summaryrefslogtreecommitdiff
path: root/lib/.gitignore
AgeCommit message (Collapse)AuthorFilesLines
2018-08-22lib: add crc64 calculation routinesColy Li1-0/+2
Patch series "add crc64 calculation as kernel library", v5. This patchset adds basic implementation of crc64 calculation as a Linux kernel library. Since bcache already does crc64 by itself, this patchset also modifies bcache code to use the new crc64 library routine. Currently bcache is the only user of crc64 calculation, another potential user is bcachefs which is on the way to be in mainline kernel. Therefore it makes sense to make crc64 calculation to be a public library. bcache uses crc64 as storage checksum, if a change of crc lib routines results an inconsistent result, the unmatched checksum may make bcache 'think' the on-disk is corrupted, such a change should be avoided or detected as early as possible. Therefore a patch is being prepared which adds a crc test framework, to check consistency of different calculations. This patch (of 2): Add the re-write crc64 calculation routines for Linux kernel. The CRC64 polynomical arithmetic follows ECMA-182 specification, inspired by CRC paper of Dr. Ross N. Williams (see http://www.ross.net/crc/download/crc_v3.txt) and other public domain implementations. All the changes work in this way, - When Linux kernel is built, host program lib/gen_crc64table.c will be compiled to lib/gen_crc64table and executed. - The output of gen_crc64table execution is an array called as lookup table (a.k.a POLY 0x42f0e1eba9ea369) which contain 256 64-bit long numbers, this table is dumped into header file lib/crc64table.h. - Then the header file is included by lib/crc64.c for normal 64bit crc calculation. - Function declaration of the crc64 calculation routines is placed in include/linux/crc64.h Currently bcache is the only user of crc64_be(), another potential user is bcachefs which is on the way to be in mainline kernel. Therefore it makes sense to move crc64 calculation into lib/crc64.c as public code. [colyli@suse.de: fix review comments from v4] Link: http://lkml.kernel.org/r/20180726053352.2781-2-colyli@suse.de Link: http://lkml.kernel.org/r/20180718165545.1622-2-colyli@suse.de Signed-off-by: Coly Li <colyli@suse.de> Co-developed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Michael Lyle <mlyle@lyle.org> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Noah Massey <noah.massey@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-08X.509: Implement simple static OID registryDavid Howells1-1/+1
Implement a simple static OID registry that allows the mapping of an encoded OID to an enum value for ease of use. The OID registry index enum appears in the: linux/oid_registry.h header file. A script generates the registry from lines in the header file that look like: <sp*>OID_foo,<sp*>/*<sp*>1.2.3.4<sp*>*/ The actual OID is taken to be represented by the numbers with interpolated dots in the comment. All other lines in the header are ignored. The registry is queries by calling: OID look_up_oid(const void *data, size_t datasize); This returns a number from the registry enum representing the OID if found or OID__NR if not. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2005-10-18Add some basic .gitignore filesLinus Torvalds1-0/+6
This still leaves driver and architecture-specific subdirectories alone, but gets rid of the bulk of the "generic" generated files that we should ignore. Signed-off-by: Linus Torvalds <torvalds@osdl.org>