Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Including fixes from netfilter, wifi, can and bpf.
Current release - new code bugs:
- can: af_can: can_exit(): add missing dev_remove_pack() of
canxl_packet
Previous releases - regressions:
- bpf, sockmap: fix the sk->sk_forward_alloc warning
- wifi: mac80211: fix general-protection-fault in
ieee80211_subif_start_xmit()
- can: af_can: fix NULL pointer dereference in can_rx_register()
- can: dev: fix skb drop check, avoid o-o-b access
- nfnetlink: fix potential dead lock in nfnetlink_rcv_msg()
Previous releases - always broken:
- bpf: fix wrong reg type conversion in release_reference()
- gso: fix panic on frag_list with mixed head alloc types
- wifi: brcmfmac: fix buffer overflow in brcmf_fweh_event_worker()
- wifi: mac80211: set TWT Information Frame Disabled bit as 1
- eth: macsec offload related fixes, make sure to clear the keys from
memory
- tun: fix memory leaks in the use of napi_get_frags
- tun: call napi_schedule_prep() to ensure we own a napi
- tcp: prohibit TCP_REPAIR_OPTIONS if data was already sent
- ipv6: addrlabel: fix infoleak when sending struct ifaddrlblmsg to
network
- tipc: fix a msg->req tlv length check
- sctp: clear out_curr if all frag chunks of current msg are pruned,
avoid list corruption
- mctp: fix an error handling path in mctp_init(), avoid leaks"
* tag 'net-6.1-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (101 commits)
eth: sp7021: drop free_netdev() from spl2sw_init_netdev()
MAINTAINERS: Move Vivien to CREDITS
net: macvlan: fix memory leaks of macvlan_common_newlink
ethernet: tundra: free irq when alloc ring failed in tsi108_open()
net: mv643xx_eth: disable napi when init rxq or txq failed in mv643xx_eth_open()
ethernet: s2io: disable napi when start nic failed in s2io_card_up()
net: atlantic: macsec: clear encryption keys from the stack
net: phy: mscc: macsec: clear encryption keys when freeing a flow
stmmac: dwmac-loongson: fix missing of_node_put() while module exiting
stmmac: dwmac-loongson: fix missing pci_disable_device() in loongson_dwmac_probe()
stmmac: dwmac-loongson: fix missing pci_disable_msi() while module exiting
cxgb4vf: shut down the adapter when t4vf_update_port_info() failed in cxgb4vf_open()
mctp: Fix an error handling path in mctp_init()
stmmac: intel: Update PCH PTP clock rate from 200MHz to 204.8MHz
net: cxgb3_main: disable napi when bind qsets failed in cxgb_up()
net: cpsw: disable napi in cpsw_ndo_open()
iavf: Fix VF driver counting VLAN 0 filters
ice: Fix spurious interrupt during removal of trusted VF
net/mlx5e: TC, Fix slab-out-of-bounds in parse_tc_actions
net/mlx5e: E-Switch, Fix comparing termination table instance
...
|
|
In order to allow arches to use code patching to conditionally emit the
shadow stack pushes and pops, rather than always taking the performance
hit even on CPUs that implement alternatives such as stack pointer
authentication on arm64, add a Kconfig symbol that can be set by the
arch to omit the SCS codegen itself, without otherwise affecting how
support code for SCS and compiler options (for register reservation, for
instance) are emitted.
Also, add a static key and some plumbing to omit the allocation of
shadow call stack for dynamic SCS configurations if SCS is disabled at
runtime.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20221027155908.1940624-3-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
kmemleak reports this issue:
unreferenced object 0xffff88817139d000 (size 2048):
comm "test_progs", pid 33246, jiffies 4307381979 (age 45851.820s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000045f075f0>] kmalloc_trace+0x27/0xa0
[<0000000098b7c90a>] __check_func_call+0x316/0x1230
[<00000000b4c3c403>] check_helper_call+0x172e/0x4700
[<00000000aa3875b7>] do_check+0x21d8/0x45e0
[<000000001147357b>] do_check_common+0x767/0xaf0
[<00000000b5a595b4>] bpf_check+0x43e3/0x5bc0
[<0000000011e391b1>] bpf_prog_load+0xf26/0x1940
[<0000000007f765c0>] __sys_bpf+0xd2c/0x3650
[<00000000839815d6>] __x64_sys_bpf+0x75/0xc0
[<00000000946ee250>] do_syscall_64+0x3b/0x90
[<0000000000506b7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root case here is: In function prepare_func_exit(), the callee is
not released in the abnormal scenario after "state->curframe--;". To
fix, move "state->curframe--;" to the very bottom of the function,
right when we free callee and reset frame[] pointer to NULL, as Andrii
suggested.
In addition, function __check_func_call() has a similar problem. In
the abnormal scenario before "state->curframe++;", the callee also
should be released by free_func_state().
Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Fixes: fd978bf7fd31 ("bpf: Add reference tracking to verifier")
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Link: https://lore.kernel.org/r/1667884291-15666-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
To catch missing SIGTRAP we employ a WARN in __perf_event_overflow(),
which fires if pending_sigtrap was already set: returning to user space
without consuming pending_sigtrap, and then having the event fire again
would re-enter the kernel and trigger the WARN.
This, however, seemed to miss the case where some events not associated
with progress in the user space task can fire and the interrupt handler
runs before the IRQ work meant to consume pending_sigtrap (and generate
the SIGTRAP).
syzbot gifted us this stack trace:
| WARNING: CPU: 0 PID: 3607 at kernel/events/core.c:9313 __perf_event_overflow
| Modules linked in:
| CPU: 0 PID: 3607 Comm: syz-executor100 Not tainted 6.1.0-rc2-syzkaller-00073-g88619e77b33d #0
| Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022
| RIP: 0010:__perf_event_overflow+0x498/0x540 kernel/events/core.c:9313
| <...>
| Call Trace:
| <TASK>
| perf_swevent_hrtimer+0x34f/0x3c0 kernel/events/core.c:10729
| __run_hrtimer kernel/time/hrtimer.c:1685 [inline]
| __hrtimer_run_queues+0x1c6/0xfb0 kernel/time/hrtimer.c:1749
| hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811
| local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1096 [inline]
| __sysvec_apic_timer_interrupt+0x17c/0x640 arch/x86/kernel/apic/apic.c:1113
| sysvec_apic_timer_interrupt+0x40/0xc0 arch/x86/kernel/apic/apic.c:1107
| asm_sysvec_apic_timer_interrupt+0x16/0x20 arch/x86/include/asm/idtentry.h:649
| <...>
| </TASK>
In this case, syzbot produced a program with event type
PERF_TYPE_SOFTWARE and config PERF_COUNT_SW_CPU_CLOCK. The hrtimer
manages to fire again before the IRQ work got a chance to run, all while
never having returned to user space.
Improve the WARN to check for real progress in user space: approximate
this by storing a 32-bit hash of the current IP into pending_sigtrap,
and if an event fires while pending_sigtrap still matches the previous
IP, we assume no progress (false negatives are possible given we could
return to user space and trigger again on the same IP).
Fixes: ca6c21327c6a ("perf: Fix missing SIGTRAPs")
Reported-by: syzbot+b8ded3e2e2c6adde4990@syzkaller.appspotmail.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221031093513.3032814-1-elver@google.com
|
|
When building with clang:
kernel/bpf/dispatcher.c:126:33: error: pointer type mismatch ('void *' and 'unsigned int (*)(const void *, const struct bpf_insn *, bpf_func_t)' (aka 'unsigned int (*)(const void *, const struct bpf_insn *, unsigned int (*)(const void *, const struct bpf_insn *))')) [-Werror,-Wpointer-type-mismatch]
__BPF_DISPATCHER_UPDATE(d, new ?: &bpf_dispatcher_nop_func);
~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~
./include/linux/bpf.h:1045:54: note: expanded from macro '__BPF_DISPATCHER_UPDATE'
__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
^~~~
1 error generated.
The warning is pointing out that the type of new ('void *') and
&bpf_dispatcher_nop_func are not compatible, which could have side
effects coming out of a conditional operator due to promotion rules.
Add the explicit cast to 'void *' to make it clear that this is
expected, as __BPF_DISPATCHER_UPDATE() expands to a call to
__static_call_update(), which expects a 'void *' as its final argument.
Fixes: c86df29d11df ("bpf: Convert BPF_DISPATCHER to use static_call() (not ftrace)")
Link: https://github.com/ClangBuiltLinux/linux/issues/1755
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Björn Töpel <bjorn@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221107170711.42409-1-nathan@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Add Cooper Lake's stepping to the PEBS guest/host events isolation
fixed microcode revisions checking quirk
- Update Icelake and Sapphire Rapids events constraints
- Use the standard energy unit for Sapphire Rapids in RAPL
- Fix the hw_breakpoint test to fail more graciously on !SMP configs
* tag 'perf_urgent_for_v6.1_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Add Cooper Lake stepping to isolation_ucodes[]
perf/x86/intel: Fix pebs event constraints for SPR
perf/x86/intel: Fix pebs event constraints for ICL
perf/x86/rapl: Use standard Energy Unit for SPR Dram RAPL domain
perf/hw_breakpoint: test: Skip the test if dependencies unmet
|
|
The dispatcher function is currently abusing the ftrace __fentry__
call location for its own purposes -- this obviously gives trouble
when the dispatcher and ftrace are both in use.
A previous solution tried using __attribute__((patchable_function_entry()))
which works, except it is GCC-8+ only, breaking the build on the
earlier still supported compilers. Instead use static_call() -- which
has its own annotations and does not conflict with ftrace -- to
rewrite the dispatch function.
By using: return static_call()(ctx, insni, bpf_func) you get a perfect
forwarding tail call as function body (iow a single jmp instruction).
By having the default static_call() target be bpf_dispatcher_nop_func()
it retains the default behaviour (an indirect call to the argument
function). Only once a dispatcher program is attached is the target
rewritten to directly call the JIT'ed image.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Björn Töpel <bjorn@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Björn Töpel <bjorn@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lkml.kernel.org/r/Y1/oBlK0yFk5c/Im@hirez.programming.kicks-ass.net
Link: https://lore.kernel.org/bpf/20221103120647.796772565@infradead.org
|
|
Because __attribute__((patchable_function_entry)) is only available
since GCC-8 this solution fails to build on the minimum required GCC
version.
Undo these changes so we might try again -- without cluttering up the
patches with too many changes.
This is an almost complete revert of:
dbe69b299884 ("bpf: Fix dispatcher patchable function entry to 5 bytes nop")
ceea991a019c ("bpf: Move bpf_dispatcher function out of ftrace locations")
(notably the arch/x86/Kconfig hunk is kept).
Reported-by: David Laight <David.Laight@aculab.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Björn Töpel <bjorn@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Björn Töpel <bjorn@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lkml.kernel.org/r/439d8dc735bb4858875377df67f1b29a@AcuMS.aculab.com
Link: https://lore.kernel.org/bpf/20221103120647.728830733@infradead.org
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:
====================
bpf 2022-11-04
We've added 8 non-merge commits during the last 3 day(s) which contain
a total of 10 files changed, 113 insertions(+), 16 deletions(-).
The main changes are:
1) Fix memory leak upon allocation failure in BPF verifier's stack state
tracking, from Kees Cook.
2) Fix address leakage when BPF progs release reference to an object,
from Youlin Li.
3) Fix BPF CI breakage from buggy in.h uapi header dependency,
from Andrii Nakryiko.
4) Fix bpftool pin sub-command's argument parsing, from Pu Lehui.
5) Fix BPF sockmap lockdep warning by cancelling psock work outside
of socket lock, from Cong Wang.
6) Follow-up for BPF sockmap to fix sk_forward_alloc accounting,
from Wang Yufen.
bpf-for-netdev
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
selftests/bpf: Add verifier test for release_reference()
bpf: Fix wrong reg type conversion in release_reference()
bpf, sock_map: Move cancel_work_sync() out of sock lock
tools/headers: Pull in stddef.h to uapi to fix BPF selftests build in CI
net/ipv4: Fix linux/in.h header dependencies
bpftool: Fix NULL pointer dereference when pin {PROG, MAP, LINK} without FILE
bpf, sockmap: Fix the sk->sk_forward_alloc warning of sk_stream_kill_queues
bpf, verifier: Fix memory leak in array reallocation for stack state
====================
Link: https://lore.kernel.org/r/20221104000445.30761-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
test_gen_kprobe_cmd() only free buf in fail path, hence buf will leak
when there is no failure. Move kfree(buf) from fail path to common path
to prevent the memleak. The same reason and solution in
test_gen_kretprobe_cmd().
unreferenced object 0xffff888143b14000 (size 2048):
comm "insmod", pid 52490, jiffies 4301890980 (age 40.553s)
hex dump (first 32 bytes):
70 3a 6b 70 72 6f 62 65 73 2f 67 65 6e 5f 6b 70 p:kprobes/gen_kp
72 6f 62 65 5f 74 65 73 74 20 64 6f 5f 73 79 73 robe_test do_sys
backtrace:
[<000000006d7b836b>] kmalloc_trace+0x27/0xa0
[<0000000009528b5b>] 0xffffffffa059006f
[<000000008408b580>] do_one_initcall+0x87/0x2a0
[<00000000c4980a7e>] do_init_module+0xdf/0x320
[<00000000d775aad0>] load_module+0x3006/0x3390
[<00000000e9a74b80>] __do_sys_finit_module+0x113/0x1b0
[<000000003726480d>] do_syscall_64+0x35/0x80
[<000000003441e93b>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
Link: https://lore.kernel.org/all/20221102072954.26555-1-shangxiaojing@huawei.com/
Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module")
Cc: stable@vger.kernel.org
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
Since commit ab51e15d535e ("fprobe: Introduce FPROBE_FL_KPROBE_SHARED flag
for fprobe") introduced fprobe_kprobe_handler() for fprobe::ops::func,
unregister_fprobe() fails to unregister the registered if user specifies
FPROBE_FL_KPROBE_SHARED flag.
Moreover, __register_ftrace_function() is possible to change the
ftrace_ops::func, thus we have to check fprobe::ops::saved_func instead.
To check it correctly, it should confirm the fprobe::ops::saved_func is
either fprobe_handler() or fprobe_kprobe_handler().
Link: https://lore.kernel.org/all/166677683946.1459107.15997653945538644683.stgit@devnote3/
Fixes: cad9931f64dc ("fprobe: Add ftrace based probe APIs")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
Check if fp->rethook succeeded to be allocated. Otherwise, if
rethook_alloc() fails, then we end up dereferencing a NULL pointer in
rethook_add_node().
Link: https://lore.kernel.org/all/20221025031209.954836-1-rafaelmendsr@gmail.com/
Fixes: 5b0ab78998e3 ("fprobe: Add exit_handler support")
Cc: stable@vger.kernel.org
Signed-off-by: Rafael Mendonca <rafaelmendsr@gmail.com>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
In aggregate kprobe case, when arm_kprobe failed,
we need set the kp->flags with KPROBE_FLAG_DISABLED again.
If not, the 'kp' kprobe will been considered as enabled
but it actually not enabled.
Link: https://lore.kernel.org/all/20220902155820.34755-1-liq3ea@163.com/
Fixes: 12310e343755 ("kprobes: Propagate error from arm_kprobe_ftrace()")
Cc: stable@vger.kernel.org
Signed-off-by: Li Qiang <liq3ea@163.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.
When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.
It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.
Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.
Fixes: fd978bf7fd31 ("bpf: Add reference tracking to verifier")
Signed-off-by: Youlin Li <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221103093440.3161-1-liulin063@gmail.com
|
|
The actual maximum image size formula in hibernate_preallocate_memory()
is as follows:
max_size = (count - (size + PAGES_FOR_IO)) / 2
- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
but the one in the kerneldoc comment of the function is different and
incorrect.
Fixes: ddeb64870810 ("PM / Hibernate: Add sysfs knob to control size of memory for drivers")
Signed-off-by: xiongxin <xiongxin@kylinos.cn>
[ rjw: Subject and changelog rewrite ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
KASAN reported a use-after-free with ftrace ops [1]. It was found from
vmcore that perf had registered two ops with the same content
successively, both dynamic. After unregistering the second ops, a
use-after-free occurred.
In ftrace_shutdown(), when the second ops is unregistered, the
FTRACE_UPDATE_CALLS command is not set because there is another enabled
ops with the same content. Also, both ops are dynamic and the ftrace
callback function is ftrace_ops_list_func, so the
FTRACE_UPDATE_TRACE_FUNC command will not be set. Eventually the value
of 'command' will be 0 and ftrace_shutdown() will skip the rcu
synchronization.
However, ftrace may be activated. When the ops is released, another CPU
may be accessing the ops. Add the missing synchronization to fix this
problem.
[1]
BUG: KASAN: use-after-free in __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline]
BUG: KASAN: use-after-free in ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049
Read of size 8 at addr ffff56551965bbc8 by task syz-executor.2/14468
CPU: 1 PID: 14468 Comm: syz-executor.2 Not tainted 5.10.0 #7
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x40c arch/arm64/kernel/stacktrace.c:132
show_stack+0x30/0x40 arch/arm64/kernel/stacktrace.c:196
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1b4/0x248 lib/dump_stack.c:118
print_address_description.constprop.0+0x28/0x48c mm/kasan/report.c:387
__kasan_report mm/kasan/report.c:547 [inline]
kasan_report+0x118/0x210 mm/kasan/report.c:564
check_memory_region_inline mm/kasan/generic.c:187 [inline]
__asan_load8+0x98/0xc0 mm/kasan/generic.c:253
__ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline]
ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049
ftrace_graph_call+0x0/0x4
__might_sleep+0x8/0x100 include/linux/perf_event.h:1170
__might_fault mm/memory.c:5183 [inline]
__might_fault+0x58/0x70 mm/memory.c:5171
do_strncpy_from_user lib/strncpy_from_user.c:41 [inline]
strncpy_from_user+0x1f4/0x4b0 lib/strncpy_from_user.c:139
getname_flags+0xb0/0x31c fs/namei.c:149
getname+0x2c/0x40 fs/namei.c:209
[...]
Allocated by task 14445:
kasan_save_stack+0x24/0x50 mm/kasan/common.c:48
kasan_set_track mm/kasan/common.c:56 [inline]
__kasan_kmalloc mm/kasan/common.c:479 [inline]
__kasan_kmalloc.constprop.0+0x110/0x13c mm/kasan/common.c:449
kasan_kmalloc+0xc/0x14 mm/kasan/common.c:493
kmem_cache_alloc_trace+0x440/0x924 mm/slub.c:2950
kmalloc include/linux/slab.h:563 [inline]
kzalloc include/linux/slab.h:675 [inline]
perf_event_alloc.part.0+0xb4/0x1350 kernel/events/core.c:11230
perf_event_alloc kernel/events/core.c:11733 [inline]
__do_sys_perf_event_open kernel/events/core.c:11831 [inline]
__se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723
__arm64_sys_perf_event_open+0x6c/0x80 kernel/events/core.c:11723
[...]
Freed by task 14445:
kasan_save_stack+0x24/0x50 mm/kasan/common.c:48
kasan_set_track+0x24/0x34 mm/kasan/common.c:56
kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:358
__kasan_slab_free.part.0+0x11c/0x1b0 mm/kasan/common.c:437
__kasan_slab_free mm/kasan/common.c:445 [inline]
kasan_slab_free+0x2c/0x40 mm/kasan/common.c:446
slab_free_hook mm/slub.c:1569 [inline]
slab_free_freelist_hook mm/slub.c:1608 [inline]
slab_free mm/slub.c:3179 [inline]
kfree+0x12c/0xc10 mm/slub.c:4176
perf_event_alloc.part.0+0xa0c/0x1350 kernel/events/core.c:11434
perf_event_alloc kernel/events/core.c:11733 [inline]
__do_sys_perf_event_open kernel/events/core.c:11831 [inline]
__se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723
[...]
Link: https://lore.kernel.org/linux-trace-kernel/20221103031010.166498-1-lihuafei1@huawei.com
Fixes: edb096e00724f ("ftrace: Fix memleak when unregistering dynamic ops when tracing disabled")
Cc: stable@vger.kernel.org
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
On some machines the number of listed CPUs may be bigger than the actual
CPUs that exist. The tracing subsystem allocates a per_cpu directory with
access to the per CPU ring buffer via a cpuX file. But to save space, the
ring buffer will only allocate buffers for online CPUs, even though the
CPU array will be as big as the nr_cpu_ids.
With the addition of waking waiters on the ring buffer when closing the
file, the ring_buffer_wake_waiters() now needs to make sure that the
buffer is allocated (with the irq_work allocated with it) before trying to
wake waiters, as it will cause a NULL pointer dereference.
While debugging this, I added a NULL check for the buffer itself (which is
OK to do), and also NULL pointer checks against buffer->buffers (which is
not fine, and will WARN) as well as making sure the CPU number passed in
is within the nr_cpu_ids (which is also not fine if it isn't).
Link: https://lore.kernel.org/all/87h6zklb6n.wl-tiwai@suse.de/
Link: https://lore.kernel.org/all/CAM6Wdxc0KRJMXVAA0Y=u6Jh2V=uWB-_Fn6M4xRuNppfXzL1mUg@mail.gmail.com/
Link: https://lkml.kernel.org/linux-trace-kernel/20221101191009.1e7378c8@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Steven Noonan <steven.noonan@gmail.com>
Bugzilla: https://bugzilla.opensuse.org/show_bug.cgi?id=1204705
Reported-by: Takashi Iwai <tiwai@suse.de>
Reported-by: Roland Ruckerbauer <roland.rucky@gmail.com>
Fixes: f3ddb74ad079 ("tracing: Wake up ring buffer waiters on closing of the file")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Running the test currently fails on non-SMP systems, despite being
enabled by default. This means that running the test with:
./tools/testing/kunit/kunit.py run --arch x86_64 hw_breakpoint
results in every hw_breakpoint test failing with:
# test_one_cpu: failed to initialize: -22
not ok 1 - test_one_cpu
Instead, use kunit_skip(), which will mark the test as skipped, and give
a more comprehensible message:
ok 1 - test_one_cpu # SKIP not enough cpus
This makes it more obvious that the test is not suited to the test
environment, and so wasn't run, rather than having run and failed.
Signed-off-by: David Gow <davidgow@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Latypov <dlatypov@google.com>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20221026141040.1609203-1-davidgow@google.com
|
|
If an error (NULL) is returned by krealloc(), callers of realloc_array()
were setting their allocation pointers to NULL, but on error krealloc()
does not touch the original allocation. This would result in a memory
resource leak. Instead, free the old allocation on the error handling
path.
The memory leak information is as follows as also reported by Zhengchao:
unreferenced object 0xffff888019801800 (size 256):
comm "bpf_repo", pid 6490, jiffies 4294959200 (age 17.170s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000b211474b>] __kmalloc_node_track_caller+0x45/0xc0
[<0000000086712a0b>] krealloc+0x83/0xd0
[<00000000139aab02>] realloc_array+0x82/0xe2
[<00000000b1ca41d1>] grow_stack_state+0xfb/0x186
[<00000000cd6f36d2>] check_mem_access.cold+0x141/0x1341
[<0000000081780455>] do_check_common+0x5358/0xb350
[<0000000015f6b091>] bpf_check.cold+0xc3/0x29d
[<000000002973c690>] bpf_prog_load+0x13db/0x2240
[<00000000028d1644>] __sys_bpf+0x1605/0x4ce0
[<00000000053f29bd>] __x64_sys_bpf+0x75/0xb0
[<0000000056fedaf5>] do_syscall_64+0x35/0x80
[<000000002bd58261>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: c69431aab67a ("bpf: verifier: Improve function state reallocation")
Reported-by: Zhengchao Shao <shaozhengchao@huawei.com>
Reported-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Bill Wendling <morbo@google.com>
Cc: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/bpf/20221029025433.2533810-1-keescook@chromium.org
|
|
At the moment the AMD encrypted platform reserves 6% of RAM for SWIOTLB
or 1GB, whichever is less. However it is possible that there is no block
big enough in the low memory which make SWIOTLB allocation fail and
the kernel continues without DMA. In such case a VM hangs on DMA.
This moves alloc+remap to a helper and calls it from a loop where
the size is halved on each iteration.
This updates default_nslabs on successful allocation which looks like
an oversight as not doing so should have broken callers of
swiotlb_size_or_default().
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
6ab428604f72 ("cgroup: Implement DEBUG_CGROUP_REF") added a config option
which forces cgroup refcnt functions to be not inlined so that they can be
kprobed for debugging. However, it forgot export them when the config is
enabled breaking modules which make use of css reference counting.
Fix it by adding CGROUP_REF_EXPORT() macro to cgroup_refcnt.h which is
defined to EXPORT_SYMBOL_GPL when CONFIG_DEBUG_CGROUP_REF is set.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 6ab428604f72 ("cgroup: Implement DEBUG_CGROUP_REF")
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Rename a perf memory level event define to denote it is of CXL type
- Add Alder and Raptor Lakes support to RAPL
- Make sure raw sample data is output with tracepoints
* tag 'perf_urgent_for_v6.1_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/mem: Rename PERF_MEM_LVLNUM_EXTN_MEM to PERF_MEM_LVLNUM_CXL
perf/x86/rapl: Add support for Intel Raptor Lake
perf/x86/rapl: Add support for Intel AlderLake-N
perf: Fix missing raw data on tracepoint events
|
|
The commit d583d360a620 ("psi: Fix psi state corruption when schedule()
races with cgroup move") fixed a race problem by making cgroup_move_task()
use task->psi_flags instead of looking at the scheduler state.
We can extend task->psi_flags usage to CPU migration, which should be
a minor optimization for performance and code simplicity.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220926081931.45420-1-zhouchengming@bytedance.com
|
|
Psi polling mechanism is trying to minimize the number of wakeups to
run psi_poll_work and is currently relying on timer_pending() to detect
when this work is already scheduled. This provides a window of opportunity
for psi_group_change to schedule an immediate psi_poll_work after
poll_timer_fn got called but before psi_poll_work could reschedule itself.
Below is the depiction of this entire window:
poll_timer_fn
wake_up_interruptible(&group->poll_wait);
psi_poll_worker
wait_event_interruptible(group->poll_wait, ...)
psi_poll_work
psi_schedule_poll_work
if (timer_pending(&group->poll_timer)) return;
...
mod_timer(&group->poll_timer, jiffies + delay);
Prior to 461daba06bdc we used to rely on poll_scheduled atomic which was
reset and set back inside psi_poll_work and therefore this race window
was much smaller.
The larger window causes increased number of wakeups and our partners
report visible power regression of ~10mA after applying 461daba06bdc.
Bring back the poll_scheduled atomic and make this race window even
narrower by resetting poll_scheduled only when we reach polling expiration
time. This does not completely eliminate the possibility of extra wakeups
caused by a race with psi_group_change however it will limit it to the
worst case scenario of one extra wakeup per every tracking window (0.5s
in the worst case).
This patch also ensures correct ordering between clearing poll_scheduled
flag and obtaining changed_states using memory barrier. Correct ordering
between updating changed_states and setting poll_scheduled is ensured by
atomic_xchg operation.
By tracing the number of immediate rescheduling attempts performed by
psi_group_change and the number of these attempts being blocked due to
psi monitor being already active, we can assess the effects of this change:
Before the patch:
Run#1 Run#2 Run#3
Immediate reschedules attempted: 684365 1385156 1261240
Immediate reschedules blocked: 682846 1381654 1258682
Immediate reschedules (delta): 1519 3502 2558
Immediate reschedules (% of attempted): 0.22% 0.25% 0.20%
After the patch:
Run#1 Run#2 Run#3
Immediate reschedules attempted: 882244 770298 426218
Immediate reschedules blocked: 881996 769796 426074
Immediate reschedules (delta): 248 502 144
Immediate reschedules (% of attempted): 0.03% 0.07% 0.03%
The number of non-blocked immediate reschedules dropped from 0.22-0.25%
to 0.03-0.07%. The drop is attributed to the decrease in the race window
size and the fact that we allow this race only when psi monitors reach
polling window expiration time.
Fixes: 461daba06bdc ("psi: eliminate kthread_worker from psi trigger scheduling mechanism")
Reported-by: Kathleen Chang <yt.chang@mediatek.com>
Reported-by: Wenju Xu <wenju.xu@mediatek.com>
Reported-by: Jonathan Chen <jonathan.jmchen@mediatek.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: SH Chen <show-hong.chen@mediatek.com>
Link: https://lore.kernel.org/r/20221028194541.813985-1-surenb@google.com
|
|
Pavan reported a problem that PSI avgs_work idle shutoff is not
working at all. Because PSI_NONIDLE condition would be observed in
psi_avgs_work()->collect_percpu_times()->get_recent_times() even if
only the kworker running avgs_work on the CPU.
Although commit 1b69ac6b40eb ("psi: fix aggregation idle shut-off")
avoided the ping-pong wake problem when the worker sleep, psi_avgs_work()
still will always re-arm the avgs_work, so shutoff is not working.
This patch changes to use PSI_STATE_RESCHEDULE to flag whether to
re-arm avgs_work in get_recent_times(). For the current CPU, we re-arm
avgs_work only when (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0),
for other CPUs we can just check PSI_NONIDLE delta. The new flag
is only used in psi_avgs_work(), so we check in get_recent_times()
that current_work() is avgs_work.
One potential problem is that the brief period of non-idle time
incurred between the aggregation run and the kworker's dequeue will
be stranded in the per-cpu buckets until avgs_work run next time.
The buckets can hold 4s worth of time, and future activity will wake
the avgs_work with a 2s delay, giving us 2s worth of data we can leave
behind when shut off the avgs_work. If the kworker run other works after
avgs_work shut off and doesn't have any scheduler activities for 2s,
this maybe a problem.
Reported-by: Pavan Kondeti <quic_pkondeti@quicinc.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Chengming Zhou <zhouchengming@bytedance.com>
Link: https://lore.kernel.org/r/20221014110551.22695-1-zhouchengming@bytedance.com
|
|
When a pending event exists and growth is less than the threshold, the
current logic is to skip this trigger without generating event. However,
from e6df4ead85d9 ("psi: fix possible trigger missing in the window"),
our purpose is to generate event as long as pending event exists and the
rate meets the limit, no matter what growth is.
This patch handles this case properly.
Fixes: e6df4ead85d9 ("psi: fix possible trigger missing in the window")
Signed-off-by: Hao Lee <haolee.swjtu@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Suren Baghdasaryan <surenb@google.com>
Link: https://lore.kernel.org/r/20220919072356.GA29069@haolee.io
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael Wysocki:
"These make the intel_pstate driver work as expected on all hybrid
platforms to date (regardless of possible platform firmware issues),
fix hybrid sleep on systems using suspend-to-idle by default, make the
generic power domains code handle disabled idle states properly and
update pm-graph.
Specifics:
- Make intel_pstate use what is known about the hardware instead of
relying on information from the platform firmware (ACPI CPPC in
particular) to establish the relationship between the HWP CPU
performance levels and frequencies on all hybrid platforms
available to date (Rafael Wysocki)
- Allow hybrid sleep to use suspend-to-idle as a system suspend
method if it is the current suspend method of choice (Mario
Limonciello)
- Fix handling of unavailable/disabled idle states in the generic
power domains code (Sudeep Holla)
- Update the pm-graph suite of utilities to version 5.10 which is
fixes-mostly and does not add any new features (Todd Brandt)"
* tag 'pm-6.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM: domains: Fix handling of unavailable/disabled idle states
pm-graph v5.10
cpufreq: intel_pstate: hybrid: Use known scaling factor for P-cores
cpufreq: intel_pstate: Read all MSRs on the target CPU
PM: hibernate: Allow hybrid sleep to work with s2idle
|
|
It's really difficult to debug when cgroup or css refs leak. Let's add a
debug option to force the refcnt function to not be inlined so that they can
be kprobed for debugging.
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Use the event group trees to iterate only perf_tracepoint events.
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
There have been various issues and limitations with the way perf uses
(task) contexts to track events. Most notable is the single hardware
PMU task context, which has resulted in a number of yucky things (both
proposed and merged).
Notably:
- HW breakpoint PMU
- ARM big.little PMU / Intel ADL PMU
- Intel Branch Monitoring PMU
- AMD IBS PMU
- S390 cpum_cf PMU
- PowerPC trace_imc PMU
*Current design:*
Currently we have a per task and per cpu perf_event_contexts:
task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context
^ | ^ | ^
`---------------------------------' | `--> pmu ---'
v ^
perf_event ------'
Each task has an array of pointers to a perf_event_context. Each
perf_event_context has a direct relation to a PMU and a group of
events for that PMU. The task related perf_event_context's have a
pointer back to that task.
Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which
includes a perf_event_context, which again has a direct relation to
that PMU, and a group of events for that PMU.
The perf_cpu_context also tracks which task context is currently
associated with that CPU and includes a few other things like the
hrtimer for rotation etc.
Each perf_event is then associated with its PMU and one
perf_event_context.
*Proposed design:*
New design proposed by this patch reduce to a single task context and
a single CPU context but adds some intermediate data-structures:
task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context
^ | ^ ^
`---------------------------' | |
| | perf_cpu_pmu_context <--.
| `----. ^ |
| | | |
| v v |
| ,--> perf_event_pmu_context |
| | |
| | |
v v |
perf_event ---> pmu ----------------'
With the new design, perf_event_context will hold all events for all
pmus in the (respective pinned/flexible) rbtrees. This can be achieved
by adding pmu to rbtree key:
{cpu, pmu, cgroup, group_index}
Each perf_event_context carries a list of perf_event_pmu_context which
is used to hold per-pmu-per-context state. For example, it keeps track
of currently active events for that pmu, a pmu specific task_ctx_data,
a flag to tell whether rotation is required or not etc.
Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu
state like hrtimer details to drive the event rotation, a pointer to
perf_event_pmu_context of currently running task and some other
ancillary information.
Each perf_event is associated to it's pmu, perf_event_context and
perf_event_pmu_context.
Further optimizations to current implementation are possible. For
example, ctx_resched() can be optimized to reschedule only single pmu
events.
Much thanks to Ravi for picking this up and pushing it towards
completion.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com
|
|
The do_set_cpus_allowed() function is used by either kthread_bind() or
select_fallback_rq(). In both cases the user affinity (if any) should be
destroyed too.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-6-longman@redhat.com
|
|
It was found that the user requested affinity via sched_setaffinity()
can be easily overwritten by other kernel subsystems without an easy way
to reset it back to what the user requested. For example, any change
to the current cpuset hierarchy may reset the cpumask of the tasks in
the affected cpusets to the default cpuset value even if those tasks
have pre-existing user requested affinity. That is especially easy to
trigger under a cgroup v2 environment where writing "+cpuset" to the
root cgroup's cgroup.subtree_control file will reset the cpus affinity
of all the processes in the system.
That is problematic in a nohz_full environment where the tasks running
in the nohz_full CPUs usually have their cpus affinity explicitly set
and will behave incorrectly if cpus affinity changes.
Fix this problem by looking at user_cpus_ptr in __set_cpus_allowed_ptr()
and use it to restrcit the given cpumask unless there is no overlap. In
that case, it will fallback to the given one. The SCA_USER flag is
reused to indicate intent to set user_cpus_ptr and so user_cpus_ptr
masking should be skipped. In addition, masking should also be skipped
if any of the SCA_MIGRATE_* flag is set.
All callers of set_cpus_allowed_ptr() will be affected by this change.
A scratch cpumask is added to percpu runqueues structure for doing
additional masking when user_cpus_ptr is set.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-4-longman@redhat.com
|
|
Unconditionally preserve the user requested cpumask on
sched_setaffinity() calls. This allows using it outside of the fairly
narrow restrict_cpus_allowed_ptr() use-case and fix some cpuset issues
that currently suffer destruction of cpumasks.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-3-longman@redhat.com
|
|
In order to prepare for passing through additional data through the
affinity call-chains, convert the mask and flags argument into a
structure.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-5-longman@redhat.com
|
|
affine_move_task() assumes task_rq_lock() has been called and it does
an implicit task_rq_unlock() before returning. Add the appropriate
__releases annotations to make this clear.
A typo error in comment is also fixed.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-2-longman@redhat.com
|
|
When evaluating the CPU candidates in the perf domain (pd) containing
the previously used CPU (prev_cpu), find_energy_efficient_cpu()
evaluates the energy of the pd:
- without the task (base_energy)
- with the task placed on prev_cpu (if the task fits)
- with the task placed on the CPU with the highest spare capacity,
prev_cpu being excluded from this set
If prev_cpu is already the CPU with the highest spare capacity,
max_spare_cap_cpu will be the CPU with the second highest spare
capacity.
On an Arm64 Juno-r2, with a workload of 10 tasks at a 10% duty cycle,
when prev_cpu and max_spare_cap_cpu are both valid candidates,
prev_spare_cap > max_spare_cap at ~82%.
Thus the energy of the pd when placing the task on max_spare_cap_cpu
is computed with no possible positive outcome 82% most of the time.
Do not consider max_spare_cap_cpu as a valid candidate if
prev_spare_cap > max_spare_cap.
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20221006081052.3862167-2-pierre.gondois@arm.com
|
|
We do consider thermal pressure in util_fits_cpu() for uclamp_min only.
With the exception of the biggest cores which by definition are the max
performance point of the system and all tasks by definition should fit.
Even under thermal pressure, the capacity of the biggest CPU is the
highest in the system and should still fit every task. Except when it
reaches capacity inversion point, then this is no longer true.
We can handle this by using the inverted capacity as capacity_orig in
util_fits_cpu(). Which not only addresses the problem above, but also
ensure uclamp_max now considers the inverted capacity. Force fitting
a task when a CPU is in this adverse state will contribute to making the
thermal throttling last longer.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-10-qais.yousef@arm.com
|
|
Check each performance domain to see if thermal pressure is causing its
capacity to be lower than another performance domain.
We assume that each performance domain has CPUs with the same
capacities, which is similar to an assumption made in energy_model.c
We also assume that thermal pressure impacts all CPUs in a performance
domain equally.
If there're multiple performance domains with the same capacity_orig, we
will trigger a capacity inversion if the domain is under thermal
pressure.
The new cpu_in_capacity_inversion() should help users to know when
information about capacity_orig are not reliable and can opt in to use
the inverted capacity as the 'actual' capacity_orig.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-9-qais.yousef@arm.com
|
|
condition
If the utilization of the woken up task is 0, we skip the energy
calculation because it has no impact.
But if the task is boosted (uclamp_min != 0) will have an impact on task
placement and frequency selection. Only skip if the util is truly
0 after applying uclamp values.
Change uclamp_task_cpu() signature to avoid unnecessary additional calls
to uclamp_eff_get(). feec() is the only user now.
Fixes: 732cd75b8c920 ("sched/fair: Select an energy-efficient CPU on task wake-up")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-8-qais.yousef@arm.com
|
|
So that it is now uclamp aware.
This fixes a major problem of busy tasks capped with UCLAMP_MAX keeping
the system in overutilized state which disables EAS and leads to wasting
energy in the long run.
Without this patch running a busy background activity like JIT
compilation on Pixel 6 causes the system to be in overutilized state
74.5% of the time.
With this patch this goes down to 9.79%.
It also fixes another problem when long running tasks that have their
UCLAMP_MIN changed while running such that they need to upmigrate to
honour the new UCLAMP_MIN value. The upmigration doesn't get triggered
because overutilized state never gets set in this state, hence misfit
migration never happens at tick in this case until the task wakes up
again.
Fixes: af24bde8df202 ("sched/uclamp: Add uclamp support to energy_compute()")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-7-qais.yousef@arm.com
|
|
Use the new util_fits_cpu() to ensure migration margin and capacity
pressure are taken into account correctly when uclamp is being used
otherwise we will fail to consider CPUs as fitting in scenarios where
they should.
s/asym_fits_capacity/asym_fits_cpu/ to better reflect what it does now.
Fixes: b4c9c9f15649 ("sched/fair: Prefer prev cpu in asymmetric wakeup path")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-6-qais.yousef@arm.com
|
|
Use the new util_fits_cpu() to ensure migration margin and capacity
pressure are taken into account correctly when uclamp is being used
otherwise we will fail to consider CPUs as fitting in scenarios where
they should.
Fixes: b4c9c9f15649 ("sched/fair: Prefer prev cpu in asymmetric wakeup path")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-5-qais.yousef@arm.com
|
|
As reported by Yun Hsiang [1], if a task has its uclamp_min >= 0.8 * 1024,
it'll always pick the previous CPU because fits_capacity() will always
return false in this case.
The new util_fits_cpu() logic should handle this correctly for us beside
more corner cases where similar failures could occur, like when using
UCLAMP_MAX.
We open code uclamp_rq_util_with() except for the clamp() part,
util_fits_cpu() needs the 'raw' values to be passed to it.
Also introduce uclamp_rq_{set, get}() shorthand accessors to get uclamp
value for the rq. Makes the code more readable and ensures the right
rules (use READ_ONCE/WRITE_ONCE) are respected transparently.
[1] https://lists.linaro.org/pipermail/eas-dev/2020-July/001488.html
Fixes: 1d42509e475c ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Reported-by: Yun Hsiang <hsiang023167@gmail.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-4-qais.yousef@arm.com
|
|
So that the new uclamp rules in regard to migration margin and capacity
pressure are taken into account correctly.
Fixes: a7008c07a568 ("sched/fair: Make task_fits_capacity() consider uclamp restrictions")
Co-developed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-3-qais.yousef@arm.com
|
|
fits_capacity() verifies that a util is within 20% margin of the
capacity of a CPU, which is an attempt to speed up upmigration.
But when uclamp is used, this 20% margin is problematic because for
example if a task is boosted to 1024, then it will not fit on any CPU
according to fits_capacity() logic.
Or if a task is boosted to capacity_orig_of(medium_cpu). The task will
end up on big instead on the desired medium CPU.
Similar corner cases exist for uclamp and usage of capacity_of().
Slightest irq pressure on biggest CPU for example will make a 1024
boosted task look like it can't fit.
What we really want is for uclamp comparisons to ignore the migration
margin and capacity pressure, yet retain them for when checking the
_actual_ util signal.
For example, task p:
p->util_avg = 300
p->uclamp[UCLAMP_MIN] = 1024
Will fit a big CPU. But
p->util_avg = 900
p->uclamp[UCLAMP_MIN] = 1024
will not, this should trigger overutilized state because the big CPU is
now *actually* being saturated.
Similar reasoning applies to capping tasks with UCLAMP_MAX. For example:
p->util_avg = 1024
p->uclamp[UCLAMP_MAX] = capacity_orig_of(medium_cpu)
Should fit the task on medium cpus without triggering overutilized
state.
Inlined comments expand more on desired behavior in more scenarios.
Introduce new util_fits_cpu() function which encapsulates the new logic.
The new function is not used anywhere yet, but will be used to update
various users of fits_capacity() in later patches.
Fixes: af24bde8df202 ("sched/uclamp: Add uclamp support to energy_compute()")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-2-qais.yousef@arm.com
|
|
Use atomic_try_cmpxchg() instead of atomic_cmpxchg (*ptr, old, new) ==
old in static_key_slow_inc_cpuslocked(). x86 CMPXCHG instruction
returns success in ZF flag, so this change saves a compare after
cmpxchg (and related move instruction in front of cmpxchg).
Also, atomic_try_cmpxchg() implicitly assigns old *ptr value to "old" when
cmpxchg fails, enabling further code simplifications.
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221019140850.3395-1-ubizjak@gmail.com
|
|
Since commit 838d9bb62d13 ("perf: Use sample_flags for raw_data")
raw data is not being output on tracepoints due to the PERF_SAMPLE_RAW
field not being set. Fix this by setting it for tracepoint events.
This fixes the following test failure:
perf test "sched_switch" -vvv
35: Track with sched_switch
--- start ---
test child forked, pid 1828
...
Using CPUID 0x00000000410fd400
sched_switch: cpu: 2 prev_tid -14687 next_tid 0
sched_switch: cpu: 2 prev_tid -14687 next_tid 0
Missing sched_switch events
4613 events recorded
test child finished with -1
---- end ----
Track with sched_switch: FAILED!
Fixes: 838d9bb62d13 ("perf: Use sample_flags for raw_data")
Signed-off-by: James Clark <james.clark@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Tested-by: SeongJae Park <sj@kernel.org>
Tested-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Link: https://lore.kernel.org/r/20221012143857.48198-1-james.clark@arm.com
|
|
We already ported most parts and filesystems over for v6.0 to the new
vfs{g,u}id_t type and associated helpers for v6.0. Convert the remaining
places so we can remove all the old helpers.
This is a non-functional change.
Reviewed-by: Seth Forshee (DigitalOcean) <sforshee@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Changing a time namespace requires remapping a vvar page, so we don't want
to allow doing that if any other tasks can use the same mm.
Currently, we install a time namespace when a task is created with a new
vm. exec() is another case when a task gets a new mm and so it can switch
a time namespace safely, but it isn't handled now.
One more issue of the current interface is that clone() with CLONE_VM isn't
allowed if the current task has unshared a time namespace
(timens_for_children doesn't match the current timens).
Both these issues make some inconvenience for users. For example, Alexey
and Florian reported that posix_spawn() uses vfork+exec and this pattern
doesn't work with time namespaces due to the both described issues.
LXC needed to workaround the exec() issue by calling setns.
In the commit 133e2d3e81de5 ("fs/exec: allow to unshare a time namespace on
vfork+exec"), we tried to fix these issues with minimal impact on UAPI. But
it adds extra complexity and some undesirable side effects. Eric suggested
fixing the issues properly because here are all the reasons to suppose that
there are no users that depend on the old behavior.
Cc: Alexey Izbyshev <izbyshev@ispras.ru>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Suggested-by: "Eric W. Biederman" <ebiederm@xmission.com>
Origin-author: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220921003120.209637-1-avagin@google.com
|
|
Hybrid sleep is currently hardcoded to only operate with S3 even
on systems that might not support it.
Instead of assuming this mode is what the user wants to use, for
hybrid sleep follow the setting of `mem_sleep_current` which
will respect mem_sleep_default kernel command line and policy
decisions made by the presence of the FADT low power idle bit.
Fixes: 81d45bdf8913 ("PM / hibernate: Untangle power_down()")
Reported-and-tested-by: kolAflash <kolAflash@kolahilft.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216574
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|