the return value. No functional change intended. Link: https://lkml.kernel.org/r/20220216094810.60572-3-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Hugh Dickins <hughd@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: don't skip swap entry even if zap_details specifiedPeter Xu1-9/+31
Patch series "mm: Rework zap ptes on swap entries", v5. Patch 1 should fix a long standing bug for zap_pte_range() on zap_details usage. The risk is we could have some swap entries skipped while we should have zapped them. Migration entries are not the major concern because file backed memory always zap in the pattern that "first time without page lock, then re-zap with page lock" hence the 2nd zap will always make sure all migration entries are already recovered. However there can be issues with real swap entries got skipped errornoously. There's a reproducer provided in commit message of patch 1 for that. Patch 2-4 are cleanups that are based on patch 1. After the whole patchset applied, we should have a very clean view of zap_pte_range(). Only patch 1 needs to be backported to stable if necessary. This patch (of 4): The "details" pointer shouldn't be the token to decide whether we should skip swap entries. For example, when the callers specified details->zap_mapping==NULL, it means the user wants to zap all the pages (including COWed pages), then we need to look into swap entries because there can be private COWed pages that was swapped out. Skipping some swap entries when details is non-NULL may lead to wrongly leaving some of the swap entries while we should have zapped them. A reproducer of the problem: ===8<=== #define _GNU_SOURCE /* See feature_test_macros(7) */ #include <stdio.h> #include <assert.h> #include <unistd.h> #include <sys/mman.h> #include <sys/types.h> int page_size; int shmem_fd; char *buffer; void main(void) { int ret; char val; page_size = getpagesize(); shmem_fd = memfd_create("test", 0); assert(shmem_fd >= 0); ret = ftruncate(shmem_fd, page_size * 2); assert(ret == 0); buffer = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE, MAP_PRIVATE, shmem_fd, 0); assert(buffer != MAP_FAILED); /* Write private page, swap it out */ buffer[page_size] = 1; madvise(buffer, page_size * 2, MADV_PAGEOUT); /* This should drop private buffer[page_size] already */ ret = ftruncate(shmem_fd, page_size); assert(ret == 0); /* Recover the size */ ret = ftruncate(shmem_fd, page_size * 2); assert(ret == 0); /* Re-read the data, it should be all zero */ val = buffer[page_size]; if (val == 0) printf("Good\n"); else printf("BUG\n"); } ===8<=== We don't need to touch up the pmd path, because pmd never had a issue with swap entries. For example, shmem pmd migration will always be split into pte level, and same to swapping on anonymous. Add another helper should_zap_cows() so that we can also check whether we should zap private mappings when there's no page pointer specified. This patch drops that trick, so we handle swap ptes coherently. Meanwhile we should do the same check upon migration entry, hwpoison entry and genuine swap entries too. To be explicit, we should still remember to keep the private entries if even_cows==false, and always zap them when even_cows==true. The issue seems to exist starting from the initial commit of git. [peterx@redhat.com: comment tweaks] Link: https://lkml.kernel.org/r/20220217060746.71256-2-peterx@redhat.com Link: https://lkml.kernel.org/r/20220217060746.71256-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20220216094810.60572-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20220216094810.60572-2-peterx@redhat.com Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: hugetlb: fix missing cache flush in copy_huge_page_from_user()Muchun Song1-0/+2
userfaultfd calls copy_huge_page_from_user() which does not do any cache flushing for the target page. Then the target page will be mapped to the user space with a different address (user address), which might have an alias issue with the kernel address used to copy the data from the user to. Fix this issue by flushing dcache in copy_huge_page_from_user(). Link: https://lkml.kernel.org/r/20220210123058.79206-4-songmuchun@bytedance.com Fixes: fa4d75c1de13 ("userfaultfd: hugetlbfs: add copy_huge_page_from_user for hugetlb userfaultfd support") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lars Persson <lars.persson@axis.com> Cc: Peter Xu <peterx@redhat.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-02-25uaccess: remove CONFIG_SET_FSArnd Bergmann1-8/+0
There are no remaining callers of set_fs(), so CONFIG_SET_FS can be removed globally, along with the thread_info field and any references to it. This turns access_ok() into a cheaper check against TASK_SIZE_MAX. As CONFIG_SET_FS is now gone, drop all remaining references to set_fs()/get_fs(), mm_segment_t, user_addr_max() and uaccess_kernel(). Acked-by: Sam Ravnborg <sam@ravnborg.org> # for sparc32 changes Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Tested-by: Sergey Matyukevich <sergey.matyukevich@synopsys.com> # for arc changes Acked-by: Stafford Horne <shorne@gmail.com> # [openrisc, asm-generic] Acked-by: Dinh Nguyen <dinguyen@kernel.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2022-02-17mm/munlock: rmap call mlock_vma_page() munlock_vma_page()Hugh Dickins1-30/+15
Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-01-20Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-4/+0
Merge more updates from Andrew Morton: "55 patches. Subsystems affected by this patch series: percpu, procfs, sysctl, misc, core-kernel, get_maintainer, lib, checkpatch, binfmt, nilfs2, hfs, fat, adfs, panic, delayacct, kconfig, kcov, and ubsan" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (55 commits) lib: remove redundant assignment to variable ret ubsan: remove CONFIG_UBSAN_OBJECT_SIZE kcov: fix generic Kconfig dependencies if ARCH_WANTS_NO_INSTR lib/Kconfig.debug: make TEST_KMOD depend on PAGE_SIZE_LESS_THAN_256KB btrfs: use generic Kconfig option for 256kB page size limit arch/Kconfig: split PAGE_SIZE_LESS_THAN_256KB from PAGE_SIZE_LESS_THAN_64KB configs: introduce debug.config for CI-like setup delayacct: track delays from memory compact Documentation/accounting/delay-accounting.rst: add thrashing page cache and direct compact delayacct: cleanup flags in struct task_delay_info and functions use it delayacct: fix incomplete disable operation when switch enable to disable delayacct: support swapin delay accounting for swapping without blkio panic: remove oops_id panic: use error_report_end tracepoint on warnings fs/adfs: remove unneeded variable make code cleaner FAT: use io_schedule_timeout() instead of congestion_wait() hfsplus: use struct_group_attr() for memcpy() region nilfs2: remove redundant pointer sbufs fs/binfmt_elf: use PT_LOAD p_align values for static PIE const_structs.checkpatch: add frequently used ops structs ...
2022-01-20delayacct: support swapin delay accounting for swapping without blkioYang Yang1-4/+0
Currently delayacct accounts swapin delay only for swapping that cause blkio. If we use zram for swapping, tools/accounting/getdelays can't get any SWAP delay. It's useful to get zram swapin delay information, for example to adjust compress algorithm or /proc/sys/vm/swappiness. Reference to PSI, it accounts any kind of swapping by doing its work in swap_readpage(), no matter whether swapping causes blkio. Let delayacct do the similar work. Link: https://lkml.kernel.org/r/20211112083813.8559-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Reported-by: Zeal Robot <zealci@zte.com.cn> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-5/+7
Merge misc updates from Andrew Morton: "146 patches. Subsystems affected by this patch series: kthread, ia64, scripts, ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak, dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap, memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb, userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp, ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits) mm/damon: hide kernel pointer from tracepoint event mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging mm/damon/dbgfs: remove an unnecessary variable mm/damon: move the implementation of damon_insert_region to damon.h mm/damon: add access checking for hugetlb pages Docs/admin-guide/mm/damon/usage: update for schemes statistics mm/damon/dbgfs: support all DAMOS stats Docs/admin-guide/mm/damon/reclaim: document statistics parameters mm/damon/reclaim: provide reclamation statistics mm/damon/schemes: account how many times quota limit has exceeded mm/damon/schemes: account scheme actions that successfully applied mm/damon: remove a mistakenly added comment for a future feature Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning Docs/admin-guide/mm/damon/usage: remove redundant information Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks mm/damon: convert macro functions to static inline functions mm/damon: modify damon_rand() macro to static inline function mm/damon: move damon_rand() definition into damon.h ...
2022-01-15mm: remove last argument of reuse_swap_page()Matthew Wilcox (Oracle)1-1/+1
None of the callers care about the total_map_swapcount() any more. Link: https://lkml.kernel.org/r/20211220205943.456187-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm: change page type prior to adding page table entryPasha Tatashin1-4/+5
Patch series "page table check", v3. Ensure that some memory corruptions are prevented by checking at the time of insertion of entries into user page tables that there is no illegal sharing. We have recently found a problem [1] that existed in kernel since 4.14. The problem was caused by broken page ref count and led to memory leaking from one process into another. The problem was accidentally detected by studying a dump of one process and noticing that one page contains memory that should not belong to this process. There are some other page->_refcount related problems that were recently fixed: [2], [3] which potentially could also lead to illegal sharing. In addition to hardening refcount [4] itself, this work is an attempt to prevent this class of memory corruption issues. It uses a simple state machine that is independent from regular MM logic to check for illegal sharing at time pages are inserted and removed from page tables. [1] https://lore.kernel.org/all/xr9335nxwc5y.fsf@gthelen2.svl.corp.google.com [2] https://lore.kernel.org/all/1582661774-30925-2-git-send-email-akaher@vmware.com [3] https://lore.kernel.org/all/20210622021423.154662-3-mike.kravetz@oracle.com [4] https://lore.kernel.org/all/20211221150140.988298-1-pasha.tatashin@soleen.com This patch (of 4): There are a few places where we first update the entry in the user page table, and later change the struct page to indicate that this is anonymous or file page. In most places, however, we first configure the page metadata and then insert entries into the page table. Page table check, will use the information from struct page to verify the type of entry is inserted. Change the order in all places to first update struct page, and later to update page table. This means that we first do calls that may change the type of page (anon or file): page_move_anon_rmap page_add_anon_rmap do_page_add_anon_rmap page_add_new_anon_rmap page_add_file_rmap hugepage_add_anon_rmap hugepage_add_new_anon_rmap And after that do calls that add entries to the page table: set_huge_pte_at set_pte_at Link: https://lkml.kernel.org/r/20211221154650.1047963-1-pasha.tatashin@soleen.com Link: https://lkml.kernel.org/r/20211221154650.1047963-2-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Turner <pjt@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm: move tlb_flush_pending inline helpers to mm_inline.hArnd Bergmann1-0/+1
linux/mm_types.h should only define structure definitions, to make it cheap to include elsewhere. The atomic_t helper function definitions are particularly large, so it's better to move the helpers using those into the existing linux/mm_inline.h and only include that where needed. As a follow-up, we may want to go through all the indirect includes in mm_types.h and reduce them as much as possible. Link: https://lkml.kernel.org/r/20211207125710.2503446-2-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Colin Cross <ccross@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-08mm: Add unmap_mapping_folio()Matthew Wilcox (Oracle)1-14/+35
Convert both callers of unmap_mapping_page() to call unmap_mapping_folio() instead. Also move zap_details from linux/mm.h to mm/memory.c Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2021-11-07Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-92/+70
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ...
2021-11-06mm: remove redundant smp_wmb()Qi Zheng1-29/+23
The smp_wmb() which is in the __pte_alloc() is used to ensure all ptes setup is visible before the pte is made visible to other CPUs by being put into page tables. We only need this when the pte is actually populated, so move it to pmd_install(). __pte_alloc_kernel(), __p4d_alloc(), __pud_alloc() and __pmd_alloc() are similar to this case. We can also defer smp_wmb() to the place where the pmd entry is really populated by preallocated pte. There are two kinds of user of preallocated pte, one is filemap & finish_fault(), another is THP. The former does not need another smp_wmb() because the smp_wmb() has been done by pmd_install(). Fortunately, the latter also does not need another smp_wmb() because there is already a smp_wmb() before populating the new pte when the THP uses a preallocated pte to split a huge pmd. Link: https://lkml.kernel.org/r/20210901102722.47686-3-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mika Penttila <mika.penttila@nextfour.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: introduce pmd_install() helperQi Zheng1-18/+16
Patch series "Do some code cleanups related to mm", v3. This patch (of 2): Currently we have three times the same few lines repeated in the code. Deduplicate them by newly introduced pmd_install() helper. Link: https://lkml.kernel.org/r/20210901102722.47686-1-zhengqi.arch@bytedance.com Link: https://lkml.kernel.org/r/20210901102722.47686-2-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mika Penttila <mika.penttila@nextfour.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: add zap_skip_check_mapping() helperPeter Xu1-23/+6
Use the helper for the checks. Rename "check_mapping" into "zap_mapping" because "check_mapping" looks like a bool but in fact it stores the mapping itself. When it's set, we check the mapping (it must be non-NULL). When it's cleared we skip the check, which works like the old way. Move the duplicated comments to the helper too. Link: https://lkml.kernel.org/r/20210915181538.11288-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: drop first_index/last_index in zap_detailsPeter Xu1-13/+18
The first_index/last_index parameters in zap_details are actually only used in unmap_mapping_range_tree(). At the meantime, this function is only called by unmap_mapping_pages() once. Instead of passing these two variables through the whole stack of page zapping code, remove them from zap_details and let them simply be parameters of unmap_mapping_range_tree(), which is inlined. Link: https://lkml.kernel.org/r/20210915181535.11238-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Liam Howlett <liam.howlett@oracle.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: clear vmf->pte after pte_unmap_same() returnsPeter Xu1-6/+6
pte_unmap_same() will always unmap the pte pointer. After the unmap, vmf->pte will not be valid any more, we should clear it. It was safe only because no one is accessing vmf->pte after pte_unmap_same() returns, since the only caller of pte_unmap_same() (so far) is do_swap_page(), where vmf->pte will in most cases be overwritten very soon. Directly pass in vmf into pte_unmap_same() and then we can also avoid the long parameter list too, which should be a nice cleanup. Link: https://lkml.kernel.org/r/20210915181533.11188-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Liam Howlett <liam.howlett@oracle.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/memory.c: avoid unnecessary kernel/user pointer conversionAmit Daniel Kachhap1-3/+1
Annotating a pointer from __user to kernel and then back again might confuse sparse. In copy_huge_page_from_user() it can be avoided by removing the intermediate variable since it is never used. Link: https://lkml.kernel.org/r/20210914150820.19326-1-amit.kachhap@arm.com Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-01Merge tag 'locking-core-2021-10-31' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Thomas Gleixner: - Move futex code into kernel/futex/ and split up the kitchen sink into seperate files to make integration of sys_futex_waitv() simpler. - Add a new sys_futex_waitv() syscall which allows to wait on multiple futexes. The main use case is emulating Windows' WaitForMultipleObjects which allows Wine to improve the performance of Windows Games. Also native Linux games can benefit from this interface as this is a common wait pattern for this kind of applications. - Add context to ww_mutex_trylock() to provide a path for i915 to rework their eviction code step by step without making lockdep upset until the final steps of rework are completed. It's also useful for regulator and TTM to avoid dropping locks in the non contended path. - Lockdep and might_sleep() cleanups and improvements - A few improvements for the RT substitutions. - The usual small improvements and cleanups. * tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits) locking: Remove spin_lock_flags() etc locking/rwsem: Fix comments about reader optimistic lock stealing conditions locking: Remove rcu_read_{,un}lock() for preempt_{dis,en}able() locking/rwsem: Disable preemption for spinning region docs: futex: Fix kernel-doc references futex: Fix PREEMPT_RT build futex2: Documentation: Document sys_futex_waitv() uAPI selftests: futex: Test sys_futex_waitv() wouldblock selftests: futex: Test sys_futex_waitv() timeout selftests: futex: Add sys_futex_waitv() test futex,arm: Wire up sys_futex_waitv() futex,x86: Wire up sys_futex_waitv() futex: Implement sys_futex_waitv() futex: Simplify double_lock_hb() futex: Split out wait/wake futex: Split out requeue futex: Rename mark_wake_futex() futex: Rename: match_futex() futex: Rename: hb_waiter_{inc,dec,pending}() futex: Split out PI futex ...
2021-11-01Merge tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds1-9/+11
Pull memory folios from Matthew Wilcox: "Add memory folios, a new type to represent either order-0 pages or the head page of a compound page. This should be enough infrastructure to support filesystems converting from pages to folios. The point of all this churn is to allow filesystems and the page cache to manage memory in larger chunks than PAGE_SIZE. The original plan was to use compound pages like THP does, but I ran into problems with some functions expecting only a head page while others expect the precise page containing a particular byte. The folio type allows a function to declare that it's expecting only a head page. Almost incidentally, this allows us to remove various calls to VM_BUG_ON(PageTail(page)) and compound_head(). This converts just parts of the core MM and the page cache. For 5.17, we intend to convert various filesystems (XFS and AFS are ready; other filesystems may make it) and also convert more of the MM and page cache to folios. For 5.18, multi-page folios should be ready. The multi-page folios offer some improvement to some workloads. The 80% win is real, but appears to be an artificial benchmark (postgres startup, which isn't a serious workload). Real workloads (eg building the kernel, running postgres in a steady state, etc) seem to benefit between 0-10%. I haven't heard of any performance losses as a result of this series. Nobody has done any serious performance tuning; I imagine that tweaking the readahead algorithm could provide some more interesting wins. There are also other places where we could choose to create large folios and currently do not, such as writes that are larger than PAGE_SIZE. I'd like to thank all my reviewers who've offered review/ack tags: Christoph Hellwig, David Howells, Jan Kara, Jeff Layton, Johannes Weiner, Kirill A. Shutemov, Michal Hocko, Mike Rapoport, Vlastimil Babka, William Kucharski, Yu Zhao and Zi Yan. I'd also like to thank those who gave feedback I incorporated but haven't offered up review tags for this part of the series: Nick Piggin, Mel Gorman, Ming Lei, Darrick Wong, Ted Ts'o, John Hubbard, Hugh Dickins, and probably a few others who I forget" * tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache: (90 commits) mm/writeback: Add folio_write_one mm/filemap: Add FGP_STABLE mm/filemap: Add filemap_get_folio mm/filemap: Convert mapping_get_entry to return a folio mm/filemap: Add filemap_add_folio() mm/filemap: Add filemap_alloc_folio mm/page_alloc: Add folio allocation functions mm/lru: Add folio_add_lru() mm/lru: Convert __pagevec_lru_add_fn to take a folio mm: Add folio_evictable() mm/workingset: Convert workingset_refault() to take a folio mm/filemap: Add readahead_folio() mm/filemap: Add folio_mkwrite_check_truncate() mm/filemap: Add i_blocks_per_folio() mm/writeback: Add folio_redirty_for_writepage() mm/writeback: Add folio_account_redirty() mm/writeback: Add folio_clear_dirty_for_io() mm/writeback: Add folio_cancel_dirty() mm/writeback: Add folio_account_cleaned() mm/writeback: Add filemap_dirty_folio() ...
2021-10-29mm: filemap: check if THP has hwpoisoned subpage for PMD page faultYang Shi1-0/+9
When handling shmem page fault the THP with corrupted subpage could be PMD mapped if certain conditions are satisfied. But kernel is supposed to send SIGBUS when trying to map hwpoisoned page. There are two paths which may do PMD map: fault around and regular fault. Before commit f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") the thing was even worse in fault around path. The THP could be PMD mapped as long as the VMA fits regardless what subpage is accessed and corrupted. After this commit as long as head page is not corrupted the THP could be PMD mapped. In the regular fault path the THP could be PMD mapped as long as the corrupted page is not accessed and the VMA fits. This loophole could be fixed by iterating every subpage to check if any of them is hwpoisoned or not, but it is somewhat costly in page fault path. So introduce a new page flag called HasHWPoisoned on the first tail page. It indicates the THP has hwpoisoned subpage(s). It is set if any subpage of THP is found hwpoisoned by memory failure and after the refcount is bumped successfully, then cleared when the THP is freed or split. The soft offline path doesn't need this since soft offline handler just marks a subpage hwpoisoned when the subpage is migrated successfully. But shmem THP didn't get split then migrated at all. Link: https://lkml.kernel.org/r/20211020210755.23964-3-shy828301@gmail.com Fixes: 800d8c63b2e9 ("shmem: add huge pages support") Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18mm/workingset: Convert workingset_refault() to take a folioMatthew Wilcox (Oracle)1-1/+2
This nets us 178 bytes of savings from removing calls to compound_head. The three callers all grow a little, but each of them will be converted to use folios soon, so that's fine. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-10-01sched: Remove preempt_offset argument from __might_sleep()Thomas Gleixner1-1/+1
All callers hand in 0 and never will hand in anything else. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210923165358.054321586@linutronix.de
2021-09-27mm/memcg: Convert mem_cgroup_charge() to take a folioMatthew Wilcox (Oracle)1-4/+5
Convert all callers of mem_cgroup_charge() to call page_folio() on the page they're currently passing in. Many of them will be converted to use folios themselves soon. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-27mm/filemap: Add __folio_lock_or_retry()Matthew Wilcox (Oracle)1-4/+4
Convert __lock_page_or_retry() to __folio_lock_or_retry(). This actually saves 4 bytes in the only caller of lock_page_or_retry() (due to better register allocation) and saves the 14 byte cost of calling page_folio() in __folio_lock_or_retry() for a total saving of 18 bytes. Also use a bool for the return type. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Jeff Layton <jlayton@kernel.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-13afs: Fix mmap coherency vs 3rd-party changesDavid Howells1-0/+1
Fix the coherency management of mmap'd data such that 3rd-party changes become visible as soon as possible after the callback notification is delivered by the fileserver. This is done by the following means: (1) When we break a callback on a vnode specified by the CB.CallBack call from the server, we queue a work item (vnode->cb_work) to go and clobber all the PTEs mapping to that inode. This causes the CPU to trip through the ->map_pages() and ->page_mkwrite() handlers if userspace attempts to access the page(s) again. (Ideally, this would be done in the service handler for CB.CallBack, but the server is waiting for our reply before considering, and we have a list of vnodes, all of which need breaking - and the process of getting the mmap_lock and stripping the PTEs on all CPUs could be quite slow.) (2) Call afs_validate() from the ->map_pages() handler to check to see if the file has changed and to get a new callback promise from the server. Also handle the fileserver telling us that it's dropping all callbacks, possibly after it's been restarted by sending us a CB.InitCallBackState* call by the following means: (3) Maintain a per-cell list of afs files that are currently mmap'd (cell->fs_open_mmaps). (4) Add a work item to each server that is invoked if there are any open mmaps when CB.InitCallBackState happens. This work item goes through the aforementioned list and invokes the vnode->cb_work work item for each one that is currently using this server. This causes the PTEs to be cleared, causing ->map_pages() or ->page_mkwrite() to be called again, thereby calling afs_validate() again. I've chosen to simply strip the PTEs at the point of notification reception rather than invalidate all the pages as well because (a) it's faster, (b) we may get a notification for other reasons than the data being altered (in which case we don't want to clobber the pagecache) and (c) we need to ask the server to find out - and I don't want to wait for the reply before holding up userspace. This was tested using the attached test program: #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <sys/mman.h> int main(int argc, char *argv[]) { size_t size = getpagesize(); unsigned char *p; bool mod = (argc == 3); int fd; if (argc != 2 && argc != 3) { fprintf(stderr, "Format: %s <file> [mod]\n", argv[0]); exit(2); } fd = open(argv[1], mod ? O_RDWR : O_RDONLY); if (fd < 0) { perror(argv[1]); exit(1); } p = mmap(NULL, size, mod ? PROT_READ|PROT_WRITE : PROT_READ, MAP_SHARED, fd, 0); if (p == MAP_FAILED) { perror("mmap"); exit(1); } for (;;) { if (mod) { p[0]++; msync(p, size, MS_ASYNC); fsync(fd); } printf("%02x", p[0]); fflush(stdout); sleep(1); } } It runs in two modes: in one mode, it mmaps a file, then sits in a loop reading the first byte, printing it and sleeping for a second; in the second mode it mmaps a file, then sits in a loop incrementing the first byte and flushing, then printing and sleeping. Two instances of this program can be run on different machines, one doing the reading and one doing the writing. The reader should see the changes made by the writer, but without this patch, they aren't because validity checking is being done lazily - only on entry to the filesystem. Testing the InitCallBackState change is more complicated. The server has to be taken offline, the saved callback state file removed and then the server restarted whilst the reading-mode program continues to run. The client machine then has to poke the server to trigger the InitCallBackState call. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Markus Suvanto <markus.suvanto@gmail.com> cc: linux-afs@lists.infradead.org Link: https://lore.kernel.org/r/163111668833.283156.382633263709075739.stgit@warthog.procyon.org.uk/
2021-07-24mm: fix the deadlock in finish_fault()Qi Zheng1-1/+10
Commit 63f3655f9501 ("mm, memcg: fix reclaim deadlock with writeback") fix the following ABBA deadlock by pre-allocating the pte page table without holding the page lock. lock_page(A) SetPageWriteback(A) unlock_page(A) lock_page(B) lock_page(B) pte_alloc_one shrink_page_list wait_on_page_writeback(A) SetPageWriteback(B) unlock_page(B) # flush A, B to clear the writeback Commit f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") reworked the relevant code but ignored this race. This will cause the deadlock above to appear again, so fix it. Link: https://lkml.kernel.org/r/20210721074849.57004-1-zhengqi.arch@bytedance.com Fixes: f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm: device exclusive memory accessAlistair Popple1-4/+123
Some devices require exclusive write access to shared virtual memory (SVM) ranges to perform atomic operations on that memory. This requires CPU page tables to be updated to deny access whilst atomic operations are occurring. In order to do this introduce a new swap entry type (SWP_DEVICE_EXCLUSIVE). When a SVM range needs to be marked for exclusive access by a device all page table mappings for the particular range are replaced with device exclusive swap entries. This causes any CPU access to the page to result in a fault. Faults are resovled by replacing the faulting entry with the original mapping. This results in MMU notifiers being called which a driver uses to update access permissions such as revoking atomic access. After notifiers have been called the device will no longer have exclusive access to the region. Walking of the page tables to find the target pages is handled by get_user_pages() rather than a direct page table walk. A direct page table walk similar to what migrate_vma_collect()/unmap() does could also have been utilised. However this resulted in more code similar in functionality to what get_user_pages() provides as page faulting is required to make the PTEs present and to break COW. [dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()] Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm/memory.c: allow different return codes for copy_nonpresent_pte()Alistair Popple1-11/+17
Currently if copy_nonpresent_pte() returns a non-zero value it is assumed to be a swap entry which requires further processing outside the loop in copy_pte_range() after dropping locks. This prevents other values being returned to signal conditions such as failure which a subsequent change requires. Instead make copy_nonpresent_pte() return an error code if further processing is required and read the value for the swap entry in the main loop under the ptl. Link: https://lkml.kernel.org/r/20210616105937.23201-7-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm/swapops: rework swap entry manipulation codeAlistair Popple1-4/+6
Both migration and device private pages use special swap entries that are manipluated by a range of inline functions. The arguments to these are somewhat inconsistent so rework them to remove flag type arguments and to make the arguments similar for both read and write entry creation. Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm: remove special swap entry functionsAlistair Popple1-5/+5
Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm: memory: make numa_migrate_prep() non-staticYang Shi1-3/+2
The numa_migrate_prep() will be used by huge NUMA fault as well in the following patch, make it non-static. Link: https://lkml.kernel.org/r/20210518200801.7413-3-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm: memory: add orig_pmd to struct vm_faultYang Shi1-13/+13
Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3. When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. It is definitely a maintenance burden to keep two THP migration implementation for different code paths and it is more error prone. Using the generic THP migration implementation allows us remove the duplicate code and some hacks needed by the old ad hoc implementation. A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both THP and NUMA balancing. The most of them support THP migration except for S390. Zi Yan tried to add THP migration support for S390 before but it was not accepted due to the design of S390 PMD. For the discussion, please see: https://lkml.org/lkml/2018/4/27/953. Per the discussion with Gerald Schaefer in v1 it is acceptible to skip huge PMD for S390 for now. I saw there were some hacks about gup from git history, but I didn't figure out if they have been removed or not since I just found FOLL_NUMA code in the current gup implementation and they seems useful. Patch #1 ~ #2 are preparation patches. Patch #3 is the real meat. Patch #4 ~ #6 keep consistent counters and behaviors with before. Patch #7 skips change huge PMD to prot_none if thp migration is not supported. Test ---- Did some tests to measure the latency of do_huge_pmd_numa_page. The test VM has 80 vcpus and 64G memory. The test would create 2 processes to consume 128G memory together which would incur memory pressure to cause THP splits. And it also creates 80 processes to hog cpu, and the memory consumer processes are bound to different nodes periodically in order to increase NUMA faults. The below test script is used: echo 3 > /proc/sys/vm/drop_caches # Run stress-ng for 24 hours ./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h & PID=$! ./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h & # Wait for vm stressors forked sleep 5 PID_1=`pgrep -P $PID | awk 'NR == 1'` PID_2=`pgrep -P $PID | awk 'NR == 2'` JOB1=`pgrep -P $PID_1` JOB2=`pgrep -P $PID_2` # Bind load jobs to different nodes periodically to force generate # cross node memory access while [ -d "/proc/$PID" ] do taskset -apc 8 $JOB1 taskset -apc 8 $JOB2 sleep 300 taskset -apc 58 $JOB1 taskset -apc 58 $JOB2 sleep 300 done With the above test the histogram of latency of do_huge_pmd_numa_page is as shown below. Since the number of do_huge_pmd_numa_page varies drastically for each run (should be due to scheduler), so I converted the raw number to percentage. patched base @us[stress-ng]: [0] 3.57% 0.16% [1] 55.68% 18.36% [2, 4) 10.46% 40.44% [4, 8) 7.26% 17.82% [8, 16) 21.12% 13.41% [16, 32) 1.06% 4.27% [32, 64) 0.56% 4.07% [64, 128) 0.16% 0.35% [128, 256) < 0.1% < 0.1% [256, 512) < 0.1% < 0.1% [512, 1K) < 0.1% < 0.1% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) < 0.1% < 0.1% [16K, 32K) < 0.1% < 0.1% [32K, 64K) < 0.1% < 0.1% Per the result, patched kernel is even slightly better than the base kernel. I think this is because the lock contention against THP split is less than base kernel due to the refactor. To exclude the affect from THP split, I also did test w/o memory pressure. No obvious regression is spotted. The below is the test result *w/o* memory pressure. patched base @us[stress-ng]: [0] 7.97% 18.4% [1] 69.63% 58.24% [2, 4) 4.18% 2.63% [4, 8) 0.22% 0.17% [8, 16) 1.03% 0.92% [16, 32) 0.14% < 0.1% [32, 64) < 0.1% < 0.1% [64, 128) < 0.1% < 0.1% [128, 256) < 0.1% < 0.1% [256, 512) 0.45% 1.19% [512, 1K) 15.45% 17.27% [1K, 2K) < 0.1% < 0.1% [2K, 4K) < 0.1% < 0.1% [4K, 8K) < 0.1% < 0.1% [8K, 16K) 0.86% 0.88% [16K, 32K) < 0.1% 0.15% [32K, 64K) < 0.1% < 0.1% [64K, 128K) < 0.1% < 0.1% [128K, 256K) < 0.1% < 0.1% The series also survived a series of tests that exercise NUMA balancing migrations by Mel. This patch (of 7): Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge page fault could be removed, just like its PTE counterpart does. Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01userfaultfd/shmem: support minor fault registration for shmemAxel Rasmussen1-3/+5
This patch allows shmem-backed VMAs to be registered for minor faults. Minor faults are appropriately relayed to userspace in the fault path, for VMAs with the relevant flag. This commit doesn't hook up the UFFDIO_CONTINUE ioctl for shmem-backed minor faults, though, so userspace doesn't yet have a way to resolve such faults. Because of this, we also don't yet advertise this as a supported feature. That will be done in a separate commit when the feature is fully implemented. Link: https://lkml.kernel.org/r/20210503180737.2487560-4-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm/userfaultfd: fix uffd-wp special cases for fork()Peter Xu1-12/+13
We tried to do something similar in b569a1760782 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") previously, but it's not doing it all right.. A few fixes around the code path: 1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather than the new vma. That's overlooked in b569a1760782, so it won't work as expected. Thanks to the recent rework on fork code (7a4830c380f3a8b3), we can easily get the new vma now, so switch the checks to that. 2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the huge pmd is a migration huge pmd. When it happens, instead of using pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to handle them separately. 3. Forget to carry over uffd-wp bit for a write migration huge pmd entry. This also happens in copy_huge_pmd(), where we converted a write huge migration entry into a read one. 4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes. 5. In copy_present_page() when COW is enforced when fork(), we also need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new vma, and when the pte to be copied has uffd-wp bit set. Remove the comment in copy_present_pte() about this. It won't help a huge lot to only comment there, but comment everywhere would be an overkill. Let's assume the commit messages would help. [peterx@redhat.com: fix a few thp pmd missing uffd-wp bit] Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com Fixes: b569a1760782f ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork") Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>